HCPT诱导肝癌细胞凋亡前后线粒体/核蛋白质组变化的定量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     建立羟基喜树碱(Hydroxycamptothecin, HCPT)诱导的肝癌SMMC-7721细胞线粒体凋亡模型,应用蛋白质组学分析的电泳法策略和鸟枪法策略鉴定细胞凋亡前后的线粒体差异表达蛋白质和细胞核差异表达蛋白质,为从亚细胞器蛋白质组水平进一步阐明HCPT诱导肝癌细胞发生凋亡的机理奠定基础,同时建立并完善基于稳定同位素标记的亲和标签标记法(cICAT)的亚细胞器定量蛋白质组学技术平台。
     策略与方法
     1.确定肝癌细胞线粒体凋亡时相:用HCPT处理肝癌SMMC-7721细胞,通过光镜、MTT实验、电镜、流式细胞仪和AO/EB双染等方法分别在定性、定量、早期与晚期等不同层面上检测HPCT的致肿瘤细胞凋亡活性;通过线粒体跨膜电位、激光共聚焦与western blot法等检测线粒体凋亡的时相变化,从而确定线粒体凋亡时相。
     2.线粒体分离与纯度鉴定:用线粒体组分分离试剂盒分离肝癌SMMC-7721细胞线粒体,用詹纳斯绿B染料对分离的线粒体进行染色鉴定;分别用核组蛋白Histone、细胞骨架蛋白β-actin、组织蛋白酶Cathepsin-D和热休克蛋白HSP60作为细胞核、细胞浆、溶酶体和线粒体的特异标志蛋白,用western blot对分离的线粒体进行纯度鉴定;分别用琥珀酸脱氢酶作为线粒体纯度的指标、NADPH-细胞色素C还原酶作为内质网含量的指标、5-?核苷酸酶作为细胞膜含量的指标,通过测定酶比活力的方法对分离的线粒体进行纯度鉴定。
     3.应用双向电泳/基质辅助激光解吸离子化飞行时间质谱( two-dimensional electrophoresis/matrix assisted laser desorption/isonization time of flying mass spectrometry, 2DE-MALDI-TOF/MS)技术路线分析细胞凋亡前后的线粒体差异表达蛋白谱:通过优化各种条件参数来确定合适的样品上样量、染色方法与胶条种类;根据蛋白质溶解度不同将线粒体蛋白分成三个组分,分别对三个组份进行双向电泳分离,用PDquest(7.0)软件分析扫描的二维凝胶电泳图像,筛选出细胞凋亡前后的差异表达蛋白斑点;候选差异表达蛋白斑点经胶内胰酶酶解,MALDI-TOF/MS分析,得到肽指纹图谱(peptide mass fingerprinting, PMF),使用Mascot和PeptIdent软件分别在MSDB和SWISS-PROT数据库中检索鉴定差异表达蛋白质,并对差异蛋白质进行生物信息学分析。
     4.应用基于二维液相色谱/串联质谱(two-dimensional liquid chromatography/tandem mass spectrometry,2D-LC/MS/MS)的可裂解的稳定同位素标记的亲和标签(cleavable isotope-coded affinity tag,c-ICAT)方法定量分析细胞凋亡前后线粒体蛋白质组的表达差异:分别对线粒体中等溶解度蛋白组份和线粒体疏水蛋白组份进行c-ICAT定量蛋白质组分析。蛋白样品经过c-ICAT试剂标记、酶解、强阳离子交换色谱/亲和色谱纯化标记肽、裂解去除生物素亲和标签、μRP-HPLC MS/MS分析,根据肽的洗脱峰面积得到同一种蛋白质在HCPT促肝癌细胞凋亡前后的线粒体中表达量变化的准确信息、根据MS/MS分析结果进行测序获得到蛋白质的鉴定信息。并对表达量有显著差异的蛋白质进行生物信息学分析。
     5.细胞核纯度鉴定及细胞凋亡前后细胞核蛋白质组表达差异的定量分析:用细胞组分分离试剂盒分离获取肝癌SMMC-7721细胞核组份;分别用热休克蛋白HSP60、细胞骨架蛋白β-actin、核组蛋白Histone和组织蛋白酶Cathepsin-D作为线粒体、细胞浆、细胞核和溶酶体的特异标志蛋白,用western blot对分离的细胞核进行纯度鉴定。用c-ICAT试剂标记提取的核蛋白质,经过标记、酶解、色谱纯化、裂解等过程,采用μRP-HPLC MS/MS在线分析,根据定量积分肽的洗脱峰面积得到同一种蛋白质在HCPT促肝癌细胞凋亡前后的细胞核中表达量变化的准确信息、根据MS/MS分析结果测序获得到蛋白质的鉴定信息。并对表达量有显著差异的蛋白质进行生物信息学分析。
     结果
     1. HCPT对肝癌SMMC-7721细胞的增殖有明显抑制作用,半数抑制浓度(50% inhibitory concentration, IC50)约为80μg/ml。当用80μg/ml HCPT对细胞处理不同时间后,细胞可发生一系列形态学和生化性质的变化:细胞膜的磷脂酰丝氨酸外翻,细胞核染色质固缩、呈致密浓染的凋亡状态,超微结构观察发现线粒体出现了肿胀性变化,线粒体跨膜电位下降,并且Cytc从线粒体释放至细胞浆。
     2.电镜观察染色结果:分离的线粒体经詹纳斯绿B染色后,呈蓝绿色的颗粒状或棒状结构; western blot结果表明:提取的线粒体组分检测到了线粒体标志蛋白HSP60,没有检测到细胞核标志蛋白Histone、细胞浆标志蛋白β-actin与溶酶体标志蛋白Cathepsin-D;酶比活力测定结果显示:提取的线粒体组分与细胞匀浆相比较,琥珀酸脱氢酶比活力提高13.8倍,NADPH-细胞色素C还原酶和5-?核苷酸酶在线粒体组分中的比活力很低。
     3.优化条件试验确定:最合适的样品上样量为200μg、最佳染色方法为银染、最佳胶条为非线性pH3-l0胶条。通过对细胞线粒体凋亡前后的二维凝胶电泳图像进行对比分析,发现约有39个蛋白斑点表达有差异,对其中25个差异蛋白斑点进行MALDI-TOF/MS分析后,鉴定出了20种可能的差异表达蛋白。
     4.对细胞凋亡前后线粒体中等溶解度蛋白组份的c-ICAT分析结果显示:分析鉴定了91种蛋白质,获得了在细胞凋亡前后其相对表达量差异有显著统计学意义的蛋白质74种,其中,42种蛋白质在细胞凋亡后的表达量下调,32种蛋白质的表达量在凋亡细胞中上调。
     5.对细胞凋亡前后线粒体疏水蛋白组份的c-ICAT分析结果显示:分析鉴定了244种蛋白质,获得了154种蛋白质在细胞凋亡前后的相对表达量差异有统计学意义,其中,12种蛋白质在凋亡细胞中的表达量下调,137种蛋白质的表达量在凋亡细胞中上调,5种蛋白质的表达量没有变化。鉴定的蛋白质中有13种强碱性蛋白质,分子量大于200KDa的11种蛋白质和小于10KDa的6种蛋白质,50种膜蛋白质,表达量改变10倍以上的蛋白质有45种。
     6.提取的细胞核组分检测到了细胞核标志蛋白Histone,没有检测到线粒体标志蛋白HSP60、细胞浆标志蛋白β-actin与溶酶体标志蛋白Cathepsin-D。对细胞凋亡前后细胞核蛋白组份的c-ICAT分析结果显示:分析鉴定了94种蛋白质,获得了相对表达量差异有统计学意义的蛋白质43种,其中,12种蛋白质在细胞凋亡后的表达量下调,30种蛋白质的表达量在凋亡细胞中上调,1种蛋白质的表达量没有变化。
     结论
     1. HCPT可通过Cytc依赖的线粒体途径诱导癌细胞发生凋亡。
     2.三种线粒体纯度鉴定试验均说明:提取的细胞器组份是线粒体并且线粒体纯度较高,可用于后续的蛋白质组分析。
     3.采用2DE-MALDI-TOF/MS技术路线鉴定出的线粒体中20种差异表达蛋白可能在HCPT诱导的线粒体凋亡途径中起重要作用。
     4.细胞凋亡前后线粒体中等溶解度蛋白质组中表达量差异蛋白的分子功能主要与能量代谢、核酸的翻译、转录、复制以及细胞骨架有关。
     5.细胞凋亡前后线粒体疏水蛋白质组中表达量差异蛋白的分子功能主要与能量代谢,细胞结构,核酸代谢,核糖体,细胞分裂增殖、分化凋亡,以及信号转导有关。
     6.细胞凋亡前后细胞核蛋白质组中表达量差异蛋白的分子功能主要与细胞增殖、凋亡和分化,核酸代谢,细胞骨架,以及能量代谢有关。几种在凋亡细胞的线粒体和核中的表达量都上调的蛋白质,对HCPT的抗癌机理研究和细胞凋亡的分子机制研究有重要意义。
     这些发现不仅为从蛋白质水平进一步阐明HCPT诱导癌细胞发生凋亡的机理奠定了基础,也说明了本实验所建立的研究策略有助于亚细胞定量蛋白质组学研究和药物蛋白质组学研究。
Objective
     To quantify and qualify the mitochondrial proteome and nuclear proteome in hydroxycamptothecin(HCPT)-treated hepatoma cells with gel-based proteomics strategy and shotgun proteomics strategy, for further elucidating the mechanism of HCPT-mediated cell apoptosis at subcellular proteomics level. Moreover, to set up a technical platform based on cleavable isotope-coded affinity tag(c-ICAT) approach for subcellular quantitative proteomics research.
     Methods
     1.Detection of mitochondrial alterations during apoptosis: The effects of HCPT on SMMC-7721 cells were measured by several methods including light microscopy, MTT assay, electron-microscopy, AnnexinⅤ-FITC and AO/EB staining; The apoptotic phase of mitochondria was ascertained by examination of changes in mitochondrial transmembrane potential, confocal microscopy and western blot analysis.
     2.Measurement of purity of isolated mitochondria: Mitochondria were isolated from hepatoma SMMC-7721 cells with mitochondria isolation kit and identified by Janus green B staining; Contaminations from cytosol, nucleus, and lysosomes were monitored by western blot.β-actin, Histone and Cathepsin-D protein were used as cytosol, nucleus, and lysosomes marker respectively; Contaminations from endoplasmic reticulum and cell membrane were monitored by detecting specific enzyme activity. Succinate dehydrogenase(SDH) was used as indicator of mitochondria purity, NADPH cytochrome c reductase(CR) and 5′-nucleotidase(5′-NT) were used as endoplasmic reticulum and cell membrane marker respectively.
     3.Analysis of differentialy expressed proteins in apoptotic mitochondria with 2DE-MALDI-TOF/MS: First, suitable conditions for two-dimensional electrophoresis were ascertained, including suitable loading quantity of sample, staining method and category of glue strip. Mitochondrial proteins were separated into three different fractions based upon their differing solubility. Mitochondrial proteins in three different fractions were separated by two dimensional electrophoresis respectively. Image analysis was performed using PDQuest(7.0) image analysis software. Matrix assisted laser desorption/isonization time of flying mass spectrometry (MALDI-TOF/MS) was adopted to identify differentia protein spots and then Mascot and PeptIdent software were used to search for proteins in MSDB and SWISS-PROT database. Bioinformatics analysis was performed on the differentialy expressed proteins.
     4.Quantitative analysis of the mitochondrial proteome in HCPT-treated hepatoma cells using cleavable isotope-coded affinity tag(c-ICAT) strategy combined with two-dimensional liquid chromatography/tandem mass spectrometry(2D-LC/MS/MS): Mitochondrial proteins of intermediate solubility and mitochondrial hydrophobic proteins were identified and quantified with c-ICAT proteomics strategy respectively. The protein sample were labeled with c-ICAT reagent and digested with trypsin. The labeled cysteine-containing peptides were fractionated using strong cation exchange(SCX) and purified on an avidin column, sequentially the affinity tags were cleaved with reagent before the peptides were analyzed byμRP-HPLC-MS/MS. Quantitate proteins by integration labeled peptides elution peak areas, identify proteins from sequence information from MS/MS. Bioinformatics tools were used to analyze the proteins identified and quantified.
     5.Detection of purity of isolated nucleus and quantitative analysis of the nuclear proteome in HCPT-treated hepatoma cells: Nucleus were isolated from hepatoma SMMC-7721 cells with kit. Contaminations from cytosol, mitochondria, and lysosomes were monitored by western blot.β-actin, HSP60 and Cathepsin-D protein were used as cytosol, mitochondria, and lysosomes marker respectively. The nuclear proteins were labeled with c-ICAT reagent, digested with trypsin. The labeled peptides were fractionated using strong cation exchange and purified on an avidin column, then the tags were cleaved with reagent before the peptides were analyzed byμRP-HPLC-MS/MS. Quantitate proteins by integration labeled peptides elution peak areas, identify proteins from sequence information from MS/MS. Bioinformatics tools were used to analyze proteins identified and quantified.
     Results
     1. HCPT could remarkably inhibit the proliferation of SMMC-7721 cells and the IC50(50% inhibitory concentration) dose was about 80μg/ml. Some morphologic changes occured after cells were treated by HCPT, including phosphatidylserine(PS) was exposed from inner to outer leaflet of the plasma membrane, nucleus showed chromatin pyknosis and apoptosis, mitochondria was swollen, mitochondrial transmembrane potential was reduced and cytoehrome c released from mitochondria to cytosol.
     2. Stained with Janus green B, separated mitochondria showed some blue granule and strip structures. Western blot analysis showed that littleβ-actin, Histone or Cathepsin-D immunoreactivity had been detected in mitochondrial fraction. Detection of specific enzyme activity showed the specific enzyme activity of SDH in mitochondria was 13.8 fold compared with the value in homogenate. The specific enzyme activity of both CR and 5′-NT in mitochondria were little.
     3. The loading quantity of sample, staining methods and category of glue strips were selected as 200μg, silver staining and IPG Strips (3-10 NL) respectively via the optimizing conditions. Compared with control, thirty-nine mitochondrial protein spots showed differentia expression in HCPT-treated cells. Among them, 25 protein spots were up-regulated while 14 were down-regulated. Twenty differentia proteins were successfully identified by MALDI-TOF/MS.
     4. Ninety-one mitochondrial proteins of intermediate solubility were identified, among them, seventy-four proteins which were statistically significantly(P < 0.05) altered in HCPT-treated cells were quantified and identified. A total of forty-two proteins were significantly down-regulated, and thirty-two were up-regulated in response to apoptosis cells.
     5. 244 Mitochondrial hydrophobic proteins were identified statistically significantly(P < 0.05), a total of 154 proteins were quantified using shotgun proteomics method based on multiple dimensional liquid chromatography-linear ion trap /orbitrap mass spectrometer. Among them, compared with control cells, twelve proteins from apoptotic cells showed down-regulated, and 137 were up-regulated, five proteins showed no difference. In addition, thirteen alkali proteins, eleven proteins with Mr>200kDa and six proteins with Mr<10kDa were identified; fifty membrane proteins were identified. Moreover, there were forty-five proteins showed an elevation of more than 10-fold in apoptotic cells compared with control cells.
     6. Western blot analysis showed that littleβ-actin, HSP60 or Cathepsin-D immunoreactivity had been detected in nuclear fraction. Ninety-four nuclear proteins were analyzed statistically significantly(P < 0.05) using multiple dimensional liquid chromatography-linear ion trap /orbitrap mass spectrometer combined with c-ICAT strategy. A total of forty-three proteins were quantified, among them, twelve proteins showed down-regulated in HCPT-treated cells, thirty proteins showed up-regulated, and one showed no difference.
     Conclusions
     1. HCPT can induce SMMC-7721 cell apoptosis through the mitochondria apoptosis pathway.
     2. Mitochondria isolated with the methods mentioned above was pure enough to be used for the subsequent proteomic analysis.
     3. The twenty differentialy expressed mitochondrial proteins identified in this study might play very important roles in HCPT-mediated cell apoptosis.
     4. The function of the quantitatively differentialy expressed mitochondrial proteins of intermediate solubility were likely involved in cell energy metabolism, nucleic acid translation and transcription, cytoskeleton and so on.
     5. The hydrophobic proteins altered quantitatively were likely involved in life processes of cells including energy metabolism; cell structure; nucleic acid synthesis and metabolism; ribosome; proliferation, differentiation, apoptosis; and signal transduction. The results of this study will provide experimental foundation for further investigating the pharmacological action of HCPT at quantitative proteomics level, and prove the research strategies established in our study are helpful to the researches of subcellular proteomics and pharmic proteomics.
     6. In this part, the quantitatively differentialy expressed proteins were likely involved in life processes of cells such as proliferation, apoptosis, differentiation, nucleic acid synthesis and metabolism, structure of cell skeleton, energy metabolism. Several proteins were observed with a trend of up-regulation in mitochondria and nucleus after cells apoptosis, which is a meaningful clue to study the pharmacological action of HCPT and molecular mechanisms of apoptosis.
引文
[1] Devy J, Wargnier R, Pluot M, et al. Topotecan-induced alterations in the amount and stability of human DNA topoisomerase I in solid tumor cell lines[J]. Anticancer Res, 2004, 24(3a):1745-1751.
    [2] Fu YR, Yi ZJ, Yan YR, et al. Hydroxycamptothecin-induced apoptosis in hepatoma SMMC-7721 cells and the role of mitochondrial pathway[J]. Mitochondrion, 2006, 6(4):211-217.
    [3] Jo SH, Yang C, Miao Q, et al. Peroxisome proliferator-activated receptor gamma promotes lymphocyte survival through its actions on cellular metabolic activities[J]. J Immunol, 2006 ,177(6):3737-3745.
    [4] Lee DH, Park T, Kim HW. Induction of Apoptosis by Disturbing Mitochondrial-Membrane Potential and Cleaving PARP in Jurkat T Cells through Treatment with Acetoxyscirpenol Mycotoxins[J].Biol Pharm Bull, 2006 ,29(4):648-654.
    [5] Kluza J, Gallego MA, Loyens A, et al. Cancer cell mitochondria are direct proapoptotic targets for the marine antitumor drug lamellarin D[J]. Cancer Res, 2006, 66(6):3177-3187.
    [6] Labedzka K, Grzanka A, Izdebska M. Mitochondria and cell death[J]. Postepy Hig Med Dosw (Online), 2006, 60:439-446.
    [7] Bouchier-Hayes L, Lartigue L, Newmeyer DD. Mitochondria: pharmacological manipulation of cell death[J]. J Clin Invest, 2005, 115(10):2640-2647.
    [8] Dias N, Bailly C. Drugs targeting mitochondrial functions to control tumor cell growth[J]. Biochem Pharmacol, 2005, 70(1):1-12.
    [9] Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential [Deltapsi(m)]in apoptosis: an update[J]. Apoptosis, 2003, 8(2):115-128.
    [10] Mohamad N, Gutierrez A, Nunez M, et al. Mitochondrial apoptotic pathways[J]. Biocell, 2005,29(2):149-161.
    [1] De Duve C, Beaufay H. A short history of tissue fractionation[J]. Cell Biol,1981,91(3 pt 2):293s-299s
    [2] Pasquali C, Fialka I, Huber L A. Subcellular fractionation, electromigration analysis and mapping of organelles[J]. Chromatogr B Biomed Sci Appl,1999,722(1-2):89-102
    [3] Scheffler NK, Miller SW, Carroll AK, et al. Twodimensional electrophoresis andmass spectrometric identification of mitochondrial proteins from an SHSY5Y neuroblastoma cell line[J]. Mitochondrion, 2001,1(2):161-179.
    [4] Graham J, J Higgins. Biomembrane protocols: I. Isolation and analysis. In Methods in Molecular Biology. 1993,Vol. 19. J M Walker, editor. Humana Press, Totowa: 1-313.
    [5] Simpson JC, Pepperkok R. The subcellular localization of the mammalian proteome comes a fraction closer[J]. Genome Biol, 2006, 7(6):222.
    [6] Ritter B, Blondeau F, Denisov AY, et al. Molecular mechanisms in clathrin-mediated membrane budding revealed through subcellular proteomics[J]. Biochem Soc Trans, 2004 , 32(Pt 5):769-773.
    [7] Huber LA, Pfaller K,Vietor I. Organelle proteomics: implications for subcellular fractionation in proteomics[J]. Circ Res, 2003, 92(9):962-968.
    [8] Calikowski TT, Meier I. Isolation of nuclear proteins[J].Methods Mol Biol, 2006, 323:393-402.
    [9] Zhang L, Wang X, Peng X, et al. Immunoaffinity purification of plasma membrane with secondary antibody superparamagnetic beads for proteomic analysis[J]. J Proteome Res, 2007, 6(1):34-43.
    [10] Dunkley TP, Dupree P, Watson RB, et al. The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana[J]. Biochem Soc Trans, 2004,32: 520-523.
    [11] Li K, Hornshaw MP, van Minnen J, et al. Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins[J].J Proteome Res, 2005,4(3):725-733.
    [12] Journet A, Ferro M.. The potentials of MS-based subproteomic approaches in medical science: the case of lysosomes and breast cancer[J]. Mass Spectrom Rev, 2004, 23(6):393-442.
    [1] McFarland R, Taylor RW, Turnbull DM. Mitochondrial disease-its impact, etiology, and pathology[J].Curr Top Dev Biol, 2007,77:113-155.
    [2] Taylor SW, Fahy E, Zhang B, et al. Characterization of the human heart mitochondrial proteome[J]. Nat Biotechnol, 2003 , 21(3):281-286.
    [3] Fossati G, Moulding DA, Spiller DG, et al. The mitochondrial network of human neutrophils: role in chemotaxis, phagocytosis, respiratory burst activation, andcommitment to apoptosis[J]. J Immunol, 2003,170:1964-1972.
    [4] La Piana G, Marzulli D, Consalvo MI, et al. CytC-induced cytosolic nicotinamide adenine dinucleotide oxidation, mitochondrial permeability transition, and apoptosis[J]. Arch Biochem Biophys, 2003,410: 201-211.
    [5] Jambrina E, AlonsoR, Alcalde M, et al. Calcium influx through receptor-operated channel induces mitochondria-triggered paraptotic cell death[J]. J Biol Chem, 2003,278: 14134-14145.
    [6] Bota DA, Davies KJA. Protein degradation in mitochondria: Implications for oxidative stress, aging, and disease: a novel etiological classification of mitochondrial proteolytic disorders[J]. Mitochondrion, 2001,1: 33-49.
    [7] Li Q, Li H, Blitvich BJ, et al. The Aedes albopictus inhibitor of apoptosis 1 gene protects vertebrate cells from bluetongue virus-induced apoptosis[J].Insect Mol Biol, 2007, 16(1):93-105.
    [8] Roat E, Prada N, Ferraresi R, et al. Mitochondrial alterations and tendency to apoptosis in peripheral blood cells from children with Down syndrome[J]. FEBS Lett, 2007, 581(3):521-525.
    [9] 周建桨. 线粒体凋亡途径的研究进展[J].生命的化学, 2002, 22(6): 506-509.
    [10] Constantini P, Jacotot E, Decaudin D, et al. Mitochondrion as a novel target of anticancer chemotherapy[J]. J Natl Cancer inst, 2005,92:1042-1053.
    [11] Gourly CW, Ayscough KR. Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast[J]. J Cell Sci, 2005,118(Pt 10):2119-2132.
    [12] Huang G, Chen Y, Lu H, et al. Coupling mitochondrial respiratory chain to cell death: an essential role of mitochondrial complex I in the interferon-beta and retinoic acid-induced cancer cell death[J].Cell Death Differ,2007,14(2):327-337.
    [13] Wong TW, Yu HY, Kong SK, Fung KP, et al. The decrease of mitochondrial NADH dehydrogenease and drug induced apoptosis in doxorubicin resistant A431 cells[J]. Life Sci, 2000, 67(9):1111-1118.
    [14] Eschle-Meniconi ME, Ahmad SR, Foster CS. Mucous membrane pemphigoid:an update[J]. Curr Opin Ophthalmol, 2005,16(5):303-307.
    [15] Joshi B, Ko D, Ordonez-Ercan D, et al. A putative coiled-coil domain of prohibitin is sufficient to repress E2F1-mediated transcription and induce apoptosis[J]. Biochem Biophys Res Commun, 2003, 312(2):459-466.
    [16] Goodsell DS. The molecular perspective: Bcl-2 and apoptosis[J]. Stem Cells, 2002, 20(4):355-356.
    [17] Belzacq AS, Vieira HL, Verrier F, et al. Bcl-2 and Bax modulate adenine nucleotide translocase activity[J].Cancer Res, 2003, 63(2):541-546.
    [18] Back JW, Sanz MA, De Jong L, et al. A structure for the yeast prohibitin complex: Structure prediction and evidence from chemical crosslinking and mass spectrometry[J]. Protein Sci, 2002, 11: 2471-2478.
    [19] Akimoto H, Kinumi T, Ohmiya Y. Circadian rhythm of a TCA cycle enzyme is apparently regulated at the translational level in the dinoflagellate Lingulodinium polyedrum[J]. J Biol Rhythms, 2005, 20(6):479-489.
    [20] Shan YX, Liu TJ, Su HF, et al. HSP10 and HSP60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells[J].J Mol Cell Cardiol, 2003, 35(9):1135-1143.
    [21] Sato T, Esaki M, Fernandez JM, et al. Comparison of the protein-unfolding pathways between mitochondrial protein import and atomic-force microscopy measurements[J]. Proc Natl Acad Sci USA, 2005, 102(50):17999-18004.
    [22] Galluzzi L, Larochette N, Zamzami N, et al. Mitochondria as therapeutic targets for cancer chemotherapy[J]. Oncogene, 2006, 25(34):4812-4830.
    [23] Hosaka S, Nakatsura T, Tsukamoto H, et al. Synthetic small interfering RNA targeting heat shock protein 105 induces apoptosis of various cancer cells both in vitro and in vivo[J]. Cancer Sci, 2006, 97(7):623-632.
    [1] Simpson RJ[editor]. Proteins and Proteomics:A Laboratory Manual. 2003, 567-578.
    [2] McDonald WH, Yates JR, III. Shotgun proteomics: integrating technologies to answer biological questions[J] Curr. Opin. Mol. Ther. 2003, 5: 302-309.
    [3] Lackstock WP, Weir MP. Proteomics: quantitative and physical mapping of cellular proteins[J] Trends Biotechnol, 1999,17:121-127.
    [4] Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags[J] Nat Biotechnol, 1999, 17: 994-999.
    [5] Li J, Steen H, Gygi SP. Protein profiling with cleavable isotope coded affinity tag (cICAT) reagents: The yeast salinity stress response[J] Mol Cell Proteomics, 2003, 2: 1198-1204.
    [6] Hansen KC, Schmitt-Ulms G, Chalkley RJ, et al. Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography[J] Mol Cell Proteomics, 2003, 2: 299-314.
    [7] Yi EC, Li XJ, Cooke K, et al. Increased quantitative proteome coverage with 13C/12C-based, acid-cleavable isotope-coded affinity tag reagent and modified data acquisition scheme[J] Protemics. 2005, 5: 380-387.
    [8] Sun AH, Jiang Y, He FC. Research Advances in Expression Profiling of Mitochondrial Proteins[J] Genetics, 2006, 28: 1311-1315.
    [9] Li X, Pan W, Qiu F, et al. Two-dimensional gel electrophoresis of subcellular fractions of hepatoma cells[J] Chinese Journal of Hepatology, 2005, 13: 271-273.
    [10] Fu YR, Qiu ZY, Yan YR. Effect of hydroxycamptothecin on apoptosis-inducing factor(AIF) expression and on AIF translocation in human hepatocellular cancer cell SMMC-7721[J] Chinese Journal of Hepatology, 2006, 14: 285-288.
    [11] Li X, Pan W, Qiu F, et al. Proteomic approach to the effect of Epirubicin on hepatoma cells at subcellular level[J] Journal of Molecular Cell Biology, 2006, 39: 407-413.
    [12] Fu YR, Yi ZJ, Yan YR, et al. Hydroxycamptothecin-induced apoptosis in hepatoma SMMC-7721 cells and the role of mitochondrial pathway[J] Mitochondrion, 2006, 6: 211-217.
    [13] Oda Y, Owa T, Sato T, et al. Quantitative chemical proteomics for identifying candidate drug targets[J] Anal Chem, 2003, 75: 2159-2165.
    [14] Aly K, Ingrid P, YuLR, et al. Quantitative Proteomic Analysis of Sokotrasterol Sulfate-stimulated Primary Human Endothelial Cells[J] Molecular & Cellular Proteomics, 2005, 4: 191-204.
    [15] Palacin M, Kanai Y. The ancillary proteins of HATs: SLC3 family of amino acid transporters[J] Pflugers Arch, 2004, 447: 490-494.
    [16] Robert OS, Anna P, David B, et al. EEG1, a putative transporter expressed during epithelial organogenesis: comparison with embryonic transporter expression during nephrogenesis[J] Am J Physiol Renal Physiol, 2001, 281: 1148-1156.
    [17] Graham SH,Chen J.Programmed cell death in cerebral ischemia[J] J Cereb Blood FlowMetab,2001, 21: 99-109.
    [18] Li PA,He QP,Ouyang YB,Liu CL,Hu BR,Siesj BK.Early release of cytochrome C and activition of caspase-3in hyperglycemic rats subˉjected to transient forebrain ischemia[J] Brain Res,2001, 896:69-76.
    [19] Volbracht C,Leist M,Kolb SA,Nicotera P.Apoptosis in caspase-inˉhibited neurons[J] Mol Med,2001, 7:36-48.
    [20] Knoblach SM,Nikolaeva M,Hung XL,Fan L,Krajewsky S,Reed JC,Faden AI.Multiple caspases are activated after traumatic brain injury:evidence for involvement in functional outcome[J] J neurotrauma,2002, 19:1155-1170.
    [21] Wang L, Ji G, Zhang W, Xing LJ, Zheng PY. Hepatic stellate cell apoptosis and mitochondrion[J] J Chin Integr Med / Zhong Xi Yi Jie He Xue Bao. 2005, 3: 144-148.
    [22] Wang JY, Xu ZY. Effects of NK-104 on apoptosis and caspase-3 activity in hepatocellular carcinoma cells. J Chin Integr Med / Zhong Xi Yi Jie He Xue Bao. 2007, 5: 298-301.
    [23] Wang X,Doumont ME,Sherman F.Sequence requirements for mitochmondria import of yeast cytochrome C[J] J Biol Chem,1996, 271:6594-6604.
    [24] Neupert W.Protein import into mitochondria[J] Annu rev biochem , 1997, 66:863-917.
    [25] Gourly CW, Ayscough KR. Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast[J] J Cell Sci, 2005,118: 2119-2132.
    [1] Jiang XJ, Wang X. Cytochrome C-mediated apoptosis[J] Annu Rev Biochem, 2004,73: 87-106
    [2] Chen XJ, Wang X, Kaufman BA,et al. Aconitase couples metabolic regulation to mitochondrial DNA maintenance[J] Science,2005,307(5710): 714-717
    [3] Petros JA, Baumann AK, Ruiz-Pesini E,et al. mtDNA mutations increase tumorigenicity in prostate cancer[J] Proc Natl Acad Sci USA,2005,102(3): 719-724
    [4] Wonsey DR, Zeller KI, Dang CV. The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation[J] Proc Natl Acad Sci US A ,2002,99(10): 6649-6654
    [5] Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease[J] Nat Rev Genet,2005,6(5): 389-402
    [6] Fountoulakis M, Berndt P, Langen H,et al. The rat liver mitochondrial proteins[J] Electrophoresis,2002,23(2): 311-328
    [7] Mootha VK, Bunkenborg J, Olsen JV,et al. Integrated analysis of protein composition,tissue diversity,and gene regulation in mouse mitochondria[J] Cell,2003,115(5): 629-640
    [8] Da Cruz S, Xenarios I, Langridge J,et al.Proteomic analysis of the mouse liver mitochondrial inner membrane[J] J Biol Chem, 2003,278(42): 41566-41571
    [9] Devreese B,Vanrobaeys F, Smet J,et al. Mass spectrometric identification of mitochondrial oxidative phosphorylation subunits separated by two-dimensional blue-native polyacrylamide gel electrophoresis[J] Electrophoresis, 2002,23(15): 2525-2533
    [10] Fu YR, Yi ZJ,Yan YR, et al.Hydroxycamptothecin-induced apoptosis in hepatoma SMMC-7721 cells and the role of mitochondrial pathway[J] Mitochondrion, 2006,6(4): 211-217
    [11] Fu YR, Yi ZJ, Yan YR,et al.Changes in the protein spectrum of mitochondria isolated from hydroxycamptothecin -treated hepatoma cells[J] Anticancer Drugs,2007,18(9): 1045-1052
    [12] Fu YR, Qiu ZY, Yan YR.Effect of hydroxycamptothecin on apoptosis-inducing factor(AIF) expression and on AIF translocation in human hepatocellular cancer cell SMMC-7721[J].Chine J Hepatol, 2006,14(4): 285-288
    [13] Taylor SW, Warnock DE, Glenn GM, et al. An alternative strategy to determine the mitochondrial proteome using sucrose gradient fractionation and 1D PAGE on highly purified human heart mitochondria[J] J Proteome Res,2002,1(5): 451-458
    [14] Pflieger D, Le Caer JP, Lemaire C, et al. Systematic identification of mitochondrial proteins by LC-MS/MS[J].Anal Chem,2002,74(10): 2400-2406
    [15] Thomas G, Clavton A, Thomas J,et al.Structural and Functional Changes in Heparan Sulfate Proteoglycan Expression Associated with the Myofibroblastic Phenotype[J] Am J Pathol,2003,162(3): 977-989
    [16] Summers KM, Nataatmadja M, Xu D,et al. Histopathology and fibrillin-1 distribution in severe early onset Marfan syndrome[J] Am J Med Genet A,2005,139(1): 2-8
    [17] Graeme CM, Doug P, David MG , et al.Implementation of Electron-Transfer Dissociation on a Hybrid Linear Ion Trap-Orbitrap Mass Spectrometer[J] Anal. Chem.2007,79(10): 3525-3534
    [18] Li JZ , Chen X, Yang HY,et al.Establishment of transgenic mice carrying gene encoding human zinc finger protein 191[J] World JGastroenterol,2004,10(2): 264-267
    [1] Chen YY, Sun RH, Han WL. et al. Nuclear translocation of apoptosis-related protein TFAR19 in TF-1 cells undergoing apoptosis[J]. Journal of Peking university. 2001,33(2):97-100.
    [2] 付玉荣、邱宗荫、颜玉蓉,羟基喜树碱诱导 SMMC-7721 细胞凋亡时线粒体凋亡诱导因子的转位研究[J] 中华肝脏病杂志,2006,14(4): 285-288.
    [3] 李兴、潘卫、邱峰,等,表阿霉素对肝癌亚细胞蛋白质组影响的研究[J] 分子细胞生物学报,2006, 39(5): 407-413.
    [4] 李兴、潘卫、邱宗荫,肝癌细胞亚细胞组分的双向凝胶电泳分析[J] 中华肝脏病杂志,2005, 13(4): 271-273.
    [5] Fu YR, Yi ZJ, Yan YR, et al., Hydroxycamptothecin-induced apoptosis in hepatoma SMMC-7721 cells and the role of mitochondrial pathway[J] Mitochondrion, 2006, 6(4):211-217.
    [6] Fu YR, Yi ZJ, Yan YR, et al, Changes in the protein spectrum of mitochondria isolated from hydroxycamptothecin (HCPT)-treated hepatoma cells[J] Anti-cancer drugs, 2007, 18(9):1045-1052.
    [7] 付玉荣、伊正君、颜玉蓉,等,羟基喜树碱诱导肝癌 SMMC-7721 细胞线粒体跨膜电位耗散前后的蛋白质组分析[J] 中华肝脏病杂志, 2007, 15(8): 563-567.
    [8] Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags[J] Nat. Biotechnol, 1999,17(10): 994-999.
    [9] Li J, Steen H, Gygi SP, Protein profiling with cleavable isotope coded af finity tag (cICAT) reagents: The yeast salinity stress response[J] Mol. Cell. Proteomics. 2003, 2(11): 1198-1204.
    [10] Oda Y, Owa T, Sato T. et al, Quantitative chemical proteomics for identifying candidate drug targets[J] Anal. Chem, 2003,75(9): 2159-2165.
    [11] Hansen KC, Schmitt-Ulms G, Chalkley RJ, et al. Mass spectrometric analysis ofprotein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography[J] Mol. Cell. Proteomics. 2003,2(5): 299-314.
    [12] Aly K, Ingrid P, Yu LR, et al. Quantitative Proteomic Analysis of Sokotrasterol Sulfate-stimulated Primary Human Endothelial Cells[J] Mol. Cell. Proteomics, 2005, 4(2): 191-204.
    [13] Raimund H, Stefan M, Christian S. 2-DE proteome analysis of a proliferating and differentiating human neuronal stem cell line(ReNcell VM) [J] Proteomics, 2006, 6(6):1833-1847.
    [14] Raimund H, Susanne B, Rayk H. et al. 2-DE profiling of GDNF overexpression-related proteome changes in differentiating ST14A rat progenitor cells[J] Proteomics, 2007, 7(1): 33-46.
    [15] Natacha T, Sophie R, Patrick G, et al. Proteomic analysis of nuclear proteins from proliferative and differentiated human colonic intestinal epithelial cells[J] Proteomics, 2004, 4(1): 93-105.
    [16] Masahiko I, Yoshihiro W, Hiroko K. et al..Expression of Myoferlin in Skeletal Muscles of Patients with Dysferlinopathy[J] The Tohoku Journal of Experimental Medicine. 2006, 209(2):109-116.
    [17] WeonSup L, Kyoung-Soo C, Jonah R.Human Peroxiredoxin 1 and 2 Are Not Duplicate Proteins[J] J. Biol. Chem. 2007, 282(30):22011-22022.
    [18] Soo-Yeon P, Xiaofei Y, Clement I. et al Peroxiredoxin 1 Interacts withAndrogen Receptor and Enhances Its Transactivation[J] Cancer Research. 2007, 67(19):9294-9303.
    [19] Joo-Heon K, Paul NB, Nithya R, et al. Elevated Peroxiredoxin 1, but not NF-E2–Related Factor 2, Is an Independent Prognostic Factor for Disease Recurrence and Reduced Survival in Stage I Non–Small Cell Lung Cancer[J] Clinical Cancer Research. 2007, 13(13):3875-3882.
    [20] 殷涛,王春友,熊炯新,等. Vimentin 在胰腺癌细胞中的表达及临床意义[J] 世界华人消化杂志 2007, 15(36):3822-3825.
    [21] Holt WV, Waller J, Moore A,et al. Smooth muscle actin and vimentin as markers of testis development in the harbour porpoise(phocoena phocoena).[J] J.Anat, 2004, 205:201-211.
    [22] 陈剑鸿,卞修武,杨世昕,等. 大鼠胶质瘤细胞系 C6 趋化因子受体 CXCR4和甲酰肽受体 FPR 的表达[J] 第三军医大学学报,2005, 27(17):1722-1724.
    [1] Mann M. Quantitative proteomics. Nat Biotechnol, 1999, 17: 954
    [2] Blanckstock WP. Proteomics: Quantitative and physical proteomics of cellular. Trends Biotechnol, 1999, 17: 121
    [3] 郝运伟, 姜颖, 贺福初. 蛋白质组研究中的化学“探针”. 遗传, 2007, 29(7): 779~784
    [4] Van Den BG, Arekens I, Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr Opin Biotechnol,2004, 15(1): 38~43
    [5] 刘新, 应万涛, 钱小红. 比较蛋白质组学研究中的稳定同位素标记技术. 化学通报, 2007(2): 84~88
    [6] Lucia M, Juan PA. Differential proteomics: An overview of gel and nongel based approaches. Briefings in Functional Genomics and Proteomics, 2004, 3(3): 220~239
    [7] Oda Y, Huang K, Cross FR, et al. Accurate quantitation of protein expression and site-specific phosphorylation Proc Natl Acad Sci USA,1999, 96: 6591~6596
    [8] Shao EO, Blagoy B, Irina K, et al. Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Mol Cell Proteomics. 2002, 1: 376~386
    [9] Edwin PR, Chantal C, Marnix W, et al. Expression Clustering Reveals Detailed Co-expression Patterns of Functionally Related Proteins during B Cell Differentiation: A Proteomic Study Using a Combination of One-Dimensional Gel Electrophoresis, LC-MS/MS, and Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Mol. Cell. Proteomics, 2005, 4: 1297~1310
    [10] Smith RD, Anderson GA, Lipton MS, et al. An accurate mass tag strategy for quantitative and high-throughput proteme measurements. Proteomics, 2002, 2(5): 513~523
    [11] Wu CC, MacCoss MJ, Howell KE, et al. Metabolic labeling of mammalian organ-isms with stable isotopes for quantitative proteomic analysis. Anal Chem, 2004, 76(17): 4951~4959
    [12] Cargile BJ, Bundy JL, Grunden AM, et al. Synthesis/degradation ratio mass spectrometry for meas-uring relative dynamic protein turnover. Anal Chem, 2004, 76(1): 86~97
    [13] Snijders AP, de Vos MG, Wright PC. Novel approach for peptide quantitation and sequencing based on 15N and 13C metabolic labeling. J Proteome Res, 2005, 4(2): 578~585
    [14] Robert JB and Julie MP. Metabolic Labeling of Proteins for Proteomics. Molecular& Cellular Proteomics, 2005, 4: 857~872
    [15] Gruhler A, Olsen JV, Mohammed S, et al. Quantitative Phosphoproteomics Applied to the Yeast Pheromone Signaling Pathway Mol. Cell. Proteomics, 2005, 4(3): 310~327
    [16] High-Throughput Global Peptide Proteomic Analysis by Combining Stable Isotope Amino Acid Labeling and Data-Dependent Multiplexed-MS/MS. Anal. Chem., 2002, 74(19): 4994~5000
    [17] Ong SE, Kratchmarova I, Mann M. Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res, 2003, 2(2): 173~181
    [18] Blagoev B. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol, 2003, 21(3): 315~318
    [19] Andersen JS, Lam YW, Leung AK, et al. Nucleolar proteome dynamics. Nature, 2005, 433(7021): 77~83
    [20] Kratchmarova I, Blagoev B, Haack-Sorensen M, et al. Mechanism of divergent growth factor ef-fects in mesenchymal stem cell differentiation. Science, 2005, 308(5727): 1472~1477
    [21] Blagoev B, Ong SE, Kratchmarova I, et al. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol, 2004, 22(9): 1139~1145
    [22] Everley PA, Krijgsveld J , Zetter BR, et al. Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture ( SILAC) as a tool for prostate cancer research. Mol Cell Proteomics, 2004, 3: 729~735
    [23] Yan Y, Weaver VM, Blair IA. Analysis of protein expression during oxidative stress in breast epithelial cells using a stable isotope labeled proteome internal standard. J Proteome Res, 2005, 4: 2007~2014.
    [24] Harris MN, Ozpolat B, Abdi F, et al. Comparative proteomic analysis of all-trans-retinoic acid treatment reveals systematic post transcriptional control mechanisms in acute promyelocytic leukemia. Blood, 2004, 104: 1314~1323
    [25] Gu S, Liu ZH, Pan SQ, et al. Global investigation of p53 induced apoptosis through quantitative proteomic profiling using comparative amino acid-coded tagging. Mol Cell Proteomics, 2004, 3: 998~1008
    [26] Blagoev B, Ong SE, Kratchmarova I, et al. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics, Nat Biotechnol, 2004, 22:1139~1145
    [27] Andersen JS, Lam YW, Leung A, et al. Nucleolar proteome dynamics, Nature, 2005, 433: 77~83
    [28] Olsen J, Blagoev B, Gnad F, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks, Cell, 2006, 127: 635~648
    [29] Hinsby AM, Kiemer L, Karlberg EO, et al. A wiring of the human nucleolus, Molecular Cell. 2006, 22: 285~295
    [30] Mann M, Organellar proteomics, The Scientist, 2004, 18(7): 32
    [31] Zhang GA and Thomas A. Neubert. Automated Comparative Proteomics Based on Multiplex Tandem Mass Spectrometry and Stable Isotope Labeling. Mol Cell Proteomics 2006, 5(2): 401~411
    [32] Amanchy R, Kalume DE, Pandey A. Stable isotope labeling with amino acids in cell culture (SILAC) for studying dynamics of protein abundance and posttranslational modifications. Sci STKE 2005, 267: l2
    [33] Ong SE, Foster LJ, MannM. Mass spectrometric2based approaches in quantitative proteomics. Methods, 2003, 29: 124~130
    [34] Sun-Il H, Deborah HL, Viveka M, et al. Systematic Characterization of Nuclear Proteome during Apoptosis: A Quantitative Proteomic Study by Differential Extraction and Stable Isotope Labeling. Mol Cell Proteomics, 2006, 5: 1131~1145
    [35] Molina H, Parmigiani G, Pandey A. Assessing rep roducibility of a protein dynamics study using in vivo labeling and liquid chromatography tandem mass spectrometry. Anal Chem, 2005, 77: 2739~2744
    [36] Ibarrola N, Kalume DE, Gronborg M, et al. A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal Chem, 2003,75: 6043~6049
    [37] Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol, 1999, 17: 994~999
    [38] Smolka MB, Zhou H, Purkayastha S, et al. Optimization of the isotope-coded affinity tag-labeling for quantitative proteome analysis. Anal Biochem, 2001, 297(1): 25~31
    [39] 荣举,许丽艳,李恩民. 同位素亲和标签(ICAT)系列技术及其在蛋白质组研究中的应用. 癌变·畸变·突变, 2003, 15(4): 244~248
    [40] 叶雯,刘凯于,洪华珠,等. 定量蛋白质组学中的同位素标记技术. 中国生物工程杂志 China Biotechnology, 2005, 25(12): 56~61
    [41] Han DK, Eng J, Zhou H, et al. Quantitative profiling of differentiation-induced microsomal proteins using isotope-codedaffinity tags and mass spectrometry. Nat Biotechnol, 2001, 19(10): 946~951
    [42] Griffin TJ, Gygi SP, Rist B, et al. Quantitative proteomic analysis using a MALDI quadrupole time of flight mass spectrometer. Anal Chem, 2001, 73 (5): 978~986
    [43] Stewart JJ, White JT, Yan X, et al. Proteins associated withCisplatin resistance in ovarian cancer cells identified by quantitative proteomic technology and integrated with mRNAexpression levels. Mol Cell Proteomics, 2006, 5(3): 433~443
    [44] Griffin TJ, Gygi SP, Ideker T, et al. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics, 2002, 1: 323~333
    [45] Hardwidge PR, Goode D, Aebersold R, et al. Proteomic analysis of the intestinal epithelial cell response to enteropathogenic Escherichia coli. J Biol Chem, 2004, 279: 20127~20136
    [46] Andersen JS, Lam YW, Leung AK, et al. Nucleolar proteome dynamics. Nature, 2005, 433(7021): 77~83
    [47] Jiaxu Li, Hanno S, and Gygi SP. Protein Profiling with Cleavable Isotope-coded Affinity Tag (cICAT) Reagents: The Yeast Salinity Stress Response. Mol.Cell. Proteomics. 2003, 2: 1198~1204
    [48] Kirk CH, Gerold SU, Robert JC, et al. Mass Spectrometric Analysis of Protein Mixtures at Low Levels Using Cleavable 13C-Isotope-coded Affinity Tag and Multidimensional Chromatography Mol.Cell. Proteomics. 2003, 2: 299~314
    [49] Yi EC, Li XJ, Cooke K, et al. Increased quantitative proteome coverage with (13)C/(12)C-based, acid-cleavable isotope-coded affinity tag reagent and modified data acquisition scheme. Proteomics. 2005, 5: 380~387
    [50] Aly K, Ingrid P, Yu LR, et al. Quantitative Proteomic Analysis of Sokotrasterol Sulfate-stimulated Primary Human Endothelial Cells. Mol. Cell. Proteomics, 2005, 4: 191~204
    [51] Luo Q, Edward N, Julia K, et al. Endogenous Transforming Growth Factor-? Receptor-mediated Smad Signaling Complexes Analyzed by Mass Spectrometry. Mol. Cell. Proteomics, 2006, 5: 1245~1260
    [52] Cheng DM, Casper CH, John R, et al. Relative and Absolute Quantification of Postsynaptic Density Proteome Isolated from Rat Forebrain and Cerebellum. Mol. Cell. Proteomics, 2006, 5: 1158~1170
    [53] Chen L, Yi H, Ye XT, et al. Accurate Qualitative and Quantitative Proteomic Analysis of Clinical Hepatocellular Carcinoma Using Laser Capture Microdissection Coupled with Isotope-coded Affinity Tag and Two-dimensional Liquid Chromatography Mass Spectrometry. Mol. Cell. Proteomics, 2004, 3: 399~409
    [54] Kyte J, and Doolittl RF. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157: 105~132
    [55] Zhang X, Jin QK, Carr SA, et al. N-Terminal peptidelabeling strategy for incorporation of isotopic tags: a methodfor the determination of site-specific absolute phosphoryla-tion stoichiometry. Rapid Commun Mass Spectrom, 2002, 16(24): 2325~2332
    [56] Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics, 2004, 3(12): 1154~1169
    [57] Applied Biosystem Technical Note: Multiplex Protein Quantitation using iTRAQ? Reagents – 8plex. Publication 114PB15-01.
    [58] www.appliedbiosystems.com.
    [59] Shadforth IP, Dunkley TP, Lilley KS, et al. i-Tracker:for quantitative proteomics using iTRAQ. BMC Genomics, 2005, 6(1): 145
    [60] DeSouza L, Diehl G, Rodriguse MJ, et al. Search for cancer markers from endometrial tissues using differentially labeled tags itraq and cicat with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res, 2005, 4: 377~386
    [61] Leroi VD, Jorg G, Shaun G, et al. Endometrial Carcinoma Biomarker Discovery and Verification Using Differentially Tagged Clinical Samples with Multidimensional Liquid Chromatography and Tandem Mass Spectrometry Mol. Cell. Proteomics, 2007, 6(7): 1170~1182
    [62] Chen X, Walker AK, Strahler JR, et al. Organellar proteomics: Analysis of pancreatic zymogen granule membranes. Mol Cell Proteomics. 2006, 5: 306~312
    [63] Hardt M, Witkowska HE, Webb S, et al. Assessing the effects of diurnal variation on the composition of human parotid saliva: quantitative analysis of native peptides using iTRAQ reagents. Anal Chem. 2005, 77(15): 4947~4954
    [64] Zhang Y, Wolf-Yadlin A, Ross PL, et al. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics. 2005, 4(9): 1240~1250
    [65] Marcus B, Dirk E, Yann A, et al. Quantitative chemical roteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nature Biotechnology, 2007, 25(9): 1035~1044
    [66] Sui JJ, Tan TL, Zhang JH, et al. iTRAQ-Coupled 2D LC-MS/MS Analysis on Protein Profile in Vascular Smooth Muscle Cells Incubated with S- and R-Enantiomers of Propranolol: Possible Role of Metabolic Enzymes Involved in Cellular Anabolism and Antioxidant Activity. Journal of Proteome Research, 2007, 6: 1643~1651
    [67] Chakraborty A, Regnier FE. Global internal standard technology for comparative proteomics. J Chromatogr A, 2002, 949(1-2): 173~184
    [68] Riggs L, Seeley EH, Regnier FE. Quantification of phosphoproteins with. global internal standard technology. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 817, 89~96
    [69] Wei JQ, Matthew EM, Tao L, et al. Quantitative Proteome Analysis of Human Plasma following in Vivo Lipopolysaccharide Administration Using 16O/18O Labeling and the Accurate Mass and Time Tag Approach. Mol Cell Proteomics, 2005, 4(5): 700~709
    [70] Wang YK, Ma Z, Quinn DF, et al. Inverse 18O labeling mass spectrometry for the rapid identification of marker/target proteins. Anal.Chem. 2001, 73: 3742~3750
    [71] Schneider LV and Hall MP, Stable isotope methods for high-precision proteomics, Drug Discov. Today, 2005, 10: 353~363
    [72] Zhou H, Boyle R, Aebersold R. Quantitative protein analysis by solid phase isotope tagging and mass spectrometry. Methods Mol Biol, 2004, 261: 511~518
    [73] Lu Y, Bottari P, Turecek F, et al. Absolute quantification of specific proteins in complex mixtures using visible isotope coded affinity tags. Anal Chem, 2004, 76(14): 4104~4111
    [74] Kuyama H, Watanabe M, Toda C. An approach to quantitative proteome analysis by labeling tryptophan residues. Rapid Commun Mass Spectrom, 2003, 17: 1642~1650
    [75] Tetsuo I, Hiroki K, Makoto W, et al. Rapid and Efficient MALDI-TOF MS Peak Detection of 2-Nitrobenzenesulfenyl-Labeled Peptides Using the Combination of HPLC and an Automatic Spotting Apparatus. Journal of Biomolecular Techniques, 2006, 17: 333~341
    [76] Qiu Y, Sousa EA, Hewick RM, et al. Acid-labile isotopecoded extractants:a class of reagents for quantitative mass spectrometric analysis of complex protein mixtures. Anal Chem, 2002, 74(19): 4969~4979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700