真实光源获取及渲染
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真实光源的获取及重光照是计算机图形学和计算机视觉的两个重要研究领域。而如何将两者结合起来更是一个热门的研究话题,也是一个技术难点。这些技术的研究被应用到了游戏、影视、自动化工业生产各个领域。本文对真实光源的获取及渲染的算法进行了深入的研究,并提出了新的算法。
     过去的获取真实光源的算法在获得光源信息后,光源信息一般用于基于模型的渲染中,这样的算法在渲染过程中就失去了真实物体的特殊反射信息;而基于图像的重光照算法又往往用于对虚拟光源或环境光的渲染,无法模拟一些特殊的真实光源的光照效果。
     本文从基于图像的重光照算法入手,由于要渲染出真实光源的特殊光照性质及纹理,因此必须将光源看作近域光源。在近域光场的前提下,本文提出了一个采集物体基图像、获取光照信息及重光照图像生成的一个完整过程计算法:
     首先,用投影仪作为基本光源,用摄像机来采集用于近域光重光照的物体基图像,建立入射光线与物体反射点之间的对应关系。建立物体的反射场。
     然后,通过采集基本光源(投影仪)光照图像及真实光源的光照图像,建立真实光源与基本光源之间的对应关系。从而得到真实光源的入射光场。
     最后,提出了一个新的算法将基图像和光源对应关系进行合成,从而生成物体在真实光源照射情况下得重光照图像。
     通过上述流程,本文在基于图象的重光照算基础上,创新的实现了前人没实现的对真实光源的渲染。
     在设计新算法的同时,设计了一个用于采集物体反射场的仪器,可以通过程序控制,自动的采集及物体图像。从而实现不同光源入射角度、不同视角的重光照算法。
The real light source acquisition and relighting technology are two important areas of research in the computer graphics and computer vision. And how to combine the two is a hot research topic. These techniques have been applied to the games, film and television, automation of industrial production. In this paper, the real light source acquisition and rendering algorithm have been studied, and we propose a new algorithm.
     In the past, the information acquired from real light source was used for model-based rendering. This rendering algorithm lost the reflection information of the objects. And image-based relighting algorithms often be used in relighting virtual light source or ambient light, it cannot simulate the effects of real light source.
     In this paper, we choose image-based relighting algorithms. Because we want to render the property and texture of the real light source, the light source must be seen as the near-field light source. Based on near-light-field, this paper presents an object basis images acquisition method, a process of real light source acquisition, and a relighting algorithm.
     First of all, we use projector as a basic light source, use camera to capture the basis images which can used in near-field light source relighting, establish the relationship between the incident light ray and the point of reflection, and acquire the reflectance field of the object.
     Then, in order to get the information of the real incident light source, we capture the images of basic light source (projector light) and the real light source, and build the relationship between the real light source and the basic light source.
     Finally, we present a new algorithm of rendering using the basis images and the information of the relationship between the real light source and basic light source. Using this algorithm, we can render the relighting result in the case of new real light source.
     We also design an instrument to capture the reflectance field of the object, which can be automatically controlled to capture the basis images by computer program. It can be used to relight object under different angle of incident light and different angle of view.
引文
[1] Paul E. Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, Westley Sarokin, Mark Sagar: Acquiring the reflectance field of a human face. SIGGRAPH 2000: 145-156
    [2] Paul E. Debevec, Andreas Wenger, Chris Tchou, Andrew Gardner, Jamie Waese, Tim Hawkins: A lighting reproduction approach to live-action compositing. ACM Trans. Graph. 21(3): 547-556 (2002)
    [3] Tim Hawkins, Jonathan Cohen, Paul E. Debevec: A photometric approach to digitizing cultural artifacts. Virtual Reality, Archeology, and Cultural Heritage 2001: 333-342
    [4] Andreas Wenger, Andrew Gardner, Chris Tchou, Jonas Unger, Tim Hawkins, Paul E. Debevec: Performance relighting and reflectance transformation with time-multiplexed illumination. ACM Trans. Graph. 24(3): 756-764 (2005)
    [5] Paul E. Debevec: Digitizing the Parthenon: Estimating Surface Reflectance Properties of a Complex Scene under Captured Natural Illumination. VMV 2004: 99
    [6] Tim Hawkins, Andreas Wenger, Chris Tchou, Andrew Gardner, Fredrik G?ransson, Paul E. Debevec: Animatable Facial Reflectance Fields. Rendering Techniques 2004: 309-321
    [7] Vincent Masselus, Pieter Peers, Philip Dutré, Yves D. Willems: Relighting with 4D incident light fields. ACM Trans. Graph. 22(3): 613-620 (2003) [DBLP: journals/tog/MasselusPDW03]
    [8] Martin Fuchs, Volker Blanz, Hendrik P. A. Lensch, Hans-Peter Seidel: Adaptive sampling of reflectance fields. ACM Trans. Graph. 26(2): (2007)
    [9] Pradeep Sen, Billy Chen, Gaurav Garg, Stephen R. Marschner, Mark Horowitz, Marc Levoy, Hendrik P. A. Lensch: Dual photography. ACM Trans. Graph. 24(3): 745-755 (2005)
    [10] MATUSIK W., BUEHLER C., RASKAR R., GORTLER S. J., MCMILLAN L.: Image-based visual hulls. In Proceedings SIGGRAPH 2000 (July 2000), pp. 369–374.
    [11] Edward H. Adelson and James R. Bergen,―The plenoptic function and the elements of early vision.‖In Computational Models of Visual Processing, Michael S. Landy and J. Anthony Movshon, Eds., chapter 1, pp. 3–20. MIT Press, 1991.
    [12] Dhruv Mahajan, Ravi Ramamoorthi, and Brian Curless, A Theory of Spherical Harmonic Identities for BRDF/Lighting Transfer and Image Consistency, In ECCV06, 2006
    [13] Gortler S.J.,Grzeszczukr.,Szeliskir.,Co-hen M. F.―The Lumigraph‖In SIGGRAPH 96, Computer Graphics Proceedings (Aug. 1996), Addison Wesley, pp.43-54. 2,11
    [14] Levoy M., Hanrahan P.―Light field rendering‖In SIGGRAPH 96 Conference Proceedings(1996),Addison Wesley, pp.31-42. 2
    [15] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. Geometric considerations and nomenclature for reflectance. Monograph 161, National Bureau of Standards (US), October 1977.
    [16] BUEHLER C., BOSSE M., MCMILLAN L., GORTLER S. J., COHEN M. F.: Unstructured lumigraph rendering. In Proceedings of ACM SIGGRAPH 2001 (Aug. 2001), Computer Graphics Proceedings, Annual Conference Series, pp. 425–432.
    [17] CHEN S. E., WILLIAMS L.: View interpolation for image synthesis. In Proceedings of SIGGRAPH 93 (Aug. 1993), Computer Graphics Proceedings, Annual Conference Series, pp. 279–288.
    [18] DORSEY J., ARVO J., GREENBERG D.: Interactive design of complex time dependent lighting. IEEE Computer Graphics & Applications 15, 2 (Mar. 1995), 26–36.
    [19] DEBEVEC P. E., TAYLOR C. J., MALIK J.: Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. In Proceedings of SIGGRAPH 96 (Aug. 1996), Computer Graphics Proceedings, Annual Conference Series, pp. 11–20
    [20] T. Hawkins, P. Einarsson, and P. Debevec. A dual light stage. In Eurographics Symposium on Rendering, 2005.
    [21] Y. Matsushita, S.-B. Kang, S. Lin, H.-Y. Shum, and X. Tong. Lighting and shadow interpolation using intrinsic lumigraphs. Journal of Image and Graphics (IJIG), 4(4):585.604, Oct. 2004.
    [22] Michael Goesele, Xavier Granier, Wolfgang Heidrich, Hans-Peter Seidel: Accurate light source acquisition and rendering. ACM Trans. Graph. 22(3): 621-630 (2003) [DBLP:journals/tog/GoeseleGHS03]
    [23] ASHDOWN, I. 1993. Near-Field Photometry: A New Approach. Journal of the Illuminating Engineering Society 22, 1 (Winter), 163–180.
    [24] ASHDOWN, I. 1995. Near-Field Photometry: Measuring and Modeling Complex 3-D Light Sources. In ACM SIGGRAPH 95 Course Notes - Realistic Input for Realistic Images, ACM, 1–15.
    [25] DEBEVEC, P., AND MALIK, J. 1997. Recovering High Dynamic Range Radiance Maps from Photographs. In Computer Graphics Proceedings (ACM SIGGRAPH 97), ACM, 369–378.
    [27] GORTLER, S. J., GRZESZCZUK, R., SZELINSKI, R., AND COHEN, M. F.1996. The Lumigraph. In Computer Graphics Proceedings (ACM SIGGRAPH96), ACM, 43–54.
    [28] HEIDRICH, W., AND GOESELE, M. 2001. Image-based measurement of light sources with correct filtering. Tech. Rep. TR-2001-08, Department of Computer Science, The University of British Columbia.
    [29] HEIDRICH, W., KAUTZ, J., SLUSALLEK, P., AND SEIDEL, H.-P. 1998.Canned lightsources. InRendering Techniques’98, Eurographics, 293–300.
    [30] JENSEN, H. W. 1996. Global Illumination Using Photon Maps. In Rendering Techniques’96 (Proceedings of the Seventh Eurographics Workshop on Rendering), Springer-Verlag/Wien, New York, NY, Eurographics, 21–30.
    [31] JENSEN, H. W. 2001. A practical guide to global illumination using photon mapping. In ACM SIGGRAPH 2001 Course Notes CD-ROM, ACM SIGGRAPH, ACM. Course 38.
    [32] JENSEN, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Natick, MA.
    [33] KELLER, A., AND WALD, I. 2000. Efficient importance sampling techniques for the photon map. In Proceedings of Vision Modelling and Visualization 2000, 271–279.
    [34] LEVOY, M., AND HANRAHAN, P. 1996. Light field rendering. In Computer Graphics Proceedings (ACM SIGGRAPH 96), ACM, 31–42.
    [35] ROBERTSON, M. A., BORMAN, S., AND STEVENSON, R. L. 1999. Dynamic Range Improvement Through Multiple Exposures. In Proc. of the Int. Conf. on Image Processing (ICIP’99), IEEE, 159–163.
    [36] WALTER, B., HUBBARD, P. M., SHIRLEY, P., AND GREENBERG, D. P.1997. Global illumination using local linear density estimation. ACM Transactions on Graphics 16, 3 (July), 217–259.
    [37] MATUSIK W., PFISTER H., NGAN A., BEARDSLEY P., ZIEGLER R., MCMILLAN L.: Image based 3d photography using opacity hulls. ACM Transactions on Graphics 21, 3 (July 2002), 427–437.
    [38] MATUSIK W., PFISTER H., ZIEGLER R., NGAN A., MCMILLAN L.: Acquisition and rendering of transparent and refractive objects. In Rendering Techniques 2002: 13th Eurographics Workshop on Rendering(June 2002), pp. 267–278.
    [39] MILLER G. S. P., RUBIN S., PONCELEON D.: Lazy decompression of surface light fields for precomputed global illumination. Eurographics Rendering Workshop 1998 (June), 281–292.
    [40] NIMEROFF J. S., SIMONCELLI E., DORSEY J.: Efficient re-rendering of naturally illuminated environments. In 5th EurographicsWorkshop on Rendering (June 1994), pp. 359–373.
    [41] PORTER T., DUFF T.: Compositing digital images. In Computer Graphics (Proceedings of SIGGRAPH 84) (Minneapolis, Minnesota, July 1984), vol. 18, pp. 253–259.
    [42] SEITZ S. M., DYER C. R.: View morphing: Synthesizing 3d metamorphoses using image transforms. In Proceedings of SIGGRAPH 96 (Aug. 1996), Computer Graphics Proceedings, Annual Conference Series, pp. 21–30.
    [43] VEDULA S., BAKER S., KANADE T.: Spatiotemporal view interpolation. In Rendering Techniques 2002: 13th Eurographics Workshop on Rendering (June 2002), pp. 65–76.
    [44] Yu Y, Debevec P, Malik J. Inverse global illumination: Recover reflectance models of real scenes from photographs. In Proceedings of the SIGGRAPH’99. ACM Press, 1999. 215~224.
    [45] WENGER A., GARDNER A., TCHOU C., UNGER J., HAWKINS T., DEBEVEC P.: Performance relighting and reflectance transformation with time-multiplexed illumination. ACM Transactions on Graphics 24, 3 (Aug. 2005), 756–764.
    [46] Mitsunaga T. , Nayar S. K. . Radiometric selfcalibration. In :Proceedings of IEEE Conference on Computer Vision and Pattern Recognition , Fort Collins , 1999 , 374~380
    [47] Devlin K. . A review of tone reproduction techniques. Department of Computer Science , University of Bristol , Bristol :Technical Report CSTR-20-22005 , 2002
    [48] Larson G. W. , Shakespeare R. . Rendering with Radiance: The Art and Science of Lighting Visualization. San Francisco :Morgan Kaufmann Publishers , 1998
    [49] Mann S. , Picard R. . Being‘undigital’with digital cameras: extending dynamic range by combining differently exposed pictures. In : Proceedings of IST’s 48th Annual Conference ,Washington , 1995 , 422~428
    [50] Debevec P. E. , Malik J . . Recovering high dynamic range radiance maps from photographs. In : Proceedings of t he ACM SIGGRAPH97 , Los Angeles , 1997 , 369~378
    [51] Aggarwal M. , Ahuja N. . Split aperture imaging for high dynamic range. In : Proceedings of IEEE ICCV , Vancouver , Canada , 2001 , II : 10~17
    [52] Nayar S. K. , Mitsunaga T. . High dynamic range imaging : Spatially varying pixel exposures. In : Proceedings of IEEE CVPR , Hilton Head Island , South Carolina , 2000 , 472~479
    [53] Fattal R. , Lischinski D. , Werman M. . Gradient domain high dynamic range compression. In : Proceedings of t he ACM SIG2 GRAPH2002 , San Antonio , Texas , USA , 2002 , 249~256
    [54] Drago F. , Myszkowski K. , Annen T. , Chiba N. . Adaptive logarithmic mapping for displaying high cont rast scenes. In :Proceedings of t he EUROGRAPHICS2003 , Granada , Spain , 2003 , 22 (3) : 419~426
    [55] Zhang W. X. , Zhou B. F. . An HDR brightness correction algorithm for panorama images. In : Proceedings of t he 4th IASTED VIIP , Marbella , Spain , 2004 , 608~612
    [56] BOYNTON, P. A., AND KELLEY, E. F. 2003. Liquid-filled camera for the measurement of high-contrast images. SPIE, D. G. Hopper, Ed., vol. 5080, 370–378.
    [57] DEBEVEC, P. E., AND MALIK, J. 1997. Recovering high dynamic range radiance maps from photographs. In Proceedings of ACM SIGGRAPH 1997, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 369–378.
    [58] FATTAL, R., LISCHINSKI, D., AND WERMAN, M. 2002. Gradient domain high dynamic rangecompression. In ACM Transactions on Graphics, ACM Press, New York, NY, USA, 249–256.
    [59] FAULKNER, K., KOTRE, C., AND LOUKA, M. 1989. Veiling glare deconvolution of images produced by x-ray imageintensifiers. In Proceedings of the Third International Conference on Image Processing and its Applications, 669–673.
    [60] GARG, G., TALVALA, E.-V., LEVOY, M., AND LENSCH, H. P. A. 2006. Symmetric photography: Exploiting data-sparseness in reflectance fields. In Proceedings of the Eurographics Symposium on Rendering, 251.
    [61] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. 1994. ISO 9358:1994: Optics and optical instruments–Veiling glare of image forming systems– Definitions and methods of measurement. International Organization for Standardization, Geneva, Switzerland.
    [62] NAYAR, S. K., AND BRANZOI, V. 2003. Adaptive dynamic range imaging: Optical control of pixel exposures over space and time. In IEEE International Conference on Computer Vision, 1168–1175.
    [63] NAYAR, S. K., KRISHNAN, G., GROSSBERG, M. D., AND RASKAR, R. 2006. Fast separation of direct and global components of a scene using high frequency illumination. In ACM Transactions on Graphics, ACM Press, New York, NY, USA, 935–944.
    [64] REINHARD, E., WARD, G., PATTANAIK, S., AND DEBEVEC, P.2006. High Dynamic Range Imaging - Acquisition, Display and Image-based Lighting. Morgan Kaufman Publishers, 500 Sansome Street, Suite 400, San Francisco, CA 94111.
    [65] SEIBERT, J. A., NALCIOGLU, O., AND ROECK, W. 1985. Removal of image intensifier veiling glare by mathematical deconvolution techniques. Medical physics 12, 3, 281–288.
    [67] STARCK, J., PANTIN, E., AND MURTAGH, F. 2002. Deconvolution in astronomy: A review. Publications of the Astronomical Society of the Pacific 114, 1051–1069.
    [68] WILBURN, B., JOSHI, N., VAISH, V., TALVALA, E.-V., ANTUNEZ, E., BARTH, A., ADAMS, A., HOROWITZ, M., AND LEVOY, M. 2005. High performance imaging using large camera arrays. In ACM Transactions on Graphics, ACM Press, NewYork, NY, USA, 765–776.
    [69] Celine Loscos, Marie-Claude Frasson, George Drettakis, Bruce Walter, Xavier Granier, Pierre Poulin, Interactive Virtual Relighting and Remodeling of Real Scenes, Rendering techniques '99 (Proceedings of the 10th Eurographics Workshop on Rendering), Jun. 1999, pages 235—246
    [70] Per Einarsson, Charles-Félix Chabert, Andrew Jones , Bruce Lamond, Wan-Chun Ma, Sebastian Sylwan, Tim Hawkins, Paul Debevec, Relighting Human Locomotion with Flowed Reflectance Fields, SIGGRAPH '06: ACM SIGGRAPH 2006 Sketches, 2006, page 76
    [71] Debevec, P., Virtual Cinematography: Relighting through Computation, Computer, Date: Aug.2006, pages 57-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700