宝石级红珊瑚的成分和结构特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宝石级红珊瑚是一种非常珍贵的生物型有机宝石,它属于腔肠动物门(Coelenterata)-珊瑚虫纲(Anthozoa)-八放珊瑚亚纲(Octocorallia)-软珊瑚目(Alcyonacea)-硬轴珊瑚亚目(Scleraxonia)-红珊瑚科(Coraliidae)。世界范围内,已知的红珊瑚科有红珊瑚属和侧红珊瑚属两个属。“红珊瑚”容易与“红色珊瑚”、“方解石型珊瑚”、“红珊瑚属”等名称混淆。前人的相关研究的大多笼统地以“红珊瑚”为研究对象,而没有指出其生物学中的对应物,限制了相关研究成果的专属性和准确性。因此从生物学、分类学、宝石学角度界定宝石材料——红珊瑚的范畴,提出“宝石级红珊瑚”的概念是后续研究的基础。
     近年来随着市场需求量的逐步增大,宝石级红珊瑚渔业经济发展迅猛。世界范围内宝石级红珊瑚的市场格局也由欧洲地中海的意大利转移到位于太平洋西岸的我国台湾省。与此同时,珠宝市场上出现了品类繁多的宝石级红珊瑚的仿制品,如染色粗枝竹节珊瑚、吉尔森压制珊瑚等。基于此,市场对宝石级红珊瑚的研究工作提出了迫切的要求。有关宝石级红珊瑚概念的界定,宝石级红珊瑚成分特征研究,宝石级红珊瑚结构特征研究以及在此基础上深化的宝石级红珊瑚颜色成因研究和宝石级红珊瑚有机/无机界面的空间几何关系研究都是掌握宝石级红珊瑚的基本性质,鉴别天然品及其仿制品,研究优化处理方法的基础。本研究正是针对上述问题展开的。
     本选题以瘦长红珊瑚Corallium elatius(属于红珊瑚属)为重点研究对象,以红珊瑚Corallium rubrum(属于红珊瑚属),日本红珊瑚Corallium japonicum(属于侧红珊瑚属),多孔鹿角珊瑚Acropora millepora(鹿角珊瑚属),粗枝竹节珊瑚Isis hippuris(竹节柳珊瑚属)为对比研究对象,首先通过傅立叶红外光谱测试、拉曼光谱测试、XRD测试、紫外-可见近红外光谱测试、电子探针测试、LA-ICP-MS测试、有机碳总量分析、气相色谱测试对宝石级红珊瑚样品的基本特征进行了初步研究。在此基础上,重点采用扫描电子显微镜、透射电子显微镜对宝石级红珊瑚样品的微结构及超微结构进行了详细的研究。最后在总结前人研究结果和分析本文测试数据的基础上,对宝石级红珊瑚中有机质成分对样品颜色的影响及中轴骨的形成过程两个问题进行了初步探讨。具体研究内容如下:
     1.界定“宝石级的红珊瑚”的概念,并明确了研究对象的生物学分类。
     从生物学、分类学、有机宝石学的角度出发,针对“红珊瑚”的概念容易与“红色珊瑚”、“方解石型珊瑚”、“红珊瑚属”等概念混淆的现象首次提出了“宝石级红珊瑚”的概念。将宝石级红珊瑚的范围限定为腔肠动物门(Coelenterata)-珊瑚虫纲(Anthozoa)-八放珊瑚亚纲(Octocorallia)-软珊瑚目(Alcyonacea)-硬轴珊瑚亚目(Scleraxonia)-红珊瑚科(Coraliidae)的动物骨骼堆积物。并选择珠宝市场上常见的三个品种——红珊瑚Coralliumrubrum,瘦长红珊瑚Corallium elatius,日本红珊瑚Corallium japonicum作为主要研究对象。部分研究中还采取了市场上常见的宝石级红珊瑚的仿制品(如多孔鹿角珊瑚、粗枝竹节珊瑚)作为对比研究对象,并对所有样品进行了基础宝石学特征研究。
     2.采用谱学方法、微区成分分析方法和化学方法分析总结了研究对象的成分特征。
     对三种宝石级红珊瑚的矿物成分采用傅立叶红外光谱和X-射线粉晶衍射测试进行探测。通过对比标准矿物红外光谱和对特征红外谱峰进行二阶求导分析方法,结合样品的晶胞参数,确定三种宝石级红珊瑚的矿物成分均为镁-钙类质同象组成的高镁方解石。
     对三种宝石级红珊瑚的化学成分研究采用电子探针测试和LA-ICP-MS测试进行探测。数据结果表明三种宝石级红珊瑚的主量元素为Ca,Mg,Sr,微量元素成分中B,Si,P,Fe,Ba的含量相对稳定。对样品的微区成分分析的结论为三种宝石级红珊瑚的化学成分主要为CaCO_3,兼含有少量其他元素。
     样品的红外光谱测试和显微激光拉曼测试均显示了代表有机基团的谱峰。样品的TOC测试显示三个品种的宝石级红珊瑚的有机碳总量极低,为0.04~0.07%。采用索氏抽提分离提取瘦长红珊瑚中的有机质并进行GC-MS测试,得到了C16脂肪醇和C19脂肪醇的碎片质谱峰,用化学分析方法证实了瘦长红珊瑚样品中有机质的存在。
     3.研究了三种宝石级红珊瑚的外观构筑型和显微结构特征,总结了种间差异。
     通过构筑型分析、矿物薄片显微观察方法,分析了不同品种宝石级红珊瑚的宏观形态特征和微观骼架特征,总结了各品种的结构特征和种间差异。从整枝构筑型特点分析,红珊瑚枝为单轴分枝型,瘦长红珊瑚为合轴分枝型,日本红珊瑚既有单轴分枝型又有合轴分枝型。生态环境、生长方式影响着构筑型的形态。例如,三种宝石级红珊瑚中红珊瑚的生长海域最浅,具有最丰富的食物来源,因而其构筑型特点为主干发达,枝干常呈扇型分布。从薄片的显微结构特征分析,三种宝石级红珊瑚的横截面均具有生长中心和围绕生长中心排列的同心圆圈层和辐射线,纵切面有位于中间位置的中轴骨的髓和近于平行的条带纹理。测量并计算各品种横截面的辐射线距离与骨骼直径的比值d,得到日本红珊瑚的d=0.016,瘦长红珊瑚的d=0.020,红珊瑚的d=0.017。即日本红珊瑚的方解石晶粒堆砌最致密,红珊瑚其次,瘦长红珊瑚最稀疏。
     4.采用激光拉曼原位探测分析方法研究了宝石级红珊瑚的颜色成因。
     在对三种宝石级红珊瑚进行显微激光拉曼的测试中发现样品的红色区域出现了白色区域所不具备的位于1517 cm~(-1),1296 cm~(-1),1128 cm~(-1),1016cm~(-1)成套谱峰。该谱峰所代表的有机质与样品的颜色有关。采用三种不同的激发光源对样品进行测试,样品的拉曼光谱出现了频率色散现象,结合其位于1517 cm~(-1),1296 cm~(-1)的特征峰值可知这种致色有机质为具有共轭多烯结构的聚乙炔类物质。使用Peakfit分峰拟和软件分析不同颜色样品位于1470cm~(-1)~1570 cm~(-1)的谱峰,分解了该区域的重叠峰。运用υ_1=(1459+720/N+1)cm~(-1),υ_1=(1438+830/N)cm~(-1),υ_1=97.071n(1/N)+1745 cm~(-1)经典计算公式计算分解峰的可能C=C个数为6~16(其中缺失10、15)。对三个品种宝石级红珊瑚的颜色成因的分析结论为宝石级红珊瑚的颜色成因为有机质致色。宝石级红珊瑚的不同色相、饱和度的红颜色由含不同数目C=C的聚乙炔类化合物按不同配分组合而导致。
     5.采用SEM、TEM测试方法观察了瘦长红珊瑚的超微结构特征,分析了样品在有机质诱导下的生长方式。
     借助化学刻蚀脱钙、离子减薄技术,结合扫描电子显微镜(SEM)和透射电子显微镜(TEM)超微结构分析技术以及)X—射线衍射(XRD)方法,建立了立体的原位分析生物矿物多级构造的方法。以瘦长红珊瑚为主要对象,观察到了样品纵向骨骼表面集中分布的四种不同形态的骨针和骨骼内部晶粒间的有机质网脉。研究发现瘦长红珊瑚表层中的骨骼单元与中轴骨内部的骨骼单元结构不同,前者为多辐射突散在骨针,后者为定向排列的纤柱状方解石。这些信息说明瘦长红珊瑚的中轴骨与骨针的形成方式不同。瘦长红珊瑚样品中有机质镶嵌在方解石骨骼的轮廓处,构建了三维互通的多级网脉,一级腔体的腔壁厚约1.13~1.75μm,次级腔体的腔壁厚约0.22~0.25μm。网脉间的方解石颗粒大小约0.63~1.25μm,而在样品缺陷区自由生长的方解石晶粒个体长度可达43.75μm。方解石在有机质控制下和脱离有机质控制时表现出的结构差异说明了有机质网脉控制着瘦长红珊瑚中的方解石晶粒大小和排布方式。
     本论文的创新点在于:
     1.科学地界定了用作宝石材料的方解石型红色珊瑚的范畴,明确了研究的对象。
     2.首次采用激光共振拉曼光谱成功地原位探测到三个不同品种的宝石级红珊瑚中含多烯结构的聚乙炔类有机质的存在。并计算出不同颜色样品中有机质多烯链的C=C键的数目。推测不同颜色的宝石级红珊瑚是由含有C=C数目的聚乙炔类化合物组合而成。实验结果支持宝石级红珊瑚的有机质成色说,并为后续的研究指明了方向。
     3.通过对不同品种的宝石级红珊瑚的结构由宏观到微观的观察,了解了样品骨骼中最基本的结构单元及其组构方式。使中轴骨、骨针、方解石柱纤晶的概念相互对应起来。
     4.在扫描电镜的研究中观察到了瘦长红珊瑚中的多级有机质网脉,这些网脉形成了三维互通的腔体,勾勒出了方解石骨骼的间介。对比缺失有机质网脉的区域的方解石颗粒的形态、尺度,可知有机质模板影响着瘦长红珊瑚中方解石晶粒大小和排布方式。
     5.国际上对药用珊瑚的研究一直非常重视,自20世纪40年代以来,国内外科学家已从珊瑚中分离得到许多结构新颖且具有显著生物活性的化合物。本文对瘦长红珊瑚中有机质的分离提取方法进行了探索,提取了瘦长红珊瑚中的C16脂肪醇和C19脂肪醇。
     本研究课题涉及到生物学、矿物学、岩石学、分类学、宝石学的学科知识和研究方法,属于多学科的交叉研究。所采用的分析方法包括各种谱学方法和先进的微区分析技术,其中既有无机化学的研究方法又有有机化学的研究方法。研究的难度大、涉及面广,是对多学科知识的综合运用,也是对生物型有机宝石的研究方法的新的探索。
     宝石级红珊瑚的颜色成因是学术界尚无定论的前沿课题,本次研究推测宝石级红珊瑚中的含聚乙炔类化合物是导致宝石级红珊瑚呈色的原因。为进一步探索宝石级红珊瑚的颜色成因的研究及其优化处理方案提供了素材。
     生物矿化的形貌、结构的研究是以生物矿物为对象的生物无机化学领域的热点之一。本次研究以瘦长红珊瑚为研究对象,在扫描电镜测试中首次观察到了瘦长红珊瑚四种不同形态的骨针和方解石颗粒间的有机质多级网脉,并以此为依据推测了瘦长红珊瑚可能的生长方式。该研究将大大丰富生物矿化研究领域的内容。
     本研究作为以宝石级红珊瑚为对象的基础研究,系统地分析了三种常见的宝石级红珊瑚的成分和结构特征,充实了宝石级红珊瑚的成分、结构特征的基础数据。
Gem-quality red coral is an important organic gem material.Fine specimens of attractive pink-to-red coral are the most desirable yet among the least available.These specimens are belonging to Anthozoa class,Octocorallia subclass,Alcyonacea order,Scleraxonia suborder, Coralliidae family in zootaxy.The Coralliidae family includes Corallium genus and Pleurocoralloicles genus.The concept of "precious red coral" is easily be confused by "red coral", "calcite-type coral","Corallium Cuvier genus".The previous researches always took "red coral" as research object resulted in the inaccuracy of objects'description.Therefore,define the category of gem red coral is the first principle of this study.
     Recent years,as the result of the increasing demand of the gem-quality red coral in jewelry market,the gem-quality red coral fishery develops rapidly.The new situation of the gem-quality red coral market has transferred from Italy to Taiwan province located in the west coast of Pacific Ocean.Meanwhile,many kinds of imitations of gem-quality red coral appear in the jewelry market, such as dyed Isis hippuris,Gilson coral.The market proposes a impending requirement to the gem-quality red coral research.Researches on the composition and structure characteristics of the gem-quality red coral are the basis of the further study on the color origin and biomineralization. This study is expanding surround these points above.
     The main research objects are three important genus of gem-quality red coral.They are Corallium rubrum(belonging to Corallium genus),Corallium elatius(belonging to Corallium genus),Corallium japonicutn(belonging to Pleurocoralloicles genus).The main contents are as following:
     1.This study takes the knowledge on biology,zootaxy,organic gemology in consideration, raising the concept of "gem-quality red coral" aimed at avoiding the confusion of "red coral" and other names.The study confines the colony of Coralliidae family as the gem-quality red coral,and takes Corallium rubrum,Corallium elatius,Corallium japonicum as main research objects. Furthermore,some imitations are also took as research objects.
     2.The study tests the samples by FTIR,Raman scattering measurement,UV-vis,XRD.The result of the FTIR shows the mineral component of gem-quality red coral is high-Mg calcite,while the mineral component of the Acropora millepora is aragonite.This phenomenon could not only be taken as the evidence to separate the biogenic calcite and mineral source calcite but also indicate the lattice distortion caused by organic matter.The spectrum peaks in the region 4000~2000 cm~(-1)representing the vibration function group indicate the existence of the organic matters in gem-quality red coral.The research uses the XRD data to calculate the cell parameter,cell volume,grain size of the gem-quality red coral and to conjecture the preferred orientation of the calcite grain.
     3.The research tests the quantity of the major elements and trace elements in different sections of the gem-quality red coral by electron microprobe and LA-ICP-MS.The result shows some element pairs are relative.Some subtle distinctions are found between three different varieties.The result deny the inference of coloring ions causing the color of gem-quality red coral. The GC-MS test analyses the organic matter separated and extracted from the Corallium elatius. The result shows the samples contain C16 and C19 aliphatic alcohol.
     4.The raman spectrums of the red part and the white part of the gem-quality red coral are different.The raman spectrum of the red part of the gem-quality red coral has some additional bonds representing the organic matters compared with the white part.In addition,the differences in spectrums are exist between the gem-quality red coral and the Isis hippuris.The spectrum of the Isis hippuris does not have the peaks in 1517 cm~(-1),1296 cm~(-1),1128 cm~(-1),1016 cm~(-1),but has a strong fluorescence background.Raman scattering measurement is a fast,nondestructive way to identify the natural gem-quality red coral.It is an effective method to reveal the relationship between the organic matter and color.
     5.Gem-quality red coral is a kind of important composite material made by organic matters and mineral crystal.The fraction of grain size could reach to micrometer or nanometer scale.
     This research describes the architecture type,micro structure,ultrastructure characteristics of gem-quality red coral and analyzes the characteristics of the organic framework and the inorganic substances.A novel approach of in situ analysis was constructed by means of decalcification, ion-milling combined with Scanning Electron Microscope(SEM),Transmission Electron Microscope(TEM)ultra-structure analysis and X-ray powder diffraction(XRD).The method was employed to determine the spatial distribution of organic framework,outside and inner crystal and organic/inorganic interface spatial geometrical relationship in Corallium elatius.The results show that there is a sub-structure of organic matrix in calcite crystal.Cavity templates are responsible for supporting,limiting size and shape and determining the crystal growth spatial orientation, while intracrystal organic matrix is responsible for providing nucleating point and induce nucleation process of calcite.The research reveals the distribution characteristics of the organic matter and inorganic matters spreading in the Corallium elatius.The result serves the bionics a new direction.
     The main innovation of this paper as follows:
     1.The definition of "gem-quality red coral" has been proposed for the first time.
     2.The research detects the organic matters which is related to the red color of the gem-quality red coral for the first time by Raman spectroscopy.The research analyses the number of the C=C bond and gets the conclusion that the color of the gem-quality red coral is caused by organic matter which containing polyenic chains of different lengths.The result supports the theory that the organic matters cause the color of gem-quality red coral.
     3.The research observes the gem-quality red coral samples from macroscopic to microscopic.This work make the structure of the sclerite and axis clearly.
     4.The research of the SEM observes the organic frame-work in the skeleton of the gem-quality red coral.The organic frame-work forms many 3-d cavities.
     The research involves the knowledge and the analytic methods of biology,mineralogy, petrology,taxology,gemology.The test methods of spectroscopy and micro analysis including organic chemistry and inorganic chemistry are comprehensive analysis.
     The cause of the color in gem-quality red coral is a frontier topic which has no verdict yet. The conclusion on the cause of the color in gem-quality red coral in this paper provides the basis information to optimization treatment.
     The research on the biomineralization is the hotspot in the field of bio-inorganic chemistry. The SEM test has found the 4 different types of spicule and multi-stage organic framework in the Corallium elatius for the first time.The study enrich the biomineralization data.
     This research as a basic research analyses three kinds of gem-quality red coral systematically, and fill the organic gemology with more data about the composition and the structure of the gem-quality red coral.
引文
[1]邹仁林,甘子钧,陈绍谋等.红珊瑚.第一版.北京:科学出版社.1993.
    [2]McFadden CS,France SC,Sanchez JA,et al.A molecular phylogenetic analysis of the Octocorallia(Cnidaria:Anthozoa)based on mitochondrial protein-coding sequences,Molecular Phylogenetics and Evolution,2006,41(3):513-517.
    [3]Bayer FM,Cairns SD,A new genus of the scleraxonian family Coralliidae(Octocorallia:Gorgonacea).Proceedings of the Biological Society of Washington.2003,116(1):222-228.
    [4]周佩玲,杨忠耀.有机宝石学.第一版.武汉:中国地质大学出版社.2004.
    [5]Petite H,Viateau V,Bensald W,et al.Tissue-engineered bone regeneration.Nature Biotechnology,2000,9:959
    [6]Truumees E,Herkowitz HN.Alternatives to autologous bone harvest in spine surgery.Orthopaedic J,1999,12:7.
    [7]Liverino B.Red coral—jewel of the sea.The fast edition.Bologna:Analisi.1989.
    [8]何家庆.经典分类学的时代契合——纪念林奈诞辰300周年.科学(上海).2007.59(5):49-52.
    [9]Muller WA著,黄秀英,劳为德,郑瑞珍等译,发育生物学.北京:高等教育出版社,施普林格出版社,1998.
    [10]王鸿祯,王训练.古生代珊瑚研究与理论古生物学有关问题.地球科学(中国地质大学学报),1995,20(1):27-34.
    [11]邹仁林.中国动物志.第一版.北京:科学出版社,2001.1-4:
    [12]Bayer FM.The genus Corallium(Gorgonacea:Scleraxonia)in the Western North Atlantic,Ocean.Bull.Mar.Sci,1964,14(3):463-478.
    [13]Bayer FM.Key to the genera of octocorallia excusive of pennatulacea (Coelenterata:Anthozoa)With diagnoses of new taxa,Proo.Biol,1981,94(3):902-947.
    [14]缪炜,余育和,沈韫芬.纤毛虫分子系统发育学的研究进展.动物学杂志,2002,37(1):67-71.
    [15]Fabricius K,Alderslade P,Soft Corals and Sea Fans:A Comprehensive Guide to the Tropical Shallow-Water Genera of the Central-West Pacific,the Indian Ocean and the Red Sea,Australian Institute of Marine Science,Townsville,2001.
    [16]Sanchez JA,Lasker HR,Taylor DJ.Phylogenetic analyses among octocorals(Cnidaria):Mitochondrial and nuclear DNA sequences(lsu-rRNA,16S and ssu-rRNA,18S)support two convergent clades of brancking gorgonians,Mol.Phylogenet.Evol.2003,29:31-42.
    [17]黄晖,何建国,李秀保等.柳珊瑚分子系统发育学的研究进展.海洋通报,2005,24(2):63-78.
    [18]Sivakumar M,Kumar TSS,Shantha KL,et al.Development of hydroxyapatite derived from Indian coral.Biomaterials,1996,17:1709.
    [19]Li R,Wang S,Tan,G,et al.Two polyhydroxylated steroids from the Chinese soft coral Litophyton arboreum.Steroids,1994,59:503.
    [20]王贵阳生,刘青,曾陇梅.南中国海软珊瑚Cladiella densa的化学成分研究.中山大学学报(自然科学版),1995,34(1):110-113.
    [21]李凤英,邓松之,饶志刚等.南海多枝蔷薇珊瑚化学成分的研究.中国海洋药物杂志,1997,1:4-6.
    [22]肖定军,邓松之,李美凤等.南海佳丽鹿角珊瑚化学成分的研究.中国海洋药物杂志, 1998,1:17~20.
    [23]栾秉墩.中国宝石与玉石.第一版.乌鲁木齐:新疆人民出版社,1989.
    [24]王曙.珠宝玉石和金首饰.第一版.北京:中国发展出版社,1992.
    [25]Rolandi V,Brajkovic A,Adamo I,et al.Gem corals:Classification and spectroscopic features.Australian Gemmologist,2005,22(7):285-297.
    [26]Bocchio R,Bracco S,Brajkovic A,et al.Gem corals:X-ray diffraction,solid state NMR,elemental analysis.Australian Gemmologist,2006,22:524-532.
    [27]李兴华,余晓艳李耿.金珊瑚的宝石学及红外光谱特征鉴定.中国宝石,2006,15(4):193.
    [28]Kaczorowska B,Hacura A,Kupka T,et al.Spectroscopic characterization of natural corals.Anal Bioanal Chem.2003,377:1032-1037.
    [29]Christopher P S,Shane F McClure,Sally Eaton-Magana,et al.Pink-red Coral:A guide to determining origin of color,Gem & Gemology,2007,1:4-15.
    [30]Goldsmith JR,Graf DL,Joensuu OI.The occurrence of magnesian calcites in nature.Geochim.Et Cosmochim.Acta.1955.7:212-230.
    [31]Weinbauer MG,Brandstatter F,Velimirov B.On the potential use of magnesium and strontium concentrations as ecological indicators in the calcite skeleton of the red coral (Corallium rubrum).Marine Biology,2000,137:801-809.
    [32]范陆薇,吕良鉴,王颖等.宝石级红珊瑚的激光拉曼光谱特征.宝石和宝石学杂志,2007,9(3):1-3.
    [33]Merlin J C.Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems.Pure and Applied Chemistry,1985,57:758-792.
    [34]Merlin J C,Dele-Dubios M L.Resonance raman characterization of polyacetylenie pigments in the calcareous skeleton.Comparative Biochemistry and Physiology,1986,84B:97.
    [35]张刚生,谢先德,王英.我国主要育珠贝(蚌)珍珠层及珍珠的激光拉曼光谱分析.光谱学与光谱分析,2001,21(2):193-195.
    [36]王海滨,类胡萝卜素的紫外可见光谱特性及其应用,武汉工业学院学报,2004,23(4):10-13.
    [37]葛传文,张为俊,陈长水.频带色散法改善宽线宽激光受激布里渊散射效果的实验研究.光学学报,2001,21(12):1454-1457.
    [38]王业勤,李勤生.天然胡萝卜素——研究进展、生产、应用.北京:中国医药科技出版社,1997.
    [39]Barnard W,D de Waal J.Raman investigation of pigmentary molecules in the molluscan biogenic matrix,Journal of Raman Spectroscopy,2006,37:342-352.
    [40]郝玉兰,张刚生.淡水养殖珍珠中有机物的激光共振拉曼光谱分析.光谱学与光谱分析,2006,26(1):6-8.
    [41]秦作路,马红艳,木士春等.优质淡水珍珠的体色及其与拉曼光谱的关系.矿物学报.2007,27(1):73-76.
    [42]Claron Hosklns L,Vera Alexander.Determination of Carotenoid Concentrations in Marine Phytoplankton by Resonance Raman Spectrometry,Anlytical Chemistry,1977,49(6):695.
    [43]Vershinin A.Carotenoids in mollusea:approaching the functions.Comparative Biochemistry and Physiology,1996,113B:63
    [44]Robert Withnall,Babur Z,Chowdhry,et al.Raman spectra of carotenoids in natural produets.Acta,2003,59(10):2207.
    [45]Stradi R,Pini E,Celentano GThe chemical structure of the pigments in Ara macao plumage.Comparative Biochemistry and Physiology,2001,130B:57.
    [46]骆定法,梁斌,邓中国,刘雪.环状共轭多烯烃简并分子轨道的群论处理.山东农业大学学报(自然科学版),2007,38(2):257-260.
    [47]余启港,程玉.共轭直链多烯分子轨道Huckel理论的一个算法.中南民族大学学报(自然科学版),2002,21(3):73-75.
    [48]Veronelli M,Zerbi G,Stradi R.In situ resonance Raman spectra of carotenoids in bird's feathers.J.Raman Spectrosc,1995,26:683.
    [49]McGraw KJ,Nogare MC.Carotenoid pigments and the selectivity of psittacofulvin-based coloration systems in parrots.Comp.Biochem.Physiol.2004,138(3):229-233.
    [50]Schugerl FB,Kuzmany H.Optical modes of trans-polyacetylene.The Journal of Chemical Physics,1981,74:953.
    [51]Karampelas S,Fritsch E,Sklavounos S,et al.Determination by raman scattering of the nature of pigment in cultured freshwater pearls from mollusk Hyriopsis cumingi.Journal of Raman Spectroscopy,2007,38:217-230.
    [52]高岩,张辉.天然及染色红珊瑚的拉曼光谱研究.宝石和宝石学杂志,2002,4(4):20-23.
    [53]MCN Alexander R,杜芝兰,张宗炳译.无脊椎动物学(上).第一版.北京:北京大学出版社,1985.
    [54]任淑仙.无脊椎动物学(上册).第一版.北京:北京大学出版社,1990.
    [55]江静波,无脊椎动物学.第一版.北京:高等教育出版社.1965.
    [56]江静波,无脊椎动物学.第一版.北京:人民教育出版社.1982.
    [57]戴永定.生物矿物学.第一版.北京:石油出版社,1994.1-572.
    [58]Hill D,The British Silurian rugose corals with acanthine septa.Roy Soc London,Philos Trans,Ser B,1936,226(534):189-217.
    [59]Wang H Z,A revision of the Zoantharia Rugosa in the light of their minute skeletal structure,Roy Soe London,Philos Tram Ser B,1950,234(611):175-346.
    [60]王鸿祯,何心一,陈建强等.中国古生代珊瑚分类演化及生物古地理.第一版.北京:科学出版社,1989:1-391.
    [61]Wang H Z,Chen J Q.Microskeletal structures and classification of rugose corals.Mern Ass Australas Palaeontols,Australas Palaeontols,1990,8:179-190.
    [62]戴永定,沈继英.生物矿化硬体(生物矿物体)的分类和演化.动物学杂志.1996,31(2):53-56.
    [63]Nakahara H.An electron microscope study of the growing surface of nacre in two gastropod species Turbo comutus and Tegula pfeifferi.VENUS,1979,38(3):205-211.
    [64]Sehaffer T E,Zanetti C I,Prokseh R,et al.,Does abalone nacre formed by hetereoepi taxial nucleation or by growth through mineral bridge.Chem Mater,1997,9(2):1731-1740.
    [65]邰子厚,生物无机固态化学.无机化学学报,1994,10(3):329-337.
    [66]Crenshaw M A.The soluble matrix from Mereenaria mereenaria shells.Biomineralization,1972,6:6-11.
    [67]Weiner S,Addadi L.Design strategies in mineralized biological materials.J Mater Chem,1997,7(5):689-702.
    [68]Weiner S,Addadi L.Acidic macromolecules of mineralized tissues:the controllers of crystal formation.TIBS,1991,16:252-56.
    [69]Keith J,Stockwell S,Ball D,et al.Comparative analysis of macromolecules in mollusc shells[J].Comp BioehemPhysiol,1993,105B(3-4):487-496.
    [70]Sikes S T,Wheeler A P.Regulators of biomineralization.Chemtech,1988,10:620-626.
    [71]Marxen J C,Hammer M,Gehrke T,et al.Carbohydrates of organic shell matrix and the shell-forming tissue of snail biomphalaria glabrate.Biol Bull,1998,194:231-240.
    [72]Addadi L,Weiner S.Interaction between acidic proteins and crystals:stereochemical requirements in biominerallization.Proc Natl Acad Sci USA,1985,82:4110-4114.
    [73]Albeck S,Aizenberg J,Addadi L,et al.Interaction of various skeletal intracrystalline components with calcite crystals.J Am Chem Soc,1993,115:11691-11697.
    [74]Aizenberg J,Albeck S,Weiner S,et al.Crystal-proteininteractions studied by overgrowth of calcite on biogenicskeletal elements.J Crystal Growth,1994,142:156-164.
    [75]Albeck S,Weiner S,Addadi L.Polysaccharides of intracystalline glycoproteins modulated crystal growth in vitro.Chem Eur J,1996,2(3):278-284.
    [76]Kitano Y.The influence of organic material on thepolymorphic crystallization of calcium carbonate.Geochim Cosmochim Acta,1965,29:29-41.
    [77]Belcher A M,Wu X H,Christensen R J,et al.Control of crystal phase switching and orientation by soluble mollusc-shell proteins.Nature,1996,381(2):56-58.
    [78]Falini G,Albeck S,Weiner S,et al.Control of aragonite or calcite polymorphism by mollusk shell macromolecules.Science,1996,271(5):67-69.
    [79]Litvin A L,David S V,Mann S.Templated-directed synthesis of aragonite under supramolecular hydrogen-bonded langmuir monolayers.Adv Mater,1997,9(2):124-127.
    [80]Levi Y,Albeck S,Brack A,et al.Control over aragonite crystal nucleation and growth:an in vitro study of biominerallization.Chem Eur J,1998,4(3):389-396.
    [81]Mann S.Molecular recognition in biominerallization.Nature,1988,332(10):119-124.
    [82]毛传斌,李垣德,崔福斋等.无机材料的仿生合成.化学进展,1988,10(3):246-254.
    [83]Aksay I A,Trau M,Manne S,et al.Biominetic pathways for assembling inorganic thin films.Science,1996,273(16):892-898.
    [84]Stupp S I,Braun P V.Molecular manipulation of microstructures:biomaterials,ceramics and semiconductors.Science,1997,277(29):1 242-1248.
    [85]王蓉.电子衍射物理教程.第一版.北京:冶金工业出版社,2002.
    [86]宋心远,沈煜如.生物颜色与生态染色(一).印染.2001,5:51-53.
    [87]Balmain J,Hannoyer B,Lopez E.Fourier transform infrared spectroscopy(FFIR)and X-ray diffraction analyses of mineral and organic matrix during heating of mother of pearl(nacre)from the shell of the mollusk pinctada maxima.Journal of Biomedical Material Research,1999,48:749-754.
    [88]Socrates G,Infrared and Raman characteristic group frequencies:table and chart.Wiley,2001.
    [89]刘吉开,黄英.南中国海软珊瑚Claduella similis化学成分的研究(Ⅱ).中山大学学报:自然科学版,1993,32(1):131-132.
    [90]Morales-Nin B.Review of the growth regulation processes of otolith daily increment formation.Fisheries Research,2000,46:53-57.
    [91]Giacomellia S.,Cicogna E,C.Bavostrollo.Exporoioncos in Rearing Corallium rubrum.FAO Fisheries Rept.1988,413:57-58.
    [92]Grigg RW.Precious coral fisheries of the Pacific and Mediterranean.in Caddy,J.E(Ed.).Marine invertebrate fisheries:their assessment and management.The first edition.John Wiley and Sons.1989:637-645.
    [93]Grigg RW.Precious corals in Hawaii:discovery of a new bed and revised management measures for existing beds.Marine Fisheries Review,2002,64:13-20.
    [94]余仲建.有机化合物的系统鉴定法.第一版.北京:商务印书馆,1946.
    [95]张蓓莉.系统宝石学.第一版.北京:地质出版社,1997.
    [96]赵瑶兴,孙祥玉.有机分子结构光谱鉴定.第一版.北京:科学出版社.2003.
    [97]彭文世,刘高魁.方解石族与文石族矿物振动光谱的因子群分析.矿物学报.1983.(3):169-174.
    [98]法默VC著,应育浦,汪寿松,李春庚等译.矿物的红外光谱.第一版.北京:科学出版社.1982.
    [99]彭文世,刘高魁.矿物的红外光谱图集.第一版.北京:科学出版社.1982.
    [100]亓利剑,袁心强,彭国祯等.翡翠中蜡质物和高分子聚合物充填处理尺度的判别.宝石和宝石学杂志.2005,7(3):1-6.
    [101]欧阳健明.生物矿化的基质调控及其仿生应用.第一版.北京:化学工业出版社.2006.
    [102]Yang L,Zhang X-Y,Liao Z-J,et al.Interracial molecular recognition between polysaccharides and calcium carbonate during crystallization.J Inorg Biochem,2003,97:377-383.
    [103]Uroms J,Sharma S K,Mackenzie F T.Characterization of some biogenic carbonates with Raman spectroscopy.Amer Mineralogist,1991,76:641-646.
    [104]Klein C.& Hurlbut C.S.jr.Manual of Mineralogy,The 22 nd Edition John Wiley and Sons,Inc.,New York.2002.
    [105]侯东芳,周根树,郑茂盛.贝壳中文石晶体择优取向的XRD分析.三峡大学学报(自然科学版).2006,28(5):431-434.
    [106]张刚生.珍珠层的微结构及其中类胡萝卜素的原位研究[D].广州:中国科学院广州地球化学研究所,2001.
    [107]丛秋滋.多晶二维X射线衍射.第一版.北京:科学出版社,1997.
    [108]Grillo MC,Goldberg WM,Allemond D.Skeleton and Sclerite formation in the precious red coral Corallium rubrum.Mar Biol 117:119-128.
    [109]Simpson T L,Volcani B E,Silicon and Siliceous Structures in Biological Systems,Springer,New York,1981.
    [110]Vengosh A,Kolodny Y,Starinsky A,et al.Comprecipitation and isotopic fractionation of boron in modem biogenic carbonates.Geochim.Cosmochim.Acta,1991,55:2901-910.
    [111]Masso C.Trescientas Cuarenta Colonias de Coral Rojo Sobre una "Piedra" a 60 metros de Profundidad.FAO Fisheries Rept.1988.413:57-58.
    [112]Lacaze-Duthiers,H.Histoire naturelle du corail.The first edition.J.B.Bailiere et Fil,Paris.1864
    [113]Allemand D,Grillo MC.45Ca uptake and deposition by the Mediterranean red coral Corallium rubrum.J.exp.Zool.1992,262:237-246.
    [114]Yannicke Dauphin,Mineralizing matrices in the skeletal axes of two Corallium species (Alcyonacea).Comparative Biochemistry and Physiology,2006,145(1):54-64
    [115]Sarikaya M.,Aksay I.A.,et al.Biomimetics:Design and processing of Materials.Am.Inst.Phys.,New York.1995
    [116]Mann S.,et al.Biomimetics Materials Chemistry(VHC,New York).1996.
    [117]Rieke P.C.,Calvert P.D.,Alper M.,et al.Materials Synthesis Using Biological Processes Mater.Res.Soc.,Pittsburgh.1990.
    [118]Dauphin Y,Cuif JP,Doucet J.et al.In situ chemical speciation of sulfur in calcitic biominerals and the simple prism concept,J.Struct.Biol.2003.142:272-280.
    [119]黄量,于得泉.紫外光谱在有机化学中的应用.第一版.北京:科学出版社.1988.
    [120]Webster R.Gems Their Sources,Descriptions and Identification.The first edition Butterworth & Co Ltd,1983.
    [121]Harada L,Furukwa Y,Tasumi M,Spectroscopic studies on doped polyacetylene and β-carotene.J Chem Phys 1980,73(10):4746-4757.
    [122]Dellepiane G,Cuniberti C,Cavalli R,Polarized Raman spectra of oriented all-trans-β-carotene in polyethylene films,J Mole Strut,1990,224:271-284.
    [123]Okamoto H.Sekimoto Yaeko Y,Tasumi M,Assignment and anharmonicity analysis of overtone and combination bands observed in the resonance Raman spectra of cartenoids. Spectroehimica acta,1994,50A(8/9):1467-1473.
    [124]Schugerl FB.Kuzmany H.Optical modes of trans-polyacethlene.J Chem Phys,1981,74(2):953-958.
    [125]赵文恩,韩雅珊,乔旭光.类胡萝卜素清除活性氧自由基的机理.化学通报,1999,4:25-27
    [126]Kamattldaov VN.Carotenoid:recent progress,problem and prospect.Comp Biochem.Physiol,1990,95B(1):1-20.
    [127]Stradi R,Pini E,Celentano G.Carotenoid in bird plumage:the complement of red pigments in the plumage of wild and captive bullfinch(Pyrrhula pyrrhula).Comparative Biochemistry and Physiology,Part B.2001,128(3):529-535.
    [128]Stradi J.Hudon G.Celentano,et al.Carotenoids in bird plumage:the complement of yellow and red pigments in true woodpeckers(Picinae),.Biochem.Physiol.B,120(1998):23-230.
    [129]Jocelyn Hudon,Marina Anciaes,Vittorio Bertaeche,et al.Plumage carotenoids of the Pin-tailed Manakin(Ilcura militaris):Evidence for the endogenous production of rhodoxanthin from a color variant.Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,147(3):402-411.
    [130]高岩,张蓓莉.淡水养殖珍珠的颜色与拉曼光谱的关系.宝石和宝石学杂志,2001,3(3):17-20.
    [131]Shen X Y,Belcher A M,Hansma P K,et al.Molecular cloning and characterization of lustrin A.A matrix protein from shell and pearl nacre of Haliotis rufescens.J Bio Chem,1997,272(51):32472-32481.
    [132]张刚生,谢先德,王英.三角帆蚌贝壳珍珠层中类胡萝卜素的激光拉曼光谱研究.矿物学报,2001,21(3):389-392
    [133]Tavan P,Schulten K.Electronic excitations in finite and infinite polyenes Phys.Rev.B,1987 36 4337-4358.
    [134]Sashima T,Koyama Y,Yamada T,et al.The 1Bu+,1Bu-,and 2Ag- Energies of Crystalline Lycopene,β-Carotene,and Mini-9β-carotene as Determined by Resonance-Raman Excitation Profiles:Dependence of the 1Bu- State Energy on the Conjugation Length.J.Phys.Chem.B,2000,104(20):5011-5019.
    [135]Fujii R,Ishikawa T,Koyama Y,et al.Fluorescence Spectroscopy of All-trans-anhydrorhodovibrin and Spirilloxanthin:Detection of the 1Bu- Fluorescence.J.Phys.Chem.A,2001,105(22):5348-5355.
    [136]Gradinaru C,Kennis J TM,Papagiannakis E,et al.An unusual pathway of excitation energy deactivation in carotenoids:Singlet-to-triplet conversion on an ultrafast timeseale in a photosynthetic antenna.PNAS,2001,98:2364
    [137]Larsen D S,Papagiannakis E,van Stokkum I H M,et al.Excited state dynamics of β-carotene explored with dispersed multi-pulse transient absorption.Chem.Phys.L,2003,381(5-6):733-742.
    [138]Wohlleben W,Buckup T,Herek J L,et al.Multichannel Carotenoid Deactivation in Photosynthetic Light Harvesting as Identified by an Evolutionary Target Analysis.Bio.phys.J,2003,85:442-450.
    [139]赵晓辉,马菲,吴义室.飞秒时间分辨拉曼光谱用于研究β-胡萝卜素单重激发态内转换和振动弛豫过程.物理学报,2008,57(1):298-306.
    [140]许振华.FT-Raman光谱及其应用.光谱学与光谱分析,1993,13(1):83-90.
    [141]Salares VR,Young NM,Carey PR,et al.Resonance Raman Spectra of Lobster Shell Carotenoproteins and a Model Astaxanthin Aggregate A Possible Photobiological Function for the Yellow Protein.Raman Spectrosc,1977,6:282.
    [142]Rimai L,Kilponen RG,Gil D.Excitation profiles of laser Raman spectra in the resonance region of two carotenoid pigments.J.Am.Chem.Soc.1970,92:3824
    [143]Inagaki F,Tasumi M,Miyazawa T.J.Vibrational analysis of polyene chains.Assignments of the resonance Raman lines of poly(acetylene)and β-carotene.Raman Spectrosc.1975,3(4):335-343.
    [144]Steffen B,Muller KP,Komenda M,et al.A new mathematical procedure to evaluate peaks in complex chromatograms.Journal of chromatography A.2005,1071(1-2):239-246.
    [145]Jain TK,Varshney M,Maitra A,Structural studies ofaersol OT reverse micellar aggregates by FTIR spectroscopy.J Phys Chem.1989(93):7409-7411
    [146]李泉,李维红,翁诗甫等.水/AOT/正庚烷微乳体系中水结构FTIR研究.物理化学学报,1997.13(5):438-444.
    [147]S.Albeck,L.Addadi,S.Weiner.Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro,Chem.Eur.J.2(1996):278-284.
    [148]张兰兰,陈木宏,向荣等.南海南部表层沉积物中生物硅分布及其环境意义.热带海洋学报,2007.26(3):24-29.
    [149]肖应凯,李世珍,魏海珍等.从海/咸水中沉积碳酸钙时异常的硼同位素分馏.中国科学B辑,2006.36(3):263-272.
    [150]孙云明,宋金明.海洋沉积物——海水界面附近氮、磷、硅的生物地球化学.地质评论,2001.47(5):528-534.
    [151]Dodd JR.Magnesium and strontium in calcareous skeletons:a review.J Paleontol,1967.41:1313-1329.
    [152]Chivas AR,De Deckker P,Shelley JMG.Magnesium and strontium in non-marine ostracod shells as indicators of palaeosalinity and paleotemperature.Hydrobiologia,1986.143:135-142.
    [153]Beck JW,Edwards R,Ito E,et al.Sea-surface temperature from coral skeleton strontium/calcium ratios.Science,1992.257:644-647.
    [154]Weinberg S.The light-dependent behavior of planula larvae of Eunicella singularis and Corallium rubrum and its implication for octocorallian ecology.Bijdr Dierkd,1979.49:16-30.
    [155]Ma Hezhong.Biomechanics induction.The first edition Beijing:Beijing Aviation College Press,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700