自组装纳米四面体手性机制及高灵敏生物传感检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以多种纳米颗粒材料为构成元素并结合DNA自组装技术,实现了三维空间手性纳米颗粒四面体的可控组装;利用DNA分子的稳定性、可编程性以及空间四面体的多元素优势,通过改变四面体的空间构象建立了一系列简单、快速、超灵敏的生物传感检测新方法。
     首先,制备了五种不同的纳米颗粒,分别是10nm,15nm和25nm的金纳米颗粒、10nm的银纳米颗粒以及5nm的半导体荧光量子点,以上五种纳米材料形貌均一,分散性好且在水溶液中稳定。空间四面体是由四条末端修饰巯基或者氨基的单链DNA通过杂交互补形成的。纳米颗粒通过与DNA末端修饰的巯基或者氨基偶联,构成空间四面体的四个顶点。通过改变四面体顶端纳米颗粒的种类或者尺寸,成功构建了六种不同类型的三维空间四面体组装材料,这六种四面体分散性好、结构稳定,且组装产率都在75%以上。实验中运用多种表征手段对其空间结构进行了表征。圆二色光谱研究发现,除了第一类四面体外,其余五种四面体在可见光区(300-800nm)都有明显的手性信号,特别是第五种和第六种四面体呈现出几乎完全对称的手性光谱。通过对比六种不同类型四面体的空间结构发现,当四面体顶端的四个颗粒完全相同时(类型一),四面体是没有手性信号的。随着不同纳米颗粒的加入,四面体的手性信号逐渐增加,其中第五种和第六种四面体的手性信号最强。对于四面体的手性来源,可以从以下几个方面解释:1)不同纳米颗粒的加入打破了四面体的对称骨架;2)不同颗粒之间的等离子共振相互作用;3)纳米颗粒之间的DNA手性分子的手性转移作用。
     其次,分别用DNA和氯化钠(NaCl)两种不同圆二色性的分子成功组装了金纳米颗粒异质二聚体。基于二聚体是纳米颗粒组装体中最简单的结构,以此为代表研究其手性来源有利于观察组装体几何构型的变化与其手性信号的关系。结果显示,这两种二聚体在500nm附近都有明显的手性信号,DNA组装的二聚体的手性信号为负值,而NaCl组装的二聚体的手性信号为正值,且前者的信号强度比后者高,这与软件模拟的结果完全吻合。该结果说明手性分子不是手性产生的根本原因,二聚体的手性应该是来自本身的空间结构。实验中采用冷冻电子显微技术结合计算机软件模拟对两种二聚体的空间结构进行了研究发现,二聚体中两个颗粒之间的夹角是手性信号产生的根本原因。首次提出了纳米组装体手性起源新理论。
     第三,构建了手性和非手性两种不同的空间四面体,当目标DNA存在时,两种四面体空间构象发生改变,手性信号呈现出不同的变化趋势,一种的手性信号逐渐增强而另外一种的手性信号逐渐减弱。实验中采用多种手段对两种四面体空间构象的变化做了表征。基于空间四面体的构象变化与手性信号的关系,建立了两种不同模式的DNA手性传感检测方法。在最优条件下,DNA的检测灵敏度可以达到3.4aM,该检测限远远低于其它光学传感器,从而建立了一种快速、超灵敏的DNA手性检测方法。
     第四,制备高产、均一的银纳米颗粒空间四面体结构,在DNA四面体的六个边上分别嵌入核酸适配体,目标分子能与自身适配体结合形成DNA茎环结构,纳米颗粒之间产生强的“热点”区域,从而使此区域内的拉曼信标分子的信号明显增强。基于此原理,分别构建了磺胺二甲氧嘧啶(SDM)和前列腺特异性蛋白(PSA)的四面体单重拉曼超灵敏检测新方法。信标分子采用对氨基苯硫酚(4-ATP),根据信标分子的信号强度与目标分子浓度建立标准曲线,在最优条件下,SDM和PSA的检测限分别可达到86.2pM和40zM,是目前基于纳米材料传感检测的最低检测限。利用空间四面体的多元素优势,通过采用三种拉曼信标分子和三种核酸适配体,建立了三种靶蛋白浓度与SERS信号之间的线性关系并应用于癌症标志蛋白的拉曼多重检测。检测的三种目标物依次为前列腺特异性蛋白,凝血酶和粘蛋白1,对应的检测限依次为:1.2aM,158aM和26aM。相比于其它SERS传感器,该方法稳定性好、灵敏度高并且有很好的特异性。
In this paper, three-dimensional chiral nanoparticle pyramids were achieved based onDNA self-assembly technology combined with variety of nanoparticles materials; Takingadvantage of the stability and programmability of DNA and multiplexed elements of spatialpyramids, a series of new methods of simple, rapid, ultra-sensitive biosensor detection wereestablished by changing the tetrahedral conformation.
     Firstly, five different nanoparticles were synthesized, which were10nm,15nm and25nm gold nanoparticles,10nm silver nanoparticles and5nm fluorescent quantum dots, thesematerials showed uniform morphology, good dispersion and stability in aqueous solution.Three-dimensional pyramids were assembled using four single-stranded DNA (ssDNA)modified with sulfhydryl or amino group, and nanoparticles were attached on each top ofpyramids by coupling with the sulfhydryl or amino group of ssDNA. By changing the types orsizes of nanoparticle attached on the top of pyramids, six different types of three-dimensionalpyramids with well dispersion and stability were constructed successfully with the yieldexceeding75%. A variety of optical instruments were used to characterize the spatial structureof pyramids. Circular dichroism spectroscopy showed that, in addition to the first class ofpyramid, the others all exhibited significant circular dichroism (CD) signals in the visibleregion (300-800nm), in particular, the fifth and the sixth pyramids emerged almostcompletely symmetric chiral spectrum. By comparing the spatial structures of six differenttypes of pyramids, we found that pyramids formed with four identical particles were achiral(the first type), with the addition of different nanoparticles, the CD intensity of nanoparticlespyramids were gradually increased, the chiral signal of the fifth and sixth pyramids were thestrongest. The origin of chirality of nanoparticle pyramids can be interpreted from thefollowing aspects:1) the addition of different nanoparticles breaks the symmetric frame ofpyramids;2) the interactions between plasmical nanoparticles with different shapes and size;3) the chirality of DNA molecules was transferred to the nanoparticles in pyramids.
     Secondly, gold nanoparticles heterodimers were assembled with a chiral (DNA) and anachiral molecule (NaCl), respectively. Because the dimers are the simplest structure innanoparticle assemblies, they could be used as a respensentative material to study the originof chirality, it is easy to clearly observe the relationship between the conformational changeand the CD signal of assemblies. It is found that these two types of heterodimers both showedsignificant CD signals at the visible region of500nm, the value of CD signal from DNAassembled dimers was negative and the value of CD signal from NaCl assembled dimers waspositive, the intensity of CD signal from the former was stronger than the later,which wasagreed well with the software simulation dates. The results showed that chiral molecules werenot the origin of chirality of heterodimers and the structure of heterodimers may be the originof chirality. Cryo-electron microscopy combined with simulation software were used to studythe spatial structure of the two types of dimers, it was found that the angles between twoparticles in heterodimers was the origin of the CD signal. A new theory of the origin ofchirality in nanoparticle assemblies was first proposed.
     Thirdly, two different three-dimensional pyramids (chiral and achiral) were constructed,with the addition of target DNA, the conformations of two different pyramids were changedwhich altered the CD signals of the two pyramids, one CD signal was gradually increased andthe other one was gradually decreased. Various methods were used to characterize theconformation changes of these two pyramids. Based on the relationship between theconformation change and the CD signals of pyramids, two different methods were establishedto detection of DNA molecules. Under optimal conditions, a limit of detection (LOD) forDNA was as low as3.4aM, which was much lower than other optical sensors. Here, a rapid,ultra-sensitive chiral sensor for DNA detection was established.
     Lastly, uniform silver nanoparticles pyramids were prepared with high yields, and thenDNA aptamers were inserted in each side of nanoparticles pyramids, they can bind with itsaptamer and form a DNA stem-loop structure and produced a strong "hot spots" between thesilver nanoparticles, so the signal of the Raman reporter molecular existed in this region wassignificantly enhanced. Based on this principle, an ultrasensitive Raman sensor forsulfadimethoxine (SDM) and prostate-specific protein (PSA) were constructed using Ag NPspyramids, respectively, in which amino thiophenol (4-ATP) was used as Raman reportermolecule. Based on the relationship between the intensity of Raman signals and theconcentration of SDM and PSA, a standard curve for these two molecules detection has beenestablished, the LOD of SDM and PSA were82.6pM and40zM respectively, which was theultrasensitive method for SDM or PSA detection using surface-enhanced Raman scattering(SERS). Taking advantage of the multi-element of pyramids, a multiplexed Raman sensor forbio-marker proteins was constructed based on three Raman reporter molecules and threeprotein aptamers. Three targets used in this work were prostate-specific protein, thrombin, andmucin-1, the corresponding LOD were1.2aM,158aM and26aM, respectively. Comparedwith other SERS sensors, this method showed well stability and high sensitivity.
引文
1. Prodan E, Radloff C, Halas N J, et al. A hybridization model for the plasmon response of complexnanostructures [J]. Science,2003,302(5644):419-422.
    2. Sepulveda B, Angelome P C, Lechuga L M, et al. LSPR-based nanobiosensors [J]. Nano Today,2009,4(3):244-251.
    3. Noguez C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment[J]. Journal of Physical Chemistry C,2007,111(10):3806-3819.
    4. Scholl J A, Garcia-Etxarri A, Koh A L, et al. Observation of quantum tunneling between twoplasmonic nanoparticles [J]. Nano Letters,2013,13(2):564-569.
    5. Liu G L, Yin Y, Kunchakarra S, et al. A nanoplasmonic molecular ruler for measuring nuclease activityand DNA footprinting [J]. Nature Nanotechnology,2006,1(1):47-52.
    6. Mccoy R S, Choi S, Collins G, et al. Superatom paramagnetism enables gold nanocluster heating inapplied radiofrequency fields [J]. ACS Nano,2013,7(3):2610-2616.
    7. Ghosh S K, Nath S, Kundu S, et al. Solvent and ligand effects on the localized surface plasmonresonance (LSPR) of gold colloids [J]. Journal of Physical Chemistry B,2004,108(37):13963-13971.
    8. Zhang X, Servos M R, Liu J. Instantaneous and quantitative functionalization of gold nanoparticleswith thiolated DNA using a pH-assisted and surfactant-free route [J]. Journal of the American ChemicalSociety,2012,134(17):7266-7269.
    9. Lo P K, Karam P, Aldaye F A, et al. Loading and selective release of cargo in DNA nanotubes withlongitudinal variation [J]. Nature Chemistry,2010,2(4):319-328.
    10. Jain P K, Huang X H, El-Sayed I H, et al. Noble metals on the nanoscale: Optical and photothermalproperties and some applications in imaging, sensing, biology, and medicine [J]. Accounts of ChemicalResearch,2008,41(12):1578-1586.
    11. Huang T, Nallathamby P D, Gillet D, et al. Design and synthesis of single-nanoparticle opticalbiosensors for imaging and characterization of single receptor molecules on single living cells [J].Analytical Chemistry,2007,79(20):7708-7718.
    12. Wang Q, Wang H, Lin C, et al. Photonic interaction between quantum dots and gold nanoparticles indiscrete nanostructures through DNA directed self-assembly [J]. Chemical Communications,2010,46(2):240-242.
    13. Hao Y, Yang X, Song S, et al. Exploring the cell uptake mechanism of phospholipid and polyethyleneglycol coated gold nanoparticles [J]. Nanotechnology,2012,23(4):045103.
    14. Ando J, Fujita K, Smith N I, et al. Dynamic SERS imaging of cellular transport pathways withendocytosed gold nanoparticles [J]. Nano Letters,2011,11(12):5344-5348.
    15. Lesniak A, Salvati A, Santos-Martinez M J, et al. Nanoparticle adhesion to the cell membrane and itseffect on nanoparticle uptake efficiency [J]. Journal of the American Chemical Society,2013,135(4):1438-1444.
    16. Crew E, Tessel M A, Rahman S, et al. MicroRNA conjugated gold nanoparticles and cell transfection[J]. Analytical Chemistry,2012,84(1):26-29.
    17. Xu L, Hao C, Yin H, et al. Plasmonic core–satellites nanostructures with high chirality andbioproperty [J]. The Journal of Physical Chemistry Letters,2013,4(14):2379-2384.
    18. Xu L G, Xu Z, Ma W, et al. Highly selective recognition and ultrasensitive quantification ofenantiomers [J]. Journal of Materials Chemistry B,2013,1(35):4478-4483.
    19. Saha K, Agasti S S, Kim C, et al. Gold nanoparticles in chemical and biological sensing [J]. ChemicalReviews,2012,112(5):2739-2779.
    20. Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-relatedproperties, and applications toward biology, catalysis, and nanotechnology [J]. Chemical Reviews,2004,104(1):293-346.
    21. Cooperástevenson P. A study of the nucleation and growth processes in the synthesis of colloidal gold[J]. Discussions of the Faraday Society,1951,11:55-75.
    22. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature,1973,241(105):20-22.
    23. Shan C, Li F, Yuan F, et al. Size-controlled synthesis of monodispersed gold nanoparticles stabilizedby polyelectrolyte-functionalized ionic liquid [J]. Nanotechnology,2008,19(28):285601.
    24. Wiley B, Sun Y, Xia Y. Synthesis of silver nanostructures with controlled shapes and properties [J].Accounts of Chemical Research,2007,40(10):1067-1076.
    25. Kneipp K, Kneipp H, Kneipp J. Surface-enhanced Raman scattering in local optical fields of silverand gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells[J]. Accounts of Chemical Research,2006,39(7):443-450.
    26. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials [J].Biotechnology Advances,2009,27(1):76-83.
    27. Chen X, Schluesener H J. Nanosilver: A nanoproduct in medical application [J]. Toxicology Letters,2008,176(1):1-12.
    28. Sharma V K, Yngard R A, Lin Y. Silver nanoparticles: Green synthesis and their antimicrobialactivities [J]. Advances in Colloid and Interface Science,2009,145(1-2):83-96.
    29. Dadosh T, Sperling J, Bryant G W, et al. Plasmonic control of the shape of the Raman spectrum of asingle molecule in a silver nanoparticle dimer [J]. ACS Nano,2009,3(7):1988-1994.
    30. El-Khoury P Z, Peppernick S J, Hu D, et al. The origin of surface-enhanced raman scattering of4,4′-biphenyldicarboxylate on silver substrates [J]. The Journal of Physical Chemistry C,2013,117(14):7260-7268.
    31. Qian X M, Nie S M. Single-molecule and single-nanoparticle SERS: From fundamental mechanismsto biomedical applications [J]. Chemical Society Reviews,2008,37(5):912-920.
    32. Wang H H, Liu C Y, Wu S B, et al. Highly raman‐enhancing substrates based on silver nanoparticlearrays with tunable sub‐10nm gaps [J]. Advanced Materials,2006,18(4):491-495.
    33. Pal A, Pal T. Silver nanoparticle aggregate formation by a photochemical method and its application toSERS analysis [J]. Journal of Raman Spectroscopy,1999,30(3):199-204.
    34. Sun L L, Song Y H, Wang L, et al. Ethanol-induced formation of silver nanoparticle aggregates forhighly active SERS substrates and application in DNA detection [J]. Journal of Physical Chemistry C,2008,112(5):1415-1422.
    35. Ahamed M, Alsalhi M S, Siddiqui M K. Silver nanoparticle applications and human health [J]. ClinicaChimica Acta,2010,411(23-24):1841-1848.
    36. Murphy C J, Sau T K, Gole A M, et al. Anisotropic metal nanoparticles: Synthesis, assembly, andoptical applications [J]. Journal of Physical Chemistry B,2005,109(29):13857-13870.
    37. Evanoff D D, Jr., Chumanov G. Synthesis and optical properties of silver nanoparticles and arrays [J].ChemPhysChem,2005,6(7):1221-1231.
    38. Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science,2002,298(5601):2176-2179.
    39. Dabbousi B O, Rodriguezviejo J, Mikulec F V, et al.(CdSe)ZnS core-shell quantum dots: Synthesisand characterization of a size series of highly luminescent nanocrystallites [J]. Journal of PhysicalChemistry B,1997,101(46):9463-9475.
    40. Shi L, De Paoli V, Rosenzweig N, et al. Synthesis and application of quantum dots FRET-basedprotease sensors [J]. Journal of the American Chemical Society,2006,128(32):10378-10379.
    41. Zhang C Y, Yeh H C, Kuroki M T, et al. Single-quantum-dot-based DNA nanosensor [J]. NatureMaterials,2005,4(11):826-831.
    42. Sun D, Gang O. DNA-functionalized quantum dots: Fabrication, structural, and physicochemicalproperties [J]. Langmuir,2013,29(23):7038-7046.
    43. Yun C S, Javier A, Jennings T, et al. Nanometal surface energy transfer in optical rulers, breaking theFRET barrier [J]. Journal of the American Chemical Society,2005,127(9):3115-3119.
    44. Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, anddiagnostics [J]. Science,2005,307(5709):538-544.
    45. Derfus A M, Chan W C W, Bhatia S N. Probing the cytotoxicity of semiconductor quantum dots [J].Nano Letters,2004,4(1):11-18.
    46. Li Y, Zhou Y, Wang H Y, et al. Chirality of glutathione surface coating affects the cytotoxicity ofquantum dots [J]. Angewandte Chemie International Edition in English,2011,50(26):5860-5864.
    47. Govan J E, Jan E, Querejeta A, et al. Chiral luminescent CdS nano-tetrapods [J]. ChemicalCommunications,2010,46(33):6072-6074.
    48. Rogach A L, Kornowski A, Gao M Y, et al. Synthesis and characterization of a size series of extremelysmall thiol-stabilized CdSe nanocrystals [J]. Journal of Physical Chemistry B,1999,103(16):3065-3069.
    49. Gerion D, Pinaud F, Williams S C, et al. Synthesis and properties of biocompatible water-solublesilica-coated CdSe/ZnS semiconductor quantum dots [J]. Journal of Physical Chemistry B,2001,105(37):8861-8871.
    50. Talapin D V, Lee J S, Kovalenko M V, et al. Prospects of colloidal nanocrystals for electronic andoptoelectronic applications [J]. Chemical Reviews,2010,110(1):389-458.
    51. Rycenga M, Cobley C M, Zeng J, et al. Controlling the synthesis and assembly of silvernanostructures for plasmonic applications [J]. Chemical Reviews,2011,111(6):3669-3712.
    52. Liu K, Zhao N, Kumacheva E. Self-assembly of inorganic nanorods [J]. Chemical Society Reviews,2011,40(2):656-671.
    53. Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms,characterization, and applications [J]. Chemical Reviews,2012,112(4):2373-2433.
    54. Barrow S J, Funston A M, Wei X Z, et al. DNA-directed self-assembly and optical properties ofdiscrete1D,2D and3D plasmonic structures [J]. Nano Today,2013,8(2):138-167.
    55. Elbaz J, Cecconello A, Fan Z, et al. Powering the programmed nanostructure and function of goldnanoparticles with catenated DNA machines [J]. Nature Communications,2013,4:2000.
    56. Patolsky F, Lichtenstein A, Willner I. Detection of single-base DNA mutations by enzyme-amplifiedelectronic transduction [J]. Nature Biotechnology,2001,19(3):253-257.
    57. Das S, Ranjan P, Maiti P S, et al. Dual-responsive nanoparticles and their self-assembly [J]. AdvancedMaterials,2013,25(3):422-426.
    58. Liu D, Wang Z, Jin A, et al. Acetylcholinesterase-catalyzed hydrolysis allows ultrasensitive detectionof pathogens with the naked eye [J]. Angewandte Chemie International Edition in English,2013,52(52):14065-14069.
    59. Shenhar R, Norsten T B, Rotello V M. Polymer‐mediated nanoparticle assembly: Structural controland applications [J]. Advanced Materials,2005,17(6):657-669.
    60. Ofir Y, Samanta B, Rotello V M. Polymer and biopolymer mediated self-assembly of goldnanoparticles [J]. Chemical Society Reviews,2008,37(9):1814-1825.
    61. Nie Z, Fava D, Kumacheva E, et al. Self-assembly of metal-polymer analogues of amphiphilic triblockcopolymers [J]. Nature Materials,2007,6(8):609-614.
    62. Stevens M M, Flynn N T, Wang C, et al. Coiled‐coil peptide‐based assembly of gold nanoparticles[J]. Advanced Materials,2004,16(11):915-918.
    63. Mackay J A, Chen M, Mcdaniel J R, et al. Self-assembling chimeric polypeptide–doxorubicinconjugate nanoparticles that abolish tumours after a single injection [J]. Nature Materials,2009,8(12):993-999.
    64. Song C, Wang Y, Rosi N L. Peptide-directed synthesis and assembly of hollow spherical CoPtnanoparticle superstructures [J]. Angewandte Chemie International Edition in English,2013,52(14):3993-3995.
    65. Wang L, Zhu Y, Xu L, et al. Side-by-side and end-to-end gold nanorod assemblies for environmentaltoxin sensing [J]. Angewandte Chemie International Edition in English,2010,49(32):5472-5475.
    66. Xing H, Wang Z, Xu Z, et al. DNA-directed assembly of asymmetric nanoclusters using Janusnanoparticles [J]. ACS Nano,2012,6(1):802-809.
    67. Lan X, Chen Z, Liu B J, et al. DNA‐directed gold nanodimers with tunable sizes and interparticledistances and their surface plasmonic properties [J]. Small,2013,9(13):2308-1235.
    68. Huang J, Wu Y, Chen Y, et al. Pyrene-excimer probes based on the hybridization chain reaction for thedetection of nucleic acids in complex biological fluids [J]. Angewandte Chemie International Edition inEnglish,2011,50(2):401-404.
    69. Loweth C J, Caldwell W B, Peng X G, et al. DNA-based assembly of gold nanocrystals [J].Angewandte Chemie-International Edition,1999,38(12):1808-1812.
    70. Claridge S A, Liang H W, Basu S R, et al. Isolation of discrete nanoparticle-DNA conjugates forplasmonic applications [J]. Nano Letters,2008,8(4):1202-1206.
    71. Claridge S A, Mastroianni A J, Au Y B, et al. Enzymatic ligation creates discrete multinanoparticlebuilding blocks for self-assembly [J]. Journal of the American Chemical Society,2008,130(29):9598-9605.
    72. Sharma J, Chhabra R, Cheng A, et al. Control of self-assembly of DNA tubules through integration ofgold nanoparticles [J]. Science,2009,323(5910):112-116.
    73. Tan L H, Xing H, Chen H, et al. Facile and efficient preparation of anisotropic DNA-functionalizedgold nanoparticles and their regioselective assembly [J]. Journal of the American Chemical Society,2013,135(47):17675-17678.
    74. Zerrouki D, Baudry J, Pine D, et al. Chiral colloidal clusters [J]. Nature,2008,455(7211):380-382.
    75. Gautier C, Burgi T. Chiral gold nanoparticles [J]. ChemPhysChem,2009,10(3):483-492.
    76. Yeom B, Zhang H, Zhang H, et al. Chiral plasmonic nanostructures on achiral nanopillars [J]. NanoLetters,2013,13(11):5277-5283.
    77. Slocik J M, Govorov A O, Naik R R. Plasmonic circular dichroism of Peptide-functionalized goldnanoparticles [J]. Nano Letters,2011,11(2):701-705.
    78. Fan Z, Govorov A O. Chiral nanocrystals: plasmonic spectra and circular dichroism [J]. Nano Letters,2012,12(6):3283-3289.
    79. Xu Z, Xu L, Zhu Y, et al. Chirality based sensor for bisphenol A detection [J]. ChemicalCommunications,2012,48(46):5760-5762.
    80. Fan Z, Govorov A O. Plasmonic circular dichroism of chiral metal nanoparticle assemblies [J]. NanoLetters,2010,10(7):2580-2587.
    81. Xie J J, Duan Y Y, Che S A. Chirality of metal nanoparticles in chiral mesoporous silica [J]. AdvancedFunctional Materials,2012,22(18):3784-3792.
    82. Oh S S, Demetriadou A, Wuestner S, et al. On the origin of chirality in nanoplasmonic gyroidmetamaterials [J]. Advanced Materials,2013,25(4):612-617.
    83. Kuzyk A, Schreiber R, Fan Z, et al. DNA-based self-assembly of chiral plasmonic nanostructures withtailored optical response [J]. Nature,2012,483(7389):311-314.
    84. Shen X, Song C, Wang J, et al. Rolling up gold nanoparticle-dressed DNA origami intothree-dimensional plasmonic chiral nanostructures [J]. Journal of the American Chemical Society,2012,134(1):146-149.
    85. Zhu Y, Xu L, Ma W, et al. A one-step homogeneous plasmonic circular dichroism detection of aqueousmercury ions using nucleic acid functionalized gold nanorods [J]. Chemical Communications,2012,48(97):11889-11891.
    86. Zhu Z, Liu W, Li Z, et al. Manipulation of collective optical activity in one-dimensional plasmonicassembly [J]. ACS Nano,2012,6(3):2326-2332.
    87. Wu X, Xu L, Liu L, et al. Unexpected chirality of nanoparticle dimers and ultrasensitivechiroplasmonic bioanalysis [J]. Journal of the American Chemical Society,2013,135(49):18629-18636.
    88. Li Z, Zhu Z, Liu W, et al. Reversible plasmonic circular dichroism of Au nanorod and DNAassemblies [J]. Journal of the American Chemical Society,2012,134(7):3322-3325.
    89. Ma W, Kuang H, Xu L, et al. Attomolar DNA detection with chiral nanorod assemblies [J]. NatureCommunications,2013,4:2689.
    90. Moskovits M. Surface-enhanced spectroscopy [J]. Reviews of Modern Physics,1985,57(3):783-826.
    91. Osberg K D, Rycenga M, Bourret G R, et al. Dispersible surface-enhanced Raman scatteringnanosheets [J]. Advanced Materials,2012,24(45):6065-6070.
    92. Pierre M C, Haes A J. Purification implications on SERS activity of silica coated gold nanospheres [J].Analytical Chemistry,2012,84(18):7906-7911.
    93. Wang Y, Yan B, Chen L. SERS tags: novel optical nanoprobes for bioanalysis [J]. Chemical Reviews,2013,113(3):1391-1428.
    94. Lim D K, Jeon K S, Kim H M, et al. Nanogap-engineerable Raman-active nanodumbbells forsingle-molecule detection [J]. Nature Materials,2010,9(1):60-67.
    95. Lim D K, Jeon K S, Hwang J H, et al. Highly uniform and reproducible surface-enhanced Ramanscattering from DNA-tailorable nanoparticles with1-nm interior gap [J]. Nature Nanotechnology,2011,6(7):452-460.
    96. Chen G, Wang Y, Yang M, et al. Measuring ensemble-averaged surface-enhanced Raman scattering inthe hotspots of colloidal nanoparticle dimers and trimers [J]. Journal of the American Chemical Society,2010,132(11):3644-3645.
    97. Kuang H, Ma W, Xu L, et al. Nanoscale superstructures assembled by polymerase chain reaction(PCR): programmable construction, structural diversity, and emerging applications [J]. Accounts ofChemical Research,2013,46(11):2341-2354.
    98. Zhao Y, Zhou L, Tang Z. Cleavage-based signal amplification of RNA [J]. Nature Communications,2013,4:1493.
    99. Wang J, Zhu G, You M, et al. Assembly of aptamer switch probes and photosensitizer on goldnanorods for targeted photothermal and photodynamic cancer therapy [J]. ACS Nano,2012,6(6):5070-5077.
    100. Srivastava S, Kotov N A. Nanoparticle assembly for1D and2D ordered structures [J]. Soft Matter,2009,5(6):1146-1156.
    101. Amabilino D B. Chiral nanoscale systems: preparation, structure, properties and function [J].Chemical Society Reviews,2009,38(3):669-670.
    102. Berova N, Di Bari L, Pescitelli G. Application of electronic circular dichroism in configurational andconformational analysis of organic compounds [J]. Chemical Society Reviews,2007,36(6):914-931.
    103. Govorov A O, Fan Z. Theory of chiral plasmonic nanostructures comprising metal nanocrystals andchiral molecular media [J]. ChemPhysChem,2012,13(10):2551-2560.
    104. Frank B, Yin X, Schaferling M, et al. Large-area3D chiral plasmonic structures [J]. ACS Nano,2013,7(7):6321-6329.
    105. Jung J H, Moon S J, Ahn J, et al. Controlled supramolecular assembly of helical silicananotube-graphene hybrids for chiral transcription and separation [J]. ACS Nano,2013,7(3):2595-2601.
    106. Cao H, Zhu X, Liu M. Self-assembly of racemic alanine derivatives: unexpected chiral twist andenhanced capacity for the discrimination of chiral species [J]. Angewandte Chemie International Edition inEnglish,2013,52(15):4122-4126.
    107. Guerrero-Martinez A, Auguie B, Alonso-Gomez J L, et al. Intense optical activity fromthree-dimensional chiral ordering of plasmonic nanoantennas [J]. Angewandte Chemie InternationalEdition in English,2011,50(24):5499-5503.
    108. George J, Thomas K G. Surface plasmon coupled circular dichroism of Au nanoparticles on peptidenanotubes [J]. Journal of the American Chemical Society,2010,132(8):2502-2503.
    109. Chen C L, Zhang P, Rosi N L. A new peptide-based method for the design and synthesis ofnanoparticle superstructures: construction of highly ordered gold nanoparticle double helices [J]. Journal ofthe American Chemical Society,2008,130(41):13555-13557.
    110.贾思思,晁洁,樊春海等. DNA折纸术纳米反应器[J].化学进展,2014,26(05):695-705.
    111. Haiss W, Thanh N T, Aveyard J, et al. Determination of size and concentration of gold nanoparticlesfrom UV-vis spectra [J]. Analytical Chemistry,2007,79(11):4215-4221.
    112. Mastroianni A J, Claridge S A, Alivisatos A P. Pyramidal and chiral groupings of gold nanocrystalsassembled using DNA scaffolds [J]. Journal of the American Chemical Society,2009,131(24):8455-8459.
    113. He Y, Su M, Fang P A, et al. On the chirality of self-assembled DNA octahedra [J]. AngewandteChemie International Edition in English,2010,49(4):748-751.
    114. Lu N, Pei H, Ge Z, et al. Charge transport within a three-dimensional DNA nanostructure framework[J]. Journal of the American Chemical Society,2012,134(32):13148-13151.
    115. Pei H, Liang L, Yao G, et al. Reconfigurable three-dimensional DNA nanostructures for theconstruction of intracellular logic sensors [J]. Angewandte Chemie International Edition in English,2012,51(36):9020-9024.
    116. Fan Z Y, Zhang H, Govorov A O. Optical properties of chiral plasmonic tetramers: Circular dichroismand multipole effects [J]. Journal of Physical Chemistry C,2013,117(28):14770-14777.
    117. Prelog V, Helmchen G. Basic Principles of the CIP‐System and Proposals for a Revision [J].Angewandte Chemie International Edition in English,1982,21(8):567-583.
    118. Fu A, Micheel C M, Cha J, et al. Discrete nanostructures of quantum dots/Au with DNA [J]. Journal ofthe American Chemical Society,2004,126(35):10832-10833.
    119. Demers L M, Mirkin C A, Mucic R C, et al. A fluorescence-based method for determining the surfacecoverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films andnanoparticles [J]. Analytical Chemistry,2000,72(22):5535-5541.
    120. Zhang M, Qing G, Xiong C, et al. Dual-responsive gold nanoparticles for colorimetric recognition andtesting of carbohydrates with a dispersion-dominated chromogenic process [J]. Advanced Materials,2013,25(5):749-754.
    121. Ringler M, Schwemer A, Wunderlich M, et al. Shaping emission spectra of fluorescent molecules withsingle plasmonic nanoresonators [J]. Physical Review Letters,2008,100(20):203002.
    122. Acuna G P, Moller F M, Holzmeister P, et al. Fluorescence enhancement at docking sites ofDNA-directed self-assembled nanoantennas [J]. Science,2012,338(6106):506-510.
    123. Curto A G, Volpe G, Taminiau T H, et al. Unidirectional emission of a quantum dot coupled to ananoantenna [J]. Science,2010,329(5994):930-933.
    124. Toyoshima C, Sasabe H, Stokes D L. Three-dimensional cryo-electron microscopy of the calcium ionpump in the sarcoplasmic reticulum membrane [J]. Nature,1993,362(6419):467-471.
    125. Fasman G D. Circular dichroism and the conformational analysis of biomolecules [M]. Springer,1996.
    126. Snatzke G. Circular dichroism and absolute conformation: application of qualitative MO theory tochiroptical phenomena [J]. Angewandte Chemie International Edition in English,1979,18(5):363-377.
    127. Lieberman I, Shemer G, Fried T, et al. Plasmon-resonance-enhanced absorption and circular dichroism[J]. Angewandte Chemie International Edition in English,2008,47(26):4855-4857.
    128. Yang H, Altvater F, De Bruijn A D, et al. Chiral metal-DNA four-arm junctions and metalatednanotubular structures [J]. Angewandte Chemie International Edition in English,2011,50(20):4620-4623.
    129. Wang Y, Xu J, Wang Y, et al. Emerging chirality in nanoscience [J]. Chemical Society Reviews,2013,42(7):2930-2962.
    130. Nan J, Yan X P. A circular dichroism probe for L-cysteine based on the self-assembly of chiralcomplex nanoparticles [J]. Chemistry,2010,16(2):423-427.
    131. Oh H S, Liu S, Jee H, et al. Chiral poly(fluorene-alt-benzothiadiazole)(PFBT) and nanocompositeswith gold nanoparticles: plasmonically and structurally enhanced chirality [J]. Journal of the AmericanChemical Society,2010,132(49):17346-17348.
    132. Govorov A O, Gun'ko Y K, Slocik J M, et al. Chiral nanoparticle assemblies: circular dichroism,plasmonic interactions, and exciton effects [J]. Journal of Materials Chemistry,2011,21(42):16806-16818.
    133. Ziegler C, Eychmu Ller A. Seeded growth synthesis of uniform gold nanoparticles with diameters of15300nm [J]. The Journal of Physical Chemistry C,2011,115(11):4502-4506.
    134. Bastus N G, Comenge J, Puntes V. Kinetically controlled seeded growth synthesis of citrate-stabilizedgold nanoparticles of up to200nm: size focusing versus Ostwald ripening [J]. Langmuir,2011,27(17):11098-11105.
    135. Ma W, Kuang H, Wang L, et al. Chiral plasmonics of self-assembled nanorod dimers [J]. ScientificReports,2013,3:1934.
    136. Noguez C, Garzon I L. Optically active metal nanoparticles [J]. Chemical Society Reviews,2009,38(3):757-771.
    137. Chen J I, Chen Y, Ginger D S. Plasmonic nanoparticle dimers for optical sensing of DNA in complexmedia [J]. Journal of the American Chemical Society,2010,132(28):9600-9601.
    138. Belgrader P, Benett W, Hadley D, et al. PCR detection of bacteria in seven minutes [J]. Science,1999,284(5413):449-450.
    139. Duchamp M B, Casalegno J, Gillet Y, et al. Pandemic A (H1N1)2009influenza virus detection by realtime RT‐PCR: is viral quantification useful?[J]. Clinical Microbiology and Infection,2010,16(4):317-321.
    140. Fitzgerald K M. Immuno-PCR detection of custom protein targets using recombinant bindingmolecules specifically conjugated to DNA [D]; Quinnipiac University,2013.
    141. Swierczewska M, Liu G, Lee S, et al. High-sensitivity nanosensors for biomarker detection [J].Chemical Society Reviews,2012,41(7):2641-2655.
    142. Bailey V J, Keeley B P, Zhang Y, et al. Enzymatic incorporation of multiple dyes for increasedsensitivity in QD-FRET sensing for DNA methylation detection [J]. Chembiochem,2010,11(1):71-74.
    143. Deng H, Xu Y, Liu Y, et al. Gold nanoparticles with asymmetric polymerase chain reaction forcolorimetric detection of DNA sequence [J]. Analytical Chemistry,2012,84(3):1253-1258.
    144. Chen X, Hong C Y, Lin Y H, et al. Enzyme-free and label-free ultrasensitive electrochemical detectionof human immunodeficiency virus DNA in biological samples based on long-range self-assembled DNAnanostructures [J]. Analytical Chemistry,2012,84(19):8277-8283.
    145. He Y, Su S, Xu T T, et al. Silicon nanowires-based highly-efficient SERS-active platform forultrasensitive DNA detection [J]. Nano Today,2011,6(2):122-130.
    146. Tester C C, Brock R E, Wu C H, et al. In vitro synthesis and stabilization of amorphous calciumcarbonate (ACC) nanoparticles within liposomes [J]. CrystEngComm,2011,13(12):3975-3978.
    147. Park S Y, Lytton-Jean A K, Lee B, et al. DNA-programmable nanoparticle crystallization [J]. Nature,2008,451(7178):553-556.
    148.Wang H S, Qiao X L, Chen J G, et al. Mechanisms of PVP in the preparation of silver nanoparticles [J].Materials Chemistry and Physics,2005,94(2-3):449-453.
    149. Cao Y C, Jin R, Mirkin C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNAdetection [J]. Science,2002,297(5586):1536-1540.
    150. Bantz K C, Meyer A F, Wittenberg N J, et al. Recent progress in SERS biosensing [J]. PhysicalChemistry Chemical Physics,2011,13(24):11551-11567.
    151. Kang J W, Nguyen F T, Lue N, et al. Measuring uptake dynamics of multiple identifiable carbonnanotube species via high-speed confocal Raman imaging of live cells [J]. Nano Letters,2012,12(12):6170-6174.
    152. Faulds K, Smith W E, Graham D. Evaluation of surface-enhanced resonance Raman scattering forquantitative DNA analysis [J]. Analytical Chemistry,2004,76(2):412-417.
    153. Tian L, Gandra N, Singamaneni S. Monitoring controlled release of payload from gold nanocagesusing surface enhanced Raman scattering [J]. ACS Nano,2013,7(5):4252-4260.
    154. Yang J, Palla M, Bosco F G, et al. Surface-enhanced Raman spectroscopy based quantitative bioassayon aptamer-functionalized nanopillars using large-area Raman mapping [J]. ACS Nano,2013,7(6):5350-5359.
    155.陈安宇,焦义,刘春伟,等.采用增强拉曼检测技术对牛奶中三聚氰胺的检测[J].中国卫生检验杂志,2009,(8):1710-1712.
    156.顾振华,赵宇翔,吴卫平,等.表面增强拉曼光谱法快速检测水产品中的孔雀石绿[J].化学世界,2011,1:14-16.
    157. Chen A, Jiang X, Zhang W, et al. High sensitive rapid visual detection of sulfadimethoxine bylabel-freeaptasensor [J]. Biosensors and Bioelectronics,2013,42:419-425.
    158. Baran W, Adamek E, Ziemianska J, et al. Effects of the presence of sulfonamides in the environmentand their influence on human health [J]. Journal of Hazardous Materials,2011,196:1-15.
    159. Chiesa O A, Li H, Kijak P J, et al. Tissue/fluid correlation study for the depletion of sulfadimethoxinein bovine kidney, liver, plasma, urine, and oral fluid [J]. Journal of Veterinary Pharmacology andTherapeutics,2012,35(3):249-258.
    160. Won S Y, Lee C H, Chang H S, et al. Monitoring of14sulfonamide antibiotic residues in marineproducts using HPLC-PDA and LC-MS/MS [J]. Food Control,2011,22(7):1101-1107.
    161. Galarini R, Diana F, Moretti S, et al. Development and validation of a new qualitative ELISAscreening for multiresidue detection of sulfonamides in food and feed [J]. Food Control,2014,35(1):300-310.
    162. Cliquet P, Cox E, Haasnoot W, et al. Generation of group-specific antibodies against sulfonamides [J].Journal of Agricultural and Food Chemistry,2003,51(20):5835-5842.
    163. Xu Y, Ding J, Chen H, et al. Fast determination of sulfonamides from egg samples using magneticmultiwalled carbon nanotubes as adsorbents followed by liquid chromatography–tandem massspectrometry [J]. Food Chemistry,2013,140(1):83-90.
    164. Siegel R, Ward E, Brawley O, et al. Cancer statistics,2011: the impact of eliminating socioeconomicand racial disparities on premature cancer deaths [J]. CA: A Cancer Journal for Clinicians,2011,61(4):212-236.
    165. Ferlay J, Parkin D M, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in2008[J]. European Journal of Cancer,2010,46(4):765-781.
    166. Bray F, Jemal A, Grey N, et al. Global cancer transitions according to the Human Development Index(2008–2030): a population-based study [J]. The Lancet Oncology,2012,13(8):790-801.
    167. Even-Ram S, Uziely B, Cohen P, et al. Thrombin receptor overexpression in malignant andphysiological invasion processes [J]. Natural Medicines,1998,4(8):909-914.
    168. Lilja H, Ulmert D, Vickers A J. Prostate-specific antigen and prostate cancer: prediction, detection andmonitoring [J]. Nature Reviews Cancer,2008,8(4):268-278.
    169. Chen Z, Lei Y, Chen X, et al. An aptamer based resonance light scattering assay of prostate specificantigen [J]. Biosensors&Bioelectronics,2012,36(1):35-40.
    170. Christensson A, Laurell C B, Lilja H. Enzymatic activity of prostate-specific antigen and its reactionswith extracellular serine proteinase inhibitors [J]. European Journal of Biochemistry,1990,194(3):755-763.
    171. Goss P E, Ingle J N, Ales-Martinez J E, et al. Exemestane for breast-cancer prevention inpostmenopausal women [J]. New England Journal of Medicine,2011,364(25):2381-2391.
    172. Zen K, Zhang C Y. Circulating microRNAs: a novel class of biomarkers to diagnose and monitorhuman cancers [J]. Medicinal Research Reviews,2012,32(2):326-348.
    173. Freeman R, Girsh J, Jou A F, et al. Optical aptasensors for the analysis of the vascular endothelialgrowth factor (VEGF)[J]. Analytical Chemistry,2012,84(14):6192-6198.
    174. Huang C J, Lin H I, Shiesh S C, et al. An integrated microfluidic system for rapid screening ofalpha-fetoprotein-specific aptamers [J]. Biosensors&Bioelectronics,2012,35(1):50-55.
    175. Nonaka Y, Sode K, Ikebukuro K. Screening and improvement of an anti-VEGF DNA aptamer [J].Molecules,2010,15(1):215-225.
    176. Cheng W, Ding L, Chen Y, et al. A facile scanometric strategy for ultrasensitive detection of proteinusing aptamer-initiated rolling circle amplification [J]. Chemical Communications,2010,46(36):6720-6722.
    177. Wegner K D, Jin Z, Linden S, et al. Quantum-dot-basedForster resonance energy transferimmunoassay for sensitive clinical diagnostics of low-volume serum samples [J]. ACS Nano,2013,7(8):7411-7419.
    178. Chang H, Tang L, Wang Y, et al. Graphene fluorescence resonance energy transfer aptasensor for thethrombin detection [J]. Analytical Chemistry,2010,82(6):2341-2346.
    179. Mani V, Chikkaveeraiah B V, Patel V, et al. Ultrasensitive immunosensor for cancer biomarkerproteins using gold nanoparticle film electrodes and multienzyme-particle amplification [J]. ACS Nano,2009,3(3):585-594.
    180. Adel Ahmed H, Azzazy H M. Power-free chip enzyme immunoassay for detection of prostate specificantigen (PSA) in serum [J]. Biosensors&Bioelectronics,2013,49(0):478-484.
    181. Zhao W W, Dong X Y, Wang J, et al. Immunogold labeling-induced synergy effect for amplifiedphotoelectrochemical immunoassay of prostate-specific antigen [J]. Chemical Communications,2012,48(43):5253-5255.
    182. Yu X, Munge B, Patel V, et al. Carbon nanotube amplification strategies for highly sensitiveimmunodetection of cancer biomarkers [J]. Journal of the American Chemical Society,2006,128(34):11199-11205.
    183. Liu X, Dai Q, Austin L, et al. A one-step homogeneous immunoassay for cancer biomarker detectionusing gold nanoparticle probes coupled with dynamic light scattering [J]. Journal of the American ChemicalSociety,2008,130(9):2780-2782.
    184. Rissin D M, Kan C W, Campbell T G, et al. Single-molecule enzyme-linked immunosorbent assaydetects serum proteins at subfemtomolar concentrations [J]. Nature Biotechnology,2010,28(6):595-599.
    185. Li Z H, Wang Y, Wang J, et al. Rapid and sensitive detection of protein biomarker using a portablefluorescence biosensor based on quantum dots and a lateral flow test strip [J]. Analytical Chemistry,2010,82(16):7008-7014.
    186. Huang C S, George S, Lu M, et al. Application of photonic crystal enhanced fluorescence to cancerbiomarker microarrays [J]. Analytical Chemistry,2011,83(4):1425-1430.
    187. Li J, Li W, Qiang W, et al. A non-aggregation colorimetric assay for thrombin based on catalyticproperties of silver nanoparticles [J]. Analytica Chimica Acta,2014,807:120-125.
    188. Liu X, Wang F, Aizen R, et al. Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functionalhybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs [J]. Journal ofthe American Chemical Society,2013,135(32):11832-11839.
    189. Hu J, Wang T, Kim J, et al. Quantitation of femtomolar protein levels via direct readout with theelectrochemical proximity assay [J]. Journal of the American Chemical Society,2012,134(16):7066-7072.
    190. Rusling J F, Munge B, Sardesai N P, et al. Nanoscience-based electrochemical sensors and arrays fordetection of cancer biomarker proteins [M]. Nanobioelectrochemistry. Springer.2013:1-26.
    191. Otieno B, Krause C, Latus A, et al. Semi-Automated Ultrasensitive Electrochemical MicrofluidicDevice for Multiplexed Detection of Cancer Protein Biomarkers; proceedings of the223rd ECS Meeting(May12-17,2013), F,2013[C]. Ecs.
    192. Zheng G, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer markers with nanowiresensor arrays [J]. Nature Biotechnology,2005,23(10):1294-1301.
    193. Song K M, Cho M, Jo H, et al. Gold nanoparticle-based colorimetric detection of kanamycin using aDNA aptamer [J]. Analytical Biochemistry,2011,415(2):175-181.
    194. Wen Y, Pei H, Wan Y, et al. DNA nanostructure-decorated surfaces for enhanced aptamer-targetbinding and electrochemical cocaine sensors [J]. Analytical Chemistry,2011,83(19):7418-7423.
    195. Feng Y, Wang Y, Wang H, et al. Engineering "Hot" Nanoparticles for Surface-Enhanced RamanScattering by Embedding Reporter Molecules in Metal Layers [J]. Small,2011,8(2):246-251.
    196. Guerrero A R, Zhang Y, Aroca R F. Experimental confirmation of local field enhancement determiningfar-field measurements with shell-isolated silver nanoparticles [J]. Small,2012,8(19):2964-2967.
    197. Wang Y, Tang L J, Jiang J H. Surface-enhanced Raman spectroscopy-based, homogeneous,multiplexed immunoassay with antibody-fragments-decorated gold nanoparticles [J]. Analytical Chemistry,2013,85(19):9213-9220.
    198. Macfarlane R J, Lee B, Jones M R, et al. Nanoparticle superlattice engineering with DNA [J]. Science,2011,334(6053):204-208.
    199. Li C, Curreli M, Lin H, et al. Complementary detection of prostate-specific antigen using In2O3nanowires and carbon nanotubes [J]. Journal of the American Chemical Society,2005,127(36):12484-12485.
    200. Song K M, Jeong E, Jeon W, et al. A coordination polymer nanobelt (CPNB)-based aptasensor forsulfadimethoxine [J]. Biosensors&Bioelectronics,2012,33(1):113-119.
    201. Carothers J M, Goler J A, Kapoor Y, et al. Selecting RNA aptamers for synthetic biology: investigatingmagnesium dependence and predicting binding affinity [J]. Nucleic Acids Research,2010,38(8):2736-2747.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700