遥感技术在月球、火星岩矿信息提取中的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多/高光谱遥感用于岩矿信息提取,一直是遥感地质研究的热点和难点,而且利用这种方法识别的矿物种类及可靠性有很大提高。该方法在地球上用于找矿领域的研究已经取得了很大的成果。近年来,随着遥感技术的发展,多/高光谱岩矿信息提取方法已经从地球扩展到月球、火星等地质领域的探测和研究。由于传统的地质探测方法在行星探测方面不是很适用,因此,利用遥感手段,遥远的探测地球以外的外太空星球,对人类研究月球、火星等行星起到了非常重要的作用。
     本文利用月球Clementine多光谱数据、火星TES热红外发射率数据和CRISM高光谱数据,从数据处理、多/高光谱反射了数据、热红外发射率数据、岩矿信息提取等方面,对月球、火星开展了相关方面的研究,并取得了一定的成果。
     论文的主要内容和研究成果如下:
     (1)月地岩矿光谱特征对比分析。将模拟的月壤样品矿物的光谱特征与地表对应矿物的光谱特征进行对比,研究二者的相同点与不同点,分析产生这种光谱特征差异的原因,
     (2)本文利用波段比值法,根据要提取矿物元素的光谱吸收特征,对月表典型撞击坑和月海进行矿物、元素信息提取,总结橄榄石、斜长石、铁、钛等在月海和撞击坑的分布特征,为研究月表矿物学、地貌学、地层学的关系提供了依据。
     (3)利用Lucey的铁、钛丰度反演模型,对阿拉斯基尔撞击坑(Aristillus)进行铁、钛等丰度的反演,结果与比值法得到的结果基本一致,验证了比值法和模型反演的适用性和可靠性。
     (4)针对火星热红外发射率数据-TES数据,利用线性波谱分离、波谱特征拟合、混合调制匹配滤波等填图方法,对火星表面进行信息提取,对结果进行对比分析,并与国外学者得到的结果进行比较,分析研究其存在的差异及影响因素。
     (5)本文还利用火星高光谱数据-CRISM数据,结合SAM填图方法,对火星表面某研究区进行矿物信息填图,提取了橄榄石、伊利石、蒙脱石、高岭石、白云母、绿泥石和黄钾铁矾等矿物。CRISM数据分辨率高,对研究火星地质信息起到了很大作用,而且对于火星表面有无水的探测也有着重大的意义。
Multi/hyperspectral remote sensing have been used to extract the information of rock and minerals, which is a hotspot and difficulty in the remote sensing geology field. This method can identify more minerals species and improve the reliability. In recent years, with the development of remote sensing technology, multi/hyperspectral rock extraction methods have been used on the Lunar and Mars. The methods have made achievements on the Lunar and Mars. The traditional methods of geological exploration are not very applicable to the planetary exploration, therefore, the use of remote sensing, remote detection of planets in the outer space has played a very important role to the Moon, Mars and other planets.
     In this paper, based on Clementine multi-spectral data of the Moon, TES and the CRISM data of the Mars, from three aspects of the information extraction of rock and mineral, data processing and multi/hyperspectral/thermal infrared emissivity data extraction, study the Moon and Mars and have achieved some results.
     The main content and research results of this paper are as follows:
     (1) Analyzing the spectral features of the minerals and rocks on the moon and earth, and comparing the mineral spectral of simulated lunar soil samples with the earth, studying the similarities and differences, analysis the reasons;
     (2) In this paper, according to the spectral absorption features, band ratio method was used to extract the information of the minerals of the typical impact craters and mares on the lunar surface. This paper got information extraction maps and summarized the distribution characteristics of olivine, plagioclase, iron and titanium in the crater and mares, which provided the basis for studying the relationship of the lunar surface mineralogy, geomorphology, stratigraphy.
     (3) By using Lucey's inversion model, it inverted the abundance of iron and titanium in Aristillus. The result was consistent with the result based on the ratio method. This also verified the applicability and reliability of both methods.
     (4) Using the Mars thermal infrared emissivity data-TES, based on the linear spectral separation, spectral fitting, mixture tuned matched filtering methods, and so on, extracted the mineral information on the Martian surface. This paper compared and analyzed the results, and compared the results with the foreign scholars, analyzed the existing differences and influencing factors.
     (5) This paper also used the hyperspectral data, CRISM data of the Mars, combining with SAM method, extracted the mineral information of the study area on the Mars surface. This paper had extracted olivine, illite, montmorillonite, kaolinite, muscovite, chlorite, and jarosite, and so on. CRISM data resolution is very high, which it not only plays an important role on the study of Martian geology, but also it is of great significance for the detection of Martian surface water.
引文
Adams, J. B., & Gillespie, A. R. (2006). Remote sensing of landscapes with spectral images: A physical modeling approach (p. 362). New York: Cambridge University Press.
    Burns R G, Huggins F E. Visible-region Absorption Spectra of a Ti3+ Fassaite from the Allende Meteorite: a discussion[J]. Amer.Mineral., 1973, 58:955-961.
    B.L. Ehlmann, J.F. Mustard, J.L. Bishop, et al. New Secondary Minerals Detected by MRO CRISM and their Geologic Settings: Kaolinte, Chlorite, Illite/Muscuvite, and the Possibility of Serpentine or Carbonate in NILI FOSSAE。Seventh International Conference on Mars. 2007.
    Christensen, P. R., and the TES team, Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence near-surface water, J. Geophys, Res, 105, 9632-9642, 2000a.
    Christensen, P. R., J. L. Bandfield, M. D. Smith, V. E. Hanmilton, R. Clark, Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data.[J]. Geophys. Res. 105. 9609-9621, 2000b.
    Christensen, P. R. and the TES team, A thermal emission spectral library of rock-forming minerals, [J]. Geophys. Res. 105, 9735-9739, 2000c.
    Geotz A F H. Principle of narrow band spectrometry in the visible and IR : Instruments and data analysis[M]. In imaging spectroscopy: Fundamentals and prospective application 1992. (Eurocourses: Remote sensing volume (2)).
    Mustard J F, Pleters C M. Quantitative abundances estimates from bidirectional reflectance measurements[J ]. In Proc. Lunar planet, SCI. Conf .17th , Part 2 , Geophysical Research , 1987 ,92 (B4) :617 - 626.
    Clark R N , Gallagher A J , Swayze G A. Material Absorption Band Depth Mapping of Imaging Spectrometer Data Using a Complete Band Shape Least Squares Fit with Library Reference Spectra [A ]. In: Proceedings of the Second Airborne Visible Infrared Imaging Spectrometer (AVIRIS) Work shop [C]. JPL Publication 1990, 90~54, 176~186.
    Clark R N, Swayze G A , Gallagher A , et al. Mapping with Imaging Spectrometer Data Using the Complete Band Shape Least-Squares Algorithm Simultaneously Fit to Multiple Spectral Features from Multiple Materials [A]. In: Proceedings of the Third Airborne Visible InfraredImaging Spectrometer (AVIRIS) Work shop [C]. JPL Publication, 1991. 91~28, 2~3.
    Boardman Joseph. Leveraging the High Dimensionality of AVIRIS Data for Improved Sub-pixel Target Unmixing and Rejection of False Positives: Mixure Tuned Matched Filtering〔A〕. In: Summaries of the Seventh Annual JPL Airborne Geoscience Work shop〔C〕. Pasadena, CA. 1998.
    Crosta A P, Sabine C, Taranik J V. Hyperspectral Alteration Mapping at Bodier, California, Using AVIRIS Hyperspectral Data[J]. Remote Sensing of Environment, 1998, 65:309~319.
    Christensen, P. R., and the TES team, Detection of cry stalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence near-surface water, J. Geophys, Res, 105, 9632-9642,2000a.
    Christensen, P. R., J. L. Bandfield, M. D. Smith, V. E. Hanmilton, R. Clark, Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data. J. Geophys. Res. 105. 9609-9621, 2000b.
    Christensen, P. R. and the TES team, A thermal emission spectral library of rock-forming minerals, J. Geophys. Res. 105, 9735-9739, 2000c.
    Geotz A F H. Principle of narrow band spectrometry in the visible and IR : Instruments and data analysis[M] . In imaging spectroscopy : Fundamentals and prospective application 1992. ( Euro courses : Remote sensing volume (2) ) .
    Clark R N , Gallagher A J , Swayze G A. Material Absorption Band Depth Mapping of Imaging Spectrometer Data Using a Complete Band Shape Least Squares Fit with Library Reference Spectra [A]. In: Proceedings of the Second Airborne Visible? Infrared Imaging Spectrometer (AVIRIS) Work shop [C]. JPL Publication 1990, 90-54, 176-186.
    Clark R N, Swayze G A , Gallagher A , et al. Mapping with Imaging Spectrometer Data Using the Complete Band Shape Least-Squares Algorithm Simultaneously Fit to Multiple Spectral Features from M ultip le M aterials [A]. In: Proceedings of the Third Airborne Visible? Infrared Imaging Spectrometer (AV IR IS) Work shop [C]. JPL Publication, 1991. 91-28, 2-3.
    Charles Ichoku , Arnon Karnieli. A review of mixture modeling techniques for sub-pixel land cover estimation[J]. Remote Sensing Reviews , Vol.13 : 161 - 186.
    Fisher E M, Pieters C.M. Composition and Exposure Age of the Apollo 16 Cayley and Descartes Regions from Clementine Data: Normalizing the Optical Effects of SpaceWeathering[J]. J.Geophys.Res. 1996, 101: 2225-2234.
    Fischer. E. M., and C. M. Peters. Lunar surface aluminum and rion concentration from Gallieo solid stste imaging data and the mixing of mare and highland materials. J. Geophys. Res. 100. 23279-23290, 1995.
    Haskin. L., and P. Warren. Lunar chemistry in The Lunar Sourcebook, edited by G. H. Heiken. D. T. Vaniman, and B. M. French. pp.357-484, Cambridge Univ. Press. New York, 1991.
    Hunt, G. R. and L. M. Logan, Variation of single particle mid-infrared emission spectrum with particle size, App. Op. 11, 142-147, 1972.
    Harsanyi J C, Chen-I Chang. Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal Subspace Projection Approach[J]. IEEE Transaction on Geoscience and Remote Sensing, 1994, 32 (4) : 779~785.
    Hapke B. Bidirectional reflectance spectroscopy theory[J] . Geophysical Research , 1981 , 86 (B4) :3039 - 3054.
    Hunt G R ,王宗良,等.遥感专辑—矿物和岩石的可见光及近红外光谱[M] .北京:地质部情报研究所,1980, 1-207.
    Johnson P E , Smith M O, Taylor George S , Adams J B. A semi-emprical method for analysis of the reflectance spectra of binary mineral mixtures[J] . Geophysical Research , 1983 , 88 (B4) :3557 - 3561.
    Kahle, A. B. and L. C. Rowan, Evaluation of multispectral middle infrared aircraft images from lithologic mapping in the east Tintic Mountains, Utah, Geology 8, 234-239, 1980.
    Kahle, A. B. and A. F. H. Goetz, Mineralogic information from a new airborne thermal infrared multispectral scanner, Science 222, 24-27, 1983.
    Kahle, A. B.,A. R. Gillespie, E. A. Abbott, M. J. Abrams, R. E. Walker, G. Hoover, and J. P. Lockwood, Relative dating of Hawaiian lava flows using multi-spectral thermal images:A new tool for geologic mapping of young volcanic terranes, J. Geophys. Res. 93, 15, 239-15,251, 1988.
    Kahle, A. B., F. D. Palluconi, and P. R. Christensen, Thermal emission spectroscopy: Application to the Earth and Mars, Ch.5 in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. Pieters amd P. Englerted., Cambridge UP, 1993.
    King, M. D. and MAS instrument team, Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface peoperties, J. Atmospheric. and Oceanic Technology13, 777-794, 1996.
    Kruse, F. A. Boardman, J. W., Lefkoff, A. B.. Young, J. M. Kierein-Young, K. S., Cocks, T. D., Jenssen, R., and Cocks, P. A. .2000, The AIG/HyVista 1999 USA HyMap Group Shoot: Overview and Analysis Examples: in Proceedings IGARSS 2000, 24-28 July, 2000, Honolulu, Hawaii, IEEE, Catalog Number 00CH37120C, ISBN 0-7803-6362-0, published on CD-ROM.
    Lone, M. D. and P. R. Christensen, Thermal infrared emission spectroscopy of anhydrous carbonates, J. Geophys, Res. 102, 25, 851-25, 592, 1997.
    Lyon, R. J. P., Evaluation of Infrared Spectrophotometry for Compositional Analysis of Lunar and Planetary Soils, Part2, NASA CR-100, 1965.
    Le Mouelic. Langevin S.Y., Erard S.,et al. Discrimination between Maturity and Composition of Lunar Soils from Integrated Clementine UV-visible/near-infrared data: Application to the Areitarchus Plateau[J], J.Geophys, Res.,2000, 105(E4), 9445-9455.
    Lucey P G, et al. Mapping the FeO and TiO2 content of the lunar surface with multi-spectral image[J]. J.Geophys.Res, 1998,103(E2): 3679-3699.
    Lucey, P.G.,P.D.Spudis,M.Zuber,et al, opographic-compositional units on the Moon and the Early Evolution of the Lunar Crust[J], Science, 1994,266,1855-1858.
    Mustard J F , Pleters C M. Quantitative abundances estimates from bidirectional reflectance measurements[J ] . In Proc. Lunar planet ,SCI. Conf .17th , Part 2, Geophysical Research, 1987,92 (B4) :617 - 626.
    Matsunaga T., Ohtake M. Haruyama J. et al. Discoveries on the lithology of lunar crater central peaks by SELENE Spectral Profiler. Geophysical Research Letters, 2008,35(L23201):1-5.
    McEwen A. S., Robinson M. S., Eliason E. M., Lucey P. G. Clementine observations of the Aristarchus region of the Moon. Science, 1994,266:1858-1862.
    McCord, T. B., Clark, R. N. and Hawke B. R. et al., 1981. Moon: Near-infrared spectra reflectance, a first good look. Journal of Geophysical Research, 86(B11): 10883-10892.
    Mouélic S. L., Lucey P. G., and Langevin Y. et al. Calculating iron contents of lunar highland materials surrounding Tycho crater from integrated Clementine UV-visible and near-infrared data[J]. Journal of Geophysical Research, 2002, 107(E10): 1-9.
    Murase, Tsutomu; McBirney, Alexander R. , 1970, Thermal Conductivity of Lunar and Terrestrial Igneous Rocks in Their Melting Range. Science, Vol. 170, No. 3954, pp. 165-167.
    Neugebauer M, Snyder C W, Clay D R, et al. Solar wind observations on the lunar surface with the Apollo?12 ALSEP. Planet Space.
    Okada T., Shirai K., and Yamamoto Y. et al. Lunar x-ray fluorence spectrometry from SELENE lunar polar orbiter[J]. Lunar and Planetary Science, 2005,ⅩⅩⅩⅥ: 1503.
    Olhoeft, G.R., and D. W. Strangway, D.W., 1975, Dielectric properties of the first 100 meters of the Moon. Earth and Planetary Science Letters, Volume 24, Issue 3 , January 1975, Pages 394-404.
    Paul G. Lucey and David T. Vlewett. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. Journal of geophysical research, vol. 105, NO. E8, Pages20297-20305,August 25, 2000.
    Pieters C M, et al. A summary of Spectral Reflectance Data[C]. Proc.Lunar Sci.Conf., 9th[C],1978:2825-2849.
    Pieters C M, et al. Crustal Diversity on the Moon of Galileo solid State Imaging Data[A]. J.Geophys.Res., 1993, 98:17127-17148.
    Robert D A , Smith M O , Adams J B. Green vegetation ,nonphotosynthetic vegetation ,and soils in AVIRIS data[J ] . Remote Sensing of Environment , 1993 ,44 :255 - 269.
    Robert D A , Smith M O , Adams J B. Green vegetation ,nonphotosynthetic vegetation ,and soils in AVIRIS data[J ] . Remote Sensing of Environment, 1993, 44: 255 - 269.
    R O. Green, S. Murchie, R. Miliken1. Atmospheric Correction and Analysis of CRISM Full Resolution Target Measurements using the MODTRAN Radiative Transfer Code. Seventh International Conference on Mars. 2007.
    Smith M O , Johnson P E , Adams J B. Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis[C] . In Proc. Lunar planet ,SCI. Conf . 15th , Part 2 , Geophysical Research 90 (suppl. ) , 1985 :797 - 804.
    Smith M O , Johnson P E , Adams J B. Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis[C]. In Proc. Lunar planet ,SCI. Conf . 15th, Part 2 , Geophysical Research 90 (suppl.) , 1985 :797 - 804.
    Shkuratov Y G. etal. Iron and Titanium Abundance and Maturity Degree Distribution on the Lunar Nearside[J]. Icarus. 1999,137: 222-234.
    Taylor L A. Helium?3 on the Moon: model assumptions and abundance. In: Eng Constr Operin SpaceⅡ, Proc. of Space’94. New York: Am Soc Civil Eng, 1994. 678—686
    Taylor L A. Hydrogen, helium, and other solar?wind components in lunar soil: abundances and predictions. In: Eng Constr Oper in SpaceⅡ, Proc. of Space’90. New York: Am Soc Civil Eng, 1990. 68—78
    Taylor L A. Helium?3 on the Moon: model assumptions and abundance. In: Eng Constr Oper in SpaceⅡ, Proc. of Space’94. New York: Am Soc Civil Eng, 1994. 678—686
    Wittenberg L, Santarius J, Kulchinski G. Lunar source of 3He for fusion power. Fusion Technol, 1986, 10: 167—178.
    法文哲,金亚秋.三层月壤模型的多通道微波辐射模拟与月壤厚度的反演.空间科学学报, 2007, 27(1): 55—65.
    法文哲,金亚秋.月球表面多通道辐射亮度温度的模拟与月壤厚度的反演.自然科学进展, 2006, 16(1): 86—94.
    欧阳自远,月球探索的进展与前景.学会月刊2003年第11期.
    李大耀,论月球资源和航天月球探测.航天返回与遥感.2004年第25卷第一期.
    胥涛,利用反射光谱和热辐射探测月球表面物质的理论和方法[博士论文].中国科学院地球化学研究所,2004.
    刘剑、欧阳自远等,月球表面钛的研究进展[J].地球与环境.2006,36(2):47-51.
    杨可明,陈云浩,郭达志,等.基于端元提取的高光谱影像特定目标识别[J].金属矿山,2006,(6) : 48 - 52.
    褚海峰,翟中敏,赵银娣,等.一种多/高光谱遥感图像端元提取的凸锥分析算法[J].遥感学报,2007,11(4):460-467.
    游晓斌,游先祥,相莹莹,等.混合像元及混合像元分析[J].北京林业大学学报,2003,25:28-32.
    李剑萍,郑有飞.气象卫星混合像元分解研究综述[J].中国农业气象,2000 ,21 (2) : 44 - 47.
    闫柏琨,王润生,甘甫平等.热红外遥感岩矿信息提取研究进展[J].地球科学进展, 2005, 20 (10): 1116-1126.
    薛彬,杨建峰,等.月球表面主要矿物反射光谱特性研究[J].地球物理学进展,2004.19(3): 717-720.
    胥涛,等.月球紫外-可见光-近红外反射光谱的基本特征及解析方法[J].地球与环境,2004,32(3-4).
    闫柏琨,热红外遥感岩矿波谱机理及信息提取技术方法研究[博士论文].2006,北京.
    金亚秋,颜锋华,梁子长.微波辐射计对月面特征参数的遥感理论模拟.电波科学学报, 2003, 18 (5): 477—486.
    冯德俊,李永树,兰燕.基于主成分变换的动态监测变化信息自动发现[J].计算机工程与应用, 2004, 36: 199 - 202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700