过共晶铝硅合金熔体处理及变质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过共晶铝硅合金因具有耐磨、体积稳定等优异特性,在汽车发动机等领域取代传统材料已成为发达国家一种趋势。而国内因其初生硅组织控制难度等原因未能广泛推广。另一方面,如何通过操控熔体状态、变质等措施,来控制凝固组织,涉及凝固基础及凝固技术的发展。本文首先运用电阻法探索了Al-18%Si熔体状态与温度关系,然后基于此信息分别以熔体过热处理及高-低温混溶处理进行了两方面凝固实验,探索了熔体状态对过共晶铝硅合金中初生及共晶硅的作用与规律。在高-低温混溶处理中,论文还创新性地探索了低温熔体处于半固态温度范围的作用效果。论文工作还探索了P-Re-B中间合金对Al-18%Si合金的复合变质作用。全文主要研究内容及结论如下:
     1、升温过程Al-18%Si熔体电阻率温度行为(ρ-T曲线)揭示,液相线以上从800℃到950℃的温度区间内,ρ-T曲线出现一个峰高较低而宽的预峰。而从950℃到1050℃的温度区间内,ρ-T曲线上出现另一窄而明显的温度峰,此后熔体电阻率进入新的线性变化阶段。分析认为,第一峰发生预转变,第二峰处发生了不可逆液液结构转变,结果成为一种更为均匀的结构状态。
     2、通过对Al-18%Si合金进行熔体过热处理及凝固实验发现,950℃保温的熔体,快冷至760℃后凝固得到的初生硅,其晶粒大小与760℃处保温的熔体凝固后的差别不大;而1150℃处保温的熔体,快冷至760℃后凝固得到的初生硅已得到明显细化。冷却曲线反映的过冷度差别与凝固组织的规律基本一致。这一结果也验证了上述“不可逆液液转变”的推论。
     3、高-低温混溶处理以1150℃为高温熔体温度,其低温熔体的温度分别选取处于半固态温度范围的620℃、640℃及高于液相线的700℃、760℃,并改变高、低温熔体比例。凝固实验结果表明,低温熔体温度为640℃混溶所获得的试样其初生硅最细小,且随高温熔体比例的增大,初生硅晶粒随之细化。从机理上看,640℃最利于半固态范围内已有块状分枝的熔断和增殖;而高温熔体比例的提高,越发促进硅晶体熔断和增殖,增加形核核心。
     4、在选定低温熔体温度为640℃后,改变高温熔体的热历史,处理方式分别为1150℃、1150℃-950℃、950℃,发现经历过不可逆转变的高温1150℃熔体,比未经历转变的熔体对初生硅有着更好的细化作用。
     5、运用P-Re-B中间合金对Al-18%Si合金进行复合变质,对初生硅和共晶硅均有明显改善作用。在最佳的P-Re-B复合变质工艺下( AlP0.3%+ AlRE2%+AlTiB1.2%),初晶平均直径由未变质的33.7μm细化到9.00μm,形态由多角粗大板块变为细小颗粒,棱角钝化,分布更加均匀;并使共晶硅由粗针状变为纤维状。
     本文研究结果显示,基于Al-18%Si熔体结构状态对温度关系的信息来实施熔体热处理,可避免通常的盲目性取得更好的效果。
In developed countries, hypereutectic Al-Si alloy has a tendency to take place traditional materials because it is wear-resistant with volume stability. But in China, this material has not been popularized due to the difficulty to control the primary silicon microstructure. On the other hand, how to manipulate the solidification structure by controlling melt state, modification and other factors requires the improvement of fundamental solidification and solidification technology. This paper firstly explores the relationship between the melt state of Al-18%Si and its temperature by means of the resistivity method. Based on this obtained information, two groups of solidification experiments (overheating treatment of melt in one group and high-low temperature melt mixed treatment in another group) are carried out to explore the influences of the melt state on primary silicon and eutectic silicon respectively in the hypereutectic Al-Si alloy. This paper also creatively investigated into low-temperature melt which is in the semi-solid temperature zone and high-low temperature melt mixed treatment. What’s more, the complex modification function of P-Re-B master alloy to Al-18%Si alloy is discussed here. On the whole, research contents and conclusions of this paper are as follows:
     1. The resistivity-temperature behavior of Al-18%Si melt (ρ-T curve) in the temperature-rising period reveals that between 800℃and 950℃above the liquidus, there is a peak with low and wide peak height in theρ-T curve. But between 950℃and 1050℃, there is a narrow but obvious temperature peak in theρ-T curve. Afterwards the resistivity of the melt enters into a new linear change phase. It is indicated that pre-transformation occurs in the first peak and irreversible liquid-liquid structural change occurs in the second peak with a result of a more even structural behavior.
     2. By dealing with Al-18%Si alloy with overheating treatment and solidification experiments, it is found the grain size of primary silicon, obtained from melt insulated at 950℃and rapidly cooled to 760℃, has no evident difference compared with the one solidified from insulated melt at 760℃. However, primary silicon which is obtained from melt insulated at 1150℃and rapidly cooled to 760℃, is obviously refined. The undercooling difference reflected by the cooling curve is basically in accordance with the law of solidification microstructure.
     3. In high-low temperature melt mixed treatment; the high melt temperature is 1150℃while the low melt temperatures are respectively 620℃and 640℃among the semi-solid range as well as 700℃and 760℃above the liquidus line. And the proportion of melts at high temperature to the ones at low temperature is changed. The results show that primary silicon in the sample obtained by mixing melts at 1150℃and 640℃is the finest. In addition, the bigger the proportion of high-temperature melt is, the finer the crystal grain of primary silicon is. Seen from the mechanism, 640℃is the most favorable to fusing and proliferation in silicon dendritic crystal among the semi-solid range; and the rise of the proportion of high-temperature melt promotes fusing and proliferation of silicon crystal and increases the nucleus.
     4. After 640℃is decided as the low melt temperature, change the thermal history of high-temperature melts. The temperatures are 1150℃, 1150℃-950℃and 950℃respectively. It is found that high-temperature melts at 1150℃undergone irreversible transformation has better refining effect to primary silicon than the melts which have not undergone such transformation.
     5. Conduct compound modification to Al-18%Si by using P-Re-B master alloy. It has obvious positive influence on both primary silicon and eutectic silicon. Under the optimal P-Re-B compound modification technique (AlP0.3%+ AlRE2%+AlTiB1.2%), the average diameter of primary crystals is refined to 9.00μm from previous 33.7μm; their shapes change from coarser and brittle to more-edges-distributed fine particles with passivated edges; the eutectic silicon is also changed from acicular to fibrillar.
     To sum up, the results of this paper show it can avoid blindness and achieve better effects by carrying out heat treatment to melts based on the relationship between Al-18%Si melt structural state and temperature.
引文
[1]乔进国. Al-P-Si中间合金及其变质处理技术的研究[D].山东大学硕士学位论文
    [2]梁红玉.微纳米晶高Si铝合金材料制备工艺及组织形成机理研究[D].上海大学博士学位论文
    [3]段海丽.铸造铝硅合金变质处理组织性能及机理的研究[D].上海大学硕士学位论文
    [4] Sathyapal Hegde.K,Narayan Prabhu. Modification of eutectic silicon in Al-Si alloys[J]. J Mater Sci, 2008, 43(9):3009-3027
    [5]夏兰廷,朱宏喜,李晓琴,等.铝-硅活塞合金的应用与发展[J].山西机械, 2001 (9): 9-11
    [6]孔凡校.过共晶铝硅活塞的研究[D].重庆大学硕士学位论文
    [7]全燕鸣.过共晶铝硅合金研究的进展[J].轻合金加工技术,1996,24(2):26-30
    [8]陈士平.汽车轻量化及其材料[J].汽车工艺与材料,1995,(4):1-3
    [9]胡汉起.金属凝固[M].北京:冶金工业出版社,1985
    [10]祖方遒.液态合金结构变化的研究[D].中国科学院博士学位论文
    [11] Y. Xi, F.Q. Zu, X.F. Li, et al, High-temperature abnormal behavior of resistivities for Bi–In melts[J]. Phys. Lett. A,2004,329: 221-225
    [12] X.F. Li, F.Q. Zu, H.F. Ding, et al.. Anomalous change of electrical resistivity with temperature in liquid Pb–Sn alloys[J]. Physica B, 2005,358:126-131
    [13] P.aul F. McMillan. Polyamorphic transformations in liquids and glasses[J]. J. Mater. Chem. 2004,14, 1506-1512
    [14] J. L. Yarger, G. H. Wolf. Polymorphism in Liquids[J].Science, 2004, 306 (5697): 820-821
    [15] B. Sadigh, M. Dzugutov, S. R. Elliott. Vacancy ordering and medium-range structure in asimple monatomic liquid[J]. Phys. Rev. B,1999, 59(1):1-4
    [16] Y. Katayama, T. Mizutani, W. Utsumi, et al.. A first-order liquid-liquid phase transition in phosphorus[J]. Nature 403,2000,170-173
    [17] G. Franzese, G. Malescio, A. Skibinsky, et al.. Generic mechanism for generating a liquid-liquid phase[J]. Nature 409,2001,692-695
    [18] F.Q. Zu, Z.G.Zhu, L.J.Guo, et al..Observation of an anomalous discontinuous liquid-structure change with temperature.Phys[J]. Rev. Lett., 2002,89(12):125505
    [19] F.Q. Zu, X.F.Li, L.J.Guo, et al.. Temperature dependence of liquid structures in In-Sn20:diffraction experimental evidence[J]. Phys. Lett. A, 2004, 324(5-6):472-478
    [20]秦敬玉,边秀房,王伟民. Al和Sn液态结构的温度变化特性[J].物理学报, 1998(47):438-444
    [21]耿浩然,孙春静等. Sb和Bi熔体的密度变化[J].科学通报,2007,52(7):756-759
    [22]陈志浩.二元合金熔体结构转变动力学探讨[D].合肥工业大学博士学位论文
    [23] M.Singh, R.J.Kumar. Structure of liquid aluminium-silicon alloys[J]. J. Mater. Sci., 1973,8,317-323
    [24] X.F. Bian, W.M. Wang. Thermal-rate treatment and structure transformation of Al–13 wt.% Si alloy melt[J].Mater. Lett., 2000,44: 54–58
    [25]秦敬玉.液体Al-Fe合金的微观不均匀结构研究[D].山东工业大学博士学位论文
    [26] C.S. Liu, Z.G. Zhu, J.C. Xia, et al. Molecular dynamics simulation of the local inherent structure of liquid silicon at different temperatures[J]. Phys. Rev. B. 1999, 60 (5):3194-3199
    [27]李培杰,陈岗,余瑞璜等. Al-Si合金熔体的价电子结构及其结构遗传[J].吉林大学自然科学学报, 1997,11(3): 61-63
    [28] Jun Wang,Shuxian He,Baode Sun,et al. Grain refinement of Al–Si alloy (A356) by melt thermal treatment[J]. Journal of Materials Processing Technology,2003,141 (1) :29–34
    [29] Peijie Li, Nikitin, E.G.Kandalova,et al. Effect of Melt Overheating, Cooling and Solidification Rates on Al-16wt.%Si Alloy Structure[J]. Materials Science and Engineering, 2002,332(1-2):371-374
    [30]常芳娥,坚增运,严文.熔体温度处理对Al-25 %Si合金显微组织的影响[J].西安工业学院学报, 2000, 20 (1):138-141
    [31]陈光,蔡英文,李建国,等.熔体热处理研究及其应用[J].河北科技大学学报,1998, 19(1):6-12
    [32]周振平,李荣德.合金熔体过热处理研究的国内发展状况[J].铸造,2003,52(2):79-83
    [33]叶春生,宋俊杰,张新平,等.不同成分铝硅合金熔体混合对初生硅相细化研究[J].铸造,2002,51(3):145-147
    [34] A.Pacz.Metal and its manufacture[P]. U.S. Patent: No. 1,387,900, 13 Feb.1920
    [35] Sathyapal Hegde,K. Narayan Prabhu. Modification of eutectic silicon in Al-Si alloys[J].J Mater Sci,2008,43:3009-3027
    [36]龚建森,李元元,胡城立.国内外Al-Si合金磷变质剂及变质工艺的研究[J].机械工程材料,1984,1:1-8
    [37]姚书芳,毛卫民,赵爱民.过共晶铝硅合金细化变质剂的研究[J],2000,5:1-3
    [38]齐广慧.“绿色”高效Al-Si合金变质剂——Al-P中间合金[J].材料科学与工艺,2001,9(2):211-214
    [39]刘相法.Al-P中间合金对共晶和过共晶.AL-Si合金的变质机制[J].金属学报,2004,40(5):471-476
    [40]张金山.复合变质对过共晶高硅铝合金组织和性能的影响[J].中国有色金属学报,2002,12(1):107-110
    [41]赵恒先,陈润辉.过共晶铝硅合金细化变质的发展[J].轻金属,1992,2:61-64
    [42]段海丽.铸造铝硅合金变质处理组织性能及机理的研究[D].上海大学硕士学位论文
    [43] Chong Chen,Zhong-xia Liu, Bo Ren, et al. Influences of complex modification of P and RE on microstructure and mechanical properties of hypereutectic Al-20Si alloy[J]. Transaction of Nonferrous Metals Scoiety of China. 2007,17(2):301-306
    [44]衡学梅,刘俊,黄振翅.中间合金细化剂在铝合金中的应用及细化机理[J].理化检验2物理分册,2004,60(6):300-303
    [45]乔进国,刘相法,冯增健,等. Al-5%Ti-0.07%B对Al-Si活塞组织和性能的影响[J].铸造,2004,52(9):784-787
    [46] S.A.Kori, B.S.Murty, M. Chakraborty. Effect of Al-5Ti-1B grain refiner on some hypereutectic Al-Si alloys[J]. Indian Foundry Journal. 2001, 47(1):13-17
    [47] J.I. Lee, H.I. Lee, M.I. Kim. Formation of spherical primary silicon crystals during semi-solid processing of Hypereutectic Al-15.5wt.%Si alloy[J]. Scripta Metallurgica et Materialia. 1995, 32(12):1945
    [48]叶春生,张新平,潘治.机械搅拌对过共晶Al-Si合金半固态组织的影响[J].热加工工艺,2002(1):27-29
    [49]毛卫民,赵爱民,崔成林,等.半固态Al-24Si合金的组织和性能研究[J].特种铸造及有色合金,2001中国压铸、挤压铸造、半固态加工学术年会论文集
    [50] Kim G H. Measurement of Al Concentration in the Primary Si Crystal from the Rheocast Al 15.5%Si Alloy[J]. Script Materialia, 1997,37(7):929-930
    [51]王强,王春江,庞雪君,等.利用强磁场控制过共晶铝硅合金的凝固组织[J].材料研究学报,2004,18(6):568-576
    [52]赵树索,赵爱民,毛卫民,等.半固态过共晶Al-Si合金显微组织中近球形α相形成机理的研究[J].金属学报,2000, 36(5):545-549
    [53] Dumitrescu C, Groza I, Geage A. Contribution to the Modification of Aluminium-Silicon Complex Alloys for Car Pistons[J]. Metalergia, 1978,54(8):473-478
    [54]全燕鸣.过共晶型铝硅合金研究的进展[J].轻合金加工技术,1996(2):26-31
    [55]张蓉、沈淑娟,赵志龙,等.熔体过热处理及冷却速度对Al-Si过共晶合金凝固组织的影响有色金属[J]. 2002,54(3):19-21
    [56] Ohmi T, Kudoh M. Refinement of primary silicon crystals in hypereutectic Al-Si alloys by the duplex casting process[J]. J.Japan Inst.Metals,1990,54(6):700-705
    [57] Ohmi T, Kudoh M. Effect of casting condition on refinement of primary crystals in hypereutectic Al-Si alloy ingots produced by the duplex casting process[J]. J.Japan Inst.Metals,1992,56(9):1064-1071
    [58] Popel P S, Calvo-Dahlborg M, Dahlborg U. Metastable microheterogeneity of melts in eutectic and monotectic systems and its influence on the properties of the solidified alloy[J]. J. Non-Crystal. Solids, 2007,353 (32-40): 3243-3253
    [59] V. Manov, P. Popel, E. Brook-Levinson, et al. Influence of the treatment of melt on the properties of amorphous materials: ribbons, bulks and glass coated microwires[J]. Mater. Sci. Eng..2001. A 304-306:54-60
    [60] X.F. Li, F.Q. Zu, J Yu, et al. Effect of liquid–liquid transition on solidification of Bi–Sb10 wt% alloy[J]. Phase Transitions, 2008, 81(1): 43-50
    [61]余瑾,张燕,祖方遒,等.二元SnZn合金的电阻率特征随温度变化研究[J].中国有色金属学, 2006,16(8):1337–1342
    [62] Faber T E, Ziman J M. A theory of the electrical properties of liquid metals[J]. Phil. Mag., 1965, 11(103):153–173
    [63] U. Dahlborg, M.Besser, M.Calvo-Dahlborg, et al. Structure of molten Al-Si alloys[J]. J.Non-Cryst. Solids, 2007, 353(32-40):3005-3010
    [64] WM Wang, XF Bian, HR Wang, et al. Origin of the anomalous volume expansion in Al-Si alloys above liquidus[J]. J. Mater. Res. 2001,16 (2) :3592-3598
    [65]王强,贾均,李培杰,等.Al-Si合金熔体电阻率及结构的研究[J].铸造,1998(3):7-9
    [66]张蓉,黄太文,刘林.过共晶Al-Si合金熔体中初生硅生长特性[J].中国有色金属学报, 2004,14 (2):262-266
    [67]张蓉,耿兴国,王六定,等. Al-Si过共晶合金中初生硅溶解特性的实验研究[J].航空材料学报,1995,15(3):39-43
    [68]桂满昌,宋广生,贾均,等. Al-18%Si过共晶合金熔体结构特征及磷的影响[J].金属学报,1994,31(4):177
    [69]张林,边秀房,马家骥.铝硅合金的液相结构转变[J].铸造,1995
    [70]陈光,傅恒志等著.非平衡凝固新型金属材料[M].北京:科学出版社,2004
    [71] D. Turnbull. Solid State Phys.[M]. San Diego: Academic Press,1956
    [72] W.L. Johnson. Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials[J]. Pro Mat. Sci, 1986, 30(2):81-134
    [73]冯端,金属物理学(第二卷)相变[M].北京:科学出版社,1988
    [74] M.C. Flemings.凝固过程[M].北京:冶金工业出版社,1981
    [75]胡汉起,金属凝固[M].北京:冶金工业出版社,1985
    [76]周尧和,胡壮麒,介万奇.凝固技术[M],北京:机械工业出版社,1998
    [77]坚曾运,杨根仓,周尧和.Al-18%Si合金的温度处理[J].中国有色金属学报,1995,5(4):133-135
    [78]何树先,孙宝德,王俊,等.熔体温度处理工艺对A319合金组织和性能的影响[J].中国有色金属学报,2001,11(5):834-839
    [79] Jun Wang, Shuxian He, Baode Sun, et al. Grain refinement of Al-Si alloy(A356) by melt thermal treatment[J]. J. Mater. Proc. Tech, 2003,141(1):29-34
    [80]卢猛.复合变质对过共晶铝硅合金组织及性能的影响[D].吉林大学硕士学位论文
    [81]程和法,黄笑梅,陈文琳.稀土变质与液态过热对共晶Al-Si合金凝固组织的影响[J].合肥工业大学学报(自然科学版),2002,25(2):236-238.
    [82] Vantne H E , Sunndals R. Efficient grain refinement of ingots of commercial wrought aluminum alloys [J ]. Aluminum , 1999 , 75 :84-90
    [83]张辉,张国英,魏国柱.铸造铝硅合金中硅相变质的电子理论研究[J].稀有金属,2003,27(5):605-608

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700