海洋细菌P.leiognathi的发光性能研究及其在食品安全检测中的应用探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以筛选具有优良体外发光性能、并对化学污染物敏感的海洋发光细菌为出发点,研究了发光细菌的菌体性质,分离纯化了催化菌体发光的荧光素酶和FMN:NADH氧化还原酶,构建了双酶体外发光的检测体系。在此基础上,利用菌体和双酶进行了食品安全检测的探索研究。
     1、对海洋发光细菌的菌体性质进行研究。从青岛海域分离纯化了五株海洋发光细菌。经16SrDNA、生理生化试验鉴定,它们分属鳆发光杆菌(P.leiognathi)、哈维氏弧菌(V.harveyi)、明亮发光杆菌(P.phosphoreum)、灿烂弧菌(V.splendidus)和费氏弧菌(V.fischeri)。对五菌株进行发光特性研究和化学污染物敏感性的筛选。结果显示,P.leiognathi YL最大发射波长471nm,持续稳定发光16h,发光性能稳定,且对抗生素和重金属最敏感。优化了P.leiognathi YL的生长发光培养基:0.5%蛋白胨;0.1%酵母浸膏;0.01% FePO4;2-4% NaCl;0.4%甘油;陈海水。最佳发光条件:初始pH 7.5;温度25-30℃;转速150r/min。
     2、建立了双酶体外发光的检测体系。对五菌株进行跟踪酶活测定,筛选出产酶起始时间早、产酶活力高且稳定的P.leiognathi YL作为双酶的制备菌株。优化了P.leiognathi YL的产酶培养基:0.5%蛋白胨;0.1%酵母浸膏;0.01% FePO4;2-4% NaCl;0.4%甘油;陈海水。最佳产酶条件:初始pH 7.0;温度25-30℃;转速150r/min。建立了单、双酶体外发光检测体系,并对两个体系进行比较。荧光素酶检测体系(室温): 1mL酶液中,迅速加入底物十二烷醛100μL(27mM)、FMN-Na53μL(10mM)和Na2S2O4 200μL(34mM),测定酶活。双酶检测体系(室温):1mL酶液中,一次性快速加入底物十二烷醛100μL(27mM)、FMN-Na53μL(10mM)、NADH 200μL(0.14mM),测定酶活。双酶体系比单酶体系发光稳定性好,更适合用于检测操作。
     3、对双酶的酶学性质进行初步研究。超声破碎菌体细胞,通过硫酸铵盐析、DEAE-Sepharose CL-6B离子交换柱层析得到了电泳纯的FMN:NADH氧化还原酶,测定分子量为28KDa。通过硫酸铵盐析、DEAE-Sepharose CL-6B离子交换柱层析和DEAE-Sephadex凝胶柱层析得到了电泳纯的荧光素酶,并成功分离出了酶的两个亚基,其分子量分别为41KDa和36KDa。对荧光素酶两个亚基的进行活性测定,结果发现,两个亚基单独存在时无酶活,只有两个亚基同时存在,荧光素酶才有活性。优化了双酶的最适反应条件:温度为35℃,pH 7.0,最适NaCl浓度1.5-2%。K+、Ca2+、Na+、Mg2+离子对酶活有促进作用;Fe2+、Zn2+、Hg2+、Ba2+等离子对酶活有抑制作用。抗生素对双酶基本无影响。双酶的热稳定性较好。4℃下可长时间保持酶活。随着温度升高,双酶的耐热性变差,且酶失活的时间缩短。
     4、菌体在食品安全检测中的应用探索。建立了P.leiognathi YL检测水产品中氯霉素残留的方法体系。选取对数生长期的P.leiognathi YL,控制菌数为107cfu/mL,乙酸乙酯提取氯霉素,5mL菌液中加入5mL氯霉素提取液,27℃150r/min培养30min,测定发光抑制率。检测线性范围0.14-1.0μg/L,方法检出限0.14μg/kg。建立了P.leiognathi YL检测水产品中重金属的方法体系。重金属敏感性筛选结果显示,P.leiognathi YL对Hg2+、Cr6+、Cd2+最敏感。选取对数生长期的P.leiognathi YL,控制菌数为107cfu/mL,样品灰化处理后,5mL菌液中加入5mL重金属提取液,27℃150r/min培养30min,测定发光抑制率。Hg2+检测线性范围0.007-0.28μg/L,方法检出限为0.007μg/kg;Cr6+检测线性范围0.9-30.0μg/L,方法检出限为0.9μg/kg;Cd2+检测线性范围5.4-65.0μg/L,方法检出限为5.4μg/kg。
     5、双酶在食品安全检测中的应用探索。建立了双酶检测水产品中重金属残留的方法体系。重金属敏感性筛选结果显示,双酶对Hg2+、Cr6+最敏感。样品灰化处理后,1mL酶液中加入500μL样品溶液,4℃放置反应15min,测定酶活抑制率。Hg2+检测线性范围0.0007-0.030μg/L,方法检出限0.0007μg/kg;Cr6+检测线性范围0.05-5.0μg/L,方法检出限0.08μg/kg。初步研究了大肠杆菌内NADH对双酶酶活的影响。测定了NADH含量对双酶酶活的影响曲线。在此基础上,对不同菌量的大肠杆菌进行超声细胞破碎,释放NADH,进行双酶酶活检测,为今后利用双酶检测大肠杆菌的菌数提供基础理论数据。
Five luminous bacterial strains were isolated from Qingdao coast and characterized by a combination of 16SrDNA sequences, the morphology observation, physiological test, molecular and biochemical analysis. In comparison with the similar strains reported, the five strains are identified as P.leiognathi, V.harveyi, P.phosphoreum, V.splendidus, V.fischeri.
     Sensitivity screening examination indicated that P.leiognathi YL was most sensitive to the antibiotics and heavy metals among the five strains. YL strain has a maxium wavelength for emission at 471nm and the strong light lasted for 16h. The optimum growth and luminescence conditions of YL were determined as: Initial pH 7.5;temperature 25-30℃;shaking speed 150r/min。The medium was composed of 0.5% peptone, 0.1% yeast extraction, 0.01% FePO4, 2-4% NaCl, 0.4% glycerin and seawater.
     P.leiognathi YL was selected to produce luciferase and FMN:NADH oxidoreductase(the couple enzymes) for its stable product ability. The optimum enzyme-producing conditions were determined : Initial pH 7.5;temperature 25-30℃;shaking speed 150r/min。
     Luciferase was assayed at room temperature by measuring the light emission upon the rapid injection of 1.0mL luciferase mixture, 53μL FMN-Na(10mM), 100μL Na2S2O4(34mM), 100μLdodecanal(27mM).FMN:NADH oxidoreductase was assayed at room temperature by measuring the light emission upon the rapid injection of 1.0mL oxidoreductase mixture, 53μL FMN-Na(10mM), 200μL NADH(0.14mM), 100μL dodecanal(27mM). The luminescence of the coupled enzyme system was more stable than luciferase system.
     The couple enzymes were released from the cells by sonicate and purified followed the procedures: precipitated by solid ammonium sulfate; elution on DEAE-Sepharose CL-6B and DEAE-Sephadex columns. The molecular weights of oxidoreductase is 28KDa. Luciferase has two subunits and their molecular weights are 36KDa and 41KDa respectively. No activity was found when either of the isolated subunits is absent. The optimum reaction conditions of the couple enzymes are: Initial pH 7.5;temperature 25-30℃;shaking speed 150r/min. K+、Ca2+、Na+、Mg2+ promoted the activity of the couple enzymes while Fe2+、Zn2+、Sn2+、Hg2+、Ba2+ inhibited the activity. Antibiotics had no effect on the activity of the couple enzymes. The couple enzymes had a good activity at 4℃and the activity decreased with the temperature raised over 40℃.
     The concentration of chloramphenicol in shrimp and turbot tissues was detected with P.leiognathi YL. The chloramphenicol in the tissues was extracted by ethyl acetate. The optimal test inoculum is 107cells/mL. 5mL chloramphenicol solution was added into 5mL inoculum. The mixture solution reacted for 30min at 27℃with the shaking speed 150r/min. The concentration of chloramphenicol ranging from 0.14 to 1.0μg/L was determined by the luminescence inhibition rate of P.leiognathi YL. The detection limit is 0.14μg/kg. The concentration of heavy metals(Hg2+、Cr6+、Cd2+)in shrimp tissues was also detected with P.leiognathi YL. The ions of heavy metal in the tissues were extracted by cineration. The detection procedure of heavy metals(Hg2+、Cr6+、Cd2+)was the same as the chloramphenicol. The concentration of Hg2+ ranging from 0.007μg/L to 0.28μg/L was detected, the detection limit was 0.007μg/kg.The detection concentration of Cr6+ is 0.9-30.0μg/L and the detection limit was 0.9μg/kg. The detection concentration of Cd2+ was 5.4-65.0μg/L and the detection limit was 5.4μg/kg.
     Sensitivity screening examination indicated that the couple enzymes were most sensitive to Hg2+and Cr6+. The concentrations of Hg2+and Cr6+ in shrimp tissues were detected with the couple enzymes respectively. The ions of heavy metal in the tissues were extracted by cineration. 500μL ion solution was added into the enzyme mixture to react for 15min at 4℃, and the activity of the couple enzymes was detected. The detection concentration of Hg2+ was 0.0007-0.030μg/L and the detection limit was 0.0007μg/kg. The detection concentration of Cd2+ was 0.05-5.0μg/L and the detection limit was 0.08μg/kg. NADH in E.coli cells was released by sonicate and promoted the luminescence of the couple enzymes. The results provided data to detect the total number of E.coli with the couple enzymes.
引文
[1]Holt J G, Krieg N R, Sneath P H, et al. Berney’s Manual of Determinative Bacteriology (Ninth Edition) Williams, Wilkins,. Baltimore, USA, 1994: 71-73
    [2]Daniela C, Francescopaolo D C, Concetta G, et al. Polyphasic approach to characterization of marine luminous bacteria. Res.Microbiol, 1999,150(2): 221-230
    [3]Jensen M. J, Tebo P, Baumann M, et al. Characterization of Alteromonas hanedai (sp. nov.), a nonfermentative luminous species of marine origin. Curr. Microbiol. 1980,3:311–315
    [4]Baumann, P, Baumann L. 1981. The marine Gram-negative bacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. The Prokaryotes,1981,35(3):1302–1331
    [5]Krieg N R, Holt J G. Berry’s manual of Systematic Bacteriology. Baltimore, Williams Wilkins Co,1984:516-550
    [6]Yang Y K, Li YY, Cao L et al. Characterization of marine luminous bacteria isolated off coast of China and description of Vibrio orientalis sp. Current Microbiology, 11(8):95-100
    [7]Bang S S, Baumann M J, Woolkalis P B. Evolutionary relationship in Vibrio and Photobacterium as determined by immunological studies of superoxide dismutase. Archives of Microbiology, 1981,130:111-120
    [8]Hendrai M S, Hodgkiss W, Shewan J M. The identification, taxonomy and classification of luminous bacteria. Journal of General Microbiology. 1970,64:1165-1169
    [9]沈建伟,朱文杰,吴自荣等.南海中国沿海发光细菌的分离鉴定.海洋与湖沼.1988,19(1):76-80
    [10]沈建伟,杨颐康.黄海发光细菌的分离鉴定.海洋与湖沼.1987,18(4):333-339
    [11]杜宗军.发光细菌的研究和应用.高技术通讯.2003,12:103-106
    [12]朱文杰,汪杰,陈晓耘等.发光细菌一新种——青海弧菌.海洋与湖沼.1994,25(3):273-279
    [13]Thomtdka K W. Use of bioluminesecent bacterium photobacterium phosphoreum to detect potentially biohazardous materials in water. Environ Contam Toxicol,1993, 51( 4):538
    [14]Meighen E A. Molecular biology of bacterial bioluminescence. Microbiol. Rev., 1991,55: 123–142
    [15]Makemson J C, Fulayfil N R, Landry W et al. Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int. J. Syst. Bacteriol., 1997, 47: 1034–1039
    [16]Dunlap P V, Greenberg E P. Role of intercellular chemical communication in the Vibrio fischeri-monocentrid fish symbiosis. American Society for Microbiology, 1991b:219–253
    [17]Nealson K H, Hastings J W. The luminous bacteria. The Prokaryotes, 2nd ed. 1992: 625–639
    [18]Ruby E G. Lessons from a cooperative bacterial-animal association: The Vibriofischeri-Euprymna scolopes light organ symbiosis. Ann. Rev. Microbiol., 1996,50: 591–624
    [19]Meighen E A, Dunlap P V. Physiological, biochemical and genetic control of bacterial bioluminescence. Adv. Microb. Physiol., 1993,34:65–67
    [20]Hastings J W, Potrikus C J, Gupta S et al. Biochemistry and physiology of bioluminescent bacteria Adv. Microb. Physiol., 1985, 26:235–291
    [21]Meighen E A. Molecular biology of bacterial bioluminescence. Microbiol. Rev., 1991, 55:123–142
    [22]Hastings J W. Light to hide by: Ventral luminescence to camouflage the silhouette. Science, 1971,173:1016–1017
    [23]Hastings J W, Nealson KH. Bacterial bioluminescence. Ann. Rev. Microbiol.1977, 31:549–595
    [24]Hastings J W, Makemson J C, Dunlap P V. How are growth and luminescence regulated independently in light organ symbiosis? Symbiosis, 1987,4:20–24
    [25]Hastings J W, Greenberg E P. Quorum sensing: The explanation of a curious phenomenon reveals a common characteristic of bacteria. J. Bacteriol., 1999, 181:pp. 2667–2668
    [26]Callahan SM, Dunlap P V. LuxR- and acyl-homoserine-lactone-controlled non-lux genes define a quorum-sensing regulon in Vibrio fischeri. J. Bacteriol. 2000,182: 2811–2822
    [27]Fidopiastis P M, Boletzky S, Ruby E G. A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola J. Bacteriol.1998,180: 59–64
    [28]Ramaiah N, Chun J, Ravel J. Detection of luciferase gene sequences in nonluminescent bacteria from the Chesapeake Bay. FEMS Microbiol. Ecol.2000,33:27–34
    [29]Ramaiah N J, Chun J, Ravel W L et al. Detection of luciferase gene sequences in nonluminescent bacteria from the Chesapeake Bay. FEMS Microbiol. Ecol. 2000, 33:27–34
    [30]Showalter R E, Martin M O, Silverman M R. Cloning and nucleotide sequence of luxR, a regulatory gene controlling bioluminescence in Vibrio harveyi. J. Bacteriol. 1990,172: 2946–2954
    [31]Elena F, Murat J C,Villaescusa I. Study on the toxicity of binary equitoxic mixtures of metals using the luminescent bacteria Vibrio fischeri as a biological target. Chemosphere, 2005, 58:551-557
    [32]Jang C C,Kyung J P, Hyuk S I, Park J E et al. A novel continuous toxicity test system using aluminously modified freshwater bacterium. Biosensors and Bioelectronics.2004, 20:338-344
    [33]Ince N H, Dirilgen N, Apikyan I G et al. Assessment of toxic interactions of heavy metals in binary mixtures: a statistical approach. Arch. Environ.Contam. Toxicol. 1999,36: 365–372.
    [34]Gustavson K E, Svenson A, Harkin J M. Comparison of toxicities and mechanism of action of N-alkanols in the submitochondrial particle and the Vibrio fischeri bioluminescence (Microtox) bioassay.Environ. Toxicol. Chem. 1998,17:1917–1921.
    [35]Salizzato M, Bertato V, Pavoni B et al. Sensitivity limits and EC50 values of the Vibrio fischeri test for organic micropollutants in natural and spiked extracts from sediments. Environ. Toxicol. Chem. 1998,17: 655–661.
    [36]Sinclair G M, Paton G I, Meharg A A et al. Luxbiosensor assessment of pH effects on microbial sorption and toxicity of chlorophenols. FEMS Microbiol. Lett. 1999,174:274–278
    [37]Chun U H, Simonov N, Chen Y B et al. Continuous pollution monitoring using Photobacterium phosphoreum. Resour. Conserv.Recy. 1996,18:25–40
    [38]Fernandez A R, Hernando G L, Diaz L G et al. Toxicity of pesticides in wastewater: a comparative assessment of rapid bioassays. Anal. Chim.Acta 2001,426:289–301.
    [39]黄正,汪亚洲,汪家玲.海洋环境检测中的生物传感技术.厦门大学学报, 2001,10(2):13-15
    [40]江敏,顾国维,李咏梅.6种含氮杂环化合物对发光细菌的毒性研究.上海环境科学,2003,22(12):931-934
    [41]张秀君.发光菌监测海水毒性实验研究.沈阳教育学院学报.1999,3(1):110-112
    [42]李彬,李培军,王晶等.重金属污染土壤毒性的发光菌法诊断.2001,12(3):443-446
    [43]黄正,汪亚洲,汪家玲.用于污染物毒性检测的细菌发光传感器的研制.传感器技术,1997,16(3):13-18
    [44]李百祥,王德才,闫鹏.急性毒性发光细菌传感器和急性毒性快速测定仪的研究.中国卫生检验杂志.2008,12(4):397-400
    [45] Alison M. H, Mardlin D P, Turner N L et al. On-line microbial biosensing and fingerprinting of water pollutants. Biosensors and Bioelectronics, 2002,17(6):495-501
    [46]黄正,汪亚洲,王家玲.细菌发光传感器在快速检测污染物急性毒性方面的应用.Environmental Science.1997, 4(7):15-18
    [47]袁东星,邓永智,林玉晖.蔬菜中有机磷农药残留的发光菌快速检测.环境化学.1997,12(1):76-81
    [48]党亚爱,王国栋,辛宝平等.利用发光菌评价17种染料的毒性效应.西北农林科技大学学报.2003,42(3):115-118
    [49] Ren S J, Paul D. Frymier. Kinetics of the toxicity of metals to luminescent bacteria. Advances in Environmental Research.2003,7: 537–547
    [50]赵华清,殷浩文,陈晓倩等.发光细菌法检测环境污染中的基因毒性.应用与环境生物学报.2000,15(6):95-99
    [51]Eriedland J,Haslinns J W. Nonidenlical SuhuniLs of Bacterial Lucilerase: Their Isolation and Recomhinalion Lo form Active Enzyme. Proc NaLI Acad Sci CSA, 1967,58(6):2336-2342
    [52]Baldwin T 0, Christopher J A, Raushel F M et al. Structure of Bacterial Luciferase. Curr Opin Struct Biol,1995,5(6):798-809
    [53]Almashanu S, Gendler I, Hadar R et al. Interspecific Lucilerase Beta Suhunit Hybrids between Vihrio Harvevi, Vihrio Fischeri and Photobacterium Leiongathi.Protein Eng, 1996,9(9):803-809
    [54]Herbst R, Gast K, Seckler R. Folding of Firefly(Photinuspyralis) Luciferase: Aggregation and Reactivation of Unfolding Intermediates.Biochemistry,1998,37(18):6586-6597
    [55]Oba Y, Sato M, Ohta Y et al. Identification of Paralogous Genes of Firefly Luciferase in the Japanese Firefly.Luciola Cruciata. Gene, 2006,368:53-60
    [56]VeLrova E V, Kudrvasheva N S, Visser A J et al. Characteristics of Endogenous Flavin Fluoresczncs of Photobacterium Leiognathi Lucilerase and Vihrio Fischeri NAD(P)H: FMN-oxidoreductase. Luminescence.2005, 20(3):205-209
    [57]Madvar A R, Hosseinhani S, Khajeh K et al. Implication of a Critical Residue(Glu175) in Structure and Function of Bacterial Lucilerase.FEBS Lett.2005,579(21):4701-4706
    [58]Viviani V R. Oehlmever T L. Amoldi FG. et al. A New Firefly Luciferase with Bimodal Spectrum: Identification of Structural Determinants of Spectral pH-sensitivity in Firefly L uciferases. Photochem Photobiol. 2005,81(4):843-848
    [59]Nicolas Lembert. Firefly Luciferase Can use L-luciferin to Produce Light.Biochem. 1996,317:273-277
    [60] Legocki R P, Legochi M, Baldwin T O et al. Bioluminescence in Soybean Root Nodules: Demonstration of a General Approach to Assay Gene Expression in Vivo by using Bacterial Luciferase. Proc Natl Acad Sci USA,1986, 83(23):9080-9084
    [61] Andrey A, Kolokoltsov, R A D. Rapid and Sensitive Detection of Retrovirus Entry by L sine aNovel Luciferase Based Content -Mixinn Assay. J Virol, 2004, 78(10):5124-5132
    [62]Francisco P, Tia S. Dens P R et al. High-Throughput Assays Using a Luciferas- Expressing Replicon, Virus-Like Particles, and Full-Length Virus for West Nile Virus Drug Discovery. Antimicrob Agents Chemother, 2005, 49( 12):4980-4988.
    [63]Xu Y H, Zhang H Y, Thormeyer D et al. Effective Small Interfering RNAs and Phosphorothioate Antisense DNAs Have Different Preferences for Target Sites in the Luciferase mRNAs.Biochemical and Biophysical Research Communications, 2003, 306: 712-717
    [64]Ui Tei K, Zenno S, Miyata Y et al. Sensitive Assay of RNA Interference in Drosophila and Chinese Hamster Cultured Cells usinn Firefly Luciferase Gene as Target. FEBS Lett, 2000, 479( 3):79-82
    [65]Ozawa T, Kaihara A, Sato M et al. Split Luciferase as an Optical Probe for Detecting Protein protein Interactions in Mammalian Cells Based on Protein Splicing.Analytical Chemistry, 2001.73(11):16-21
    [66]Panlmurunan R Y, Umezawa S Gamhhir S. Nonlinear Partial Different Equations and Applications Noninvasive Imaging of Protein-protein Interactions in living Subjects by using Reproter Protein Complementation and Reconstitution Strategies. Proc Natl Acad Sci USA,2002,99(24):15608-15613
    [67]Suns B K, Takeaki Ozawa, Shigeaki Watanabe et al.High-throughput Sensing and Noninvasive Imaging of Protein Nuclear Transport by using Reconstitution of Split Renilla Luciferase. Proc Natl Acad Sci US A. 2004,101( 32):11542-1547
    [68]PaLrizia P, Simonetta F, Paolo Pinton et al. A Novel Recombinant Plasma Membran targeted Luciferase Reveals a New Pathway for ATP Secretion. Mol Biol Cell, 2005, 16( 8):3659-3665
    [69]Tonarv AM, Pezacki J P. Simultaneous Quantitative Measurement of Luciferase Reporter Activity and Cell Number in Two and Threr-dimensional Cultures of Hepatitis C Virus Replicons. Anal Biochem.2006.
    [70]Alison M, Horsburgh D P, Mardlin N L et al. On-line Microbial Biosensing and Fingerprinting of Water Pollutants. Biosens Bioelectron, 2002, 17(6):495-501
    [71]Martin J L, Melanie R, Siegfried Scherer.Evaluation of Luciferase Reporter Bacteriophaae A511:LuxAB for Detection of Listeria Monocvtonenes in Contaminated Foods. Applied and Environmental Microbiolony.1997,8: 2961-2965.
    [72]Siouxsie W, Kathryn F, Martha S et al. Alternative Luciferase for Monitoring Bacterial Cells under Adverse Conditions. Applied and Environmental Microbiology, 2005,71(7):3427-3432
    [73]Ceholla A, Ruic B F, Palomares A J. Stahle Tagging of Rhizobium Mliloti with the Firefly Luciferase Gene for Environmental Monitoring. Appl Environ Microbiol, 1993,59(8):2511-2519
    [74]Mcelory W D, Green A A. Enzymatic Properlies of Bacterial Luciferase. Arch Biochem, 1955, 56(1):240-255
    [75]Friedland J, Haslinns J W. Nonidenlical Suhunils of Bacterial Luciferase: Their Isolation and Recomhinalion to form Active Enzyme. Proc Nail Acad Sci CSA, 1967, 58(6):2336-2342
    [76]Green A A, Mcelorv W D. Crystalline Firefly Luciferase. Biochim Biophys Acla, 1956, 20( ):170-176
    [77]Denhurn J L, Mcelroy W D. Catalytic Suhunit of Firefly Luciferase. Biochemistry, 1970, 9(24):4619-4624.
    [78]Marlene D. Transient and Stahle Expression of the Firefly Luciferase Gene in Plant Cells and Transgenic Plants. Science.1986,234:856-859.
    [1]Holt J G, Krieg N R, Sneath P H, et al. Berney’s Manual of Determinative Bacteriology (Ninth Edition) Williams, Wilkins,. Baltimore, USA,1994: 71-73
    [2]Daniela C, Francescopaolo D C, Concetta G, et al. Polyphasic approach to characterization of marine luminous bacteria. Res.Microbiol, 1999,150(2): 221-230
    [3]Jensen M. J, Tebo P, Baumann M, et al. Characterization of Alteromonas hanedai (sp. nov.), a nonfermentative luminous species of marine origin. Curr. Microbiol. 1980,3:311–315
    [4]Baumann, P, Baumann L. 1981. The marine Gram-negative bacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. The Prokaryotes,1981,35(3):1302–1331
    [5]Krieg N R, Holt J G. Berry’s manual of Systematic Bacteriology. Baltimore, Williams Wilkins Co,1984:516-550
    [6]Yang Y K, Li YY, Cao L et al. Characterization of marine luminous bacteria isolated off coast of China and description of Vibrio orientalis sp. Current Microbiology, 11(8):95-100
    [7]Bang S S, Baumann M J, Woolkalis P B. Evolutionary relationship in Vibrio and Photobacterium as determined by immunological studies of superoxide dismutase. Archives of Microbiology, 1981,130:111-120
    [8]Hendrai M S, Hodgkiss W, Shewan J M. The identification, taxonomy and classification of luminous bacteria. Journal of General Microbiology. 1970,64:1165-1169
    [9]沈建伟,朱文杰,吴自荣等.南海中国沿海发光细菌的分离鉴定.海洋与湖沼.1988,19(1):76-80
    [10]沈建伟,杨颐康.黄海发光细菌的分离鉴定.海洋与湖沼.1987,18(4):333-339
    [11]杜宗军.发光细菌的研究和应用.高技术通讯.2003,12:103-106
    [12]朱文杰,汪杰,陈晓耘等.发光细菌一新种——青海弧菌.海洋与湖沼.1994,25(3):273-279
    [13]Chi-Ying H, Meng-Hsiun T, David K Ret al. Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox chronic toxicity test. The Science of the Total Environment. 2004, 320:37-50
    [14]Daly H R, Johns M J, Hart BT et al.Copper toxicity to Paratya Australiensis: III.Influence of dissolved organic matter. Envir on Toxicol Chem. 1990, 9:1013–1018
    [15]Kong IC, Bitton G, Koopman B, Jung KH.Heavy metal toxicity testing in environmental samples.Rev Environ Contam Toxicol. 1995, 142:119–147
    [16]闫鹏,李百祥,王德才等.细菌发光传感器对污染物急性毒性快速检测的研究.中国卫生工程学.2002,1(2):65-68
    [17]袁星,郎佩珍,龙凤山等.硝基芳烃对发光菌及其它水生生物毒性的相关性.吉林大学自然科学学报.1994,11(4):97-99
    [18]黄满红,李咏梅,顾国维.污水毒性的生物测试方法.工业水处理.2003,23(11):14-17
    [19]金明华,吕春平,刘晓梅等.甲基汞对发光菌的毒性及锌的拮抗作用.吉林大学学报.2005,14(3):101-104
    [20]周德庆主编.微生物操作手册.高等教育出版社.2002,8
    [21]Gao J, Pan H P, Xiao T et al. Isolation and characterization of novel marine Roseobacter clade members producing unique intracellular chromium-rich aggregates. Research in Microbiology.2006,157:714-719
    [22]莫照兰,茅云翔,陈师勇等.一株牙鲆出血症病原菌的分子生物学鉴定[J].高技术通讯,2001,12:12-17
    [23]Yang Y K, Cao Y H, Lee Penyen et al. Characterization of Marine Luminous Bacteria IsolatedOff the Coast of China and Description of Vibrio orientalis sp. Nov.[J]Current Microbiology,1983,8:95-100
    [24]明儒成,商文东,侯继斌等.一株与鳆发光杆菌最相似细菌的研究.微生物学杂志.2005,25(3):88-90
    [25]Daniela C, Francescopaolo D C, Renato F et al. Polyphasic approach to the characterization of marine luminous bacteria. Res. Microbiol.1999,150:221-230
    [26] John G. Holt, Noel R. Krieg, Peter H. A. Sneath, et al. B ergey’s M anual of D eterminative Bacteriology (Ninth Edition). William s &W ilk ins, Baltimore, USA , 1994: 71-377
    [27]汪杰,朱文杰.四种发光细菌的生物发光的微分光谱.华东师范大学学报(自然科学版),1998,1:88-91
    [28]高守一,魏承毓.霍乱防治手册(第5版)中华人民共和国卫生部疾病控制司出版,1999.
    [29] Performance Standards for Antimicrobial Disc Susceptibility Tests.NCCLS,U.S.A.1997
    [30]Huang X B, Zheng Y X, Zhu W J, et al. The Isolation and Identification of Marine Luminous Bacteria From the Waters of The BoHai Sea. Marine Science. 1991, 6:61-65
    [31]Shen J W, Yang Y K. The Isolation and Identification of Marine Luminous Bacteria From the Waters of The HuangHai Sea. Oceanologia Et Limnologia Sinica. 1987, 4:332-339
    [32]Du Z J, Wang X H, Li H F, et al. Isolation and Identification of a Luminous Bacterium D40 and Primary Studies On Its Luminescent Conditions. Transaction of Oceanology and Limnology. 2003, 2:58-63
    [33] Daubner S C, Thomas O B. Interaction between Luciferase from Various species of Bioluminescent bacteria and the Yellow Fluorescent Protein of Vibrio fischeri strain Y-1.Biochemical and Biophysical Research Communications.1989,161(3):1191-1198
    [34]Macheroux P, Schmidt K U, Steinerstauch P et al. Purification of the Yellow Protein from Vibrio Fischeri and Identity of the Flavin Chromophore. Biochemical and Biophysical Research Communications.1987,146(1):101-106
    [35] Jensen M. J, Tebo P, Baumann M, et al. Characterization of Alteromonas hanedai (sp. nov.), a nonfermentative luminous species of marine origin. Curr. Microbiol. 1980,3:311–315
    [36]Baumann, P, Baumann L. 1981. The marine Gram-negative bacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. The Prokaryotes,1981,35(3):1302–1331
    [37]李炳学,张宁,李亮亮等.发光细菌检测污水毒性的工艺参数的确定[J].环境污染与防治,2006,6:1-6
    [38]Meighen E A. Molecular biology of bacterial bioluminescence. Microbiol. Rev., 1991, 55:123–142
    [39]Hastings J W, Nealson KH. Bacterial bioluminescence. Ann. Rev. Microbiol. 1977, 31:549–595
    [40] Hastings J W, Potrikus C J, Gupta S et al. Biochemistry and physiology of bioluminescent bacteria. Adv. Microb. Physiol., 1985, 26:235–291
    [41]胡昌勤.抗生素微生物检定法及其标准操作.气象出版社.2004,11
    [42]Hajime K, Taku K. In vitro bacterial bioluminescence coupled with a mediated electrochemical process of flavin on a viologen polymer electrode. Bioelectrochemistry and Bioenergetics. 1998, 46:227-235
    [1] Jukka L, Raimo R, Malkov Y et al. The effect of luciferase and NADH:FMN oxidoreductase concentration on the light kinetics of bacterial bioluminescence. Biochemical and Biophysicalresearch communications. 1983,111(2):266-273
    [2]John L, Charles L M. Bacterial Bioluminescence: Absorption and Fluorescence Characteristics and Composition of Reaction Products of Reduced Flavin Mononucleotide with Luciferase and Oxygen. Biochemical and Biophysical Research Communications.1973, 53(1):157-163
    [3]Kenzaburo V, Masami T, Takao N. Intermediates in the Bacterial luciferase reaction. Biophysical Research Communications.1973, 52(4):1470-1474
    [4]Li Z, Edward A M. Fatty Acid-Enhanced Binding of Flavin Mononucleotide to Bacterial Luciferase Measured by Steady-State Fluorescence. Biophysical Research Communications.1992, 188(2):497-502
    [5]Daubner S C, Thomas O B. Interaction between Luciferase from Various species of Bioluminescent bacteria and the Yellow Fluorescent Protein of Vibrio fischeri strain Y-1.Biochemical and Biophysical Research Communications.1989, 161(3):1191-1198
    [6]Thomas O B, Jon A C, Frank M R et al. Structure of bacterial luciferase. Current Opinion in Biology.1995, 5:798-809
    [7]Miguel A G, Edward A G,Nicoli M Z et al. Purification and properties of Bacterial Luciferase. Journal of Biological chemistry.1971, 247(2):398-404
    [8]Thomas F H, Thomas O B. The effect of phosphate on the structure and stability of the luciferase from V.harvyi, P.photobacterium. Biochemical and Biophysical Research Communications.1980, 94(4):1199-1206
    [9]杨芳,王新风,李刚等.不同碳、氮源对羊肚菌生长与胞内多糖的影响.食品科学.2007,11:29-32
    [10]Ugarova N N, Lebedeva O V, Frumkina I G. Bioluminescent microassay of various metabolites using bacterial luciferase co-immobilized with multienzyme systems. Analytical Biochemistry. 1998, 173(2):221-227
    [11]Baumann, P, Baumann L. 1981. The marine Gram-negative bacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. The Prokaryotes,1981,35(3):1302–1331
    [12]蒋爱民,杨公明,Haifeng等.转基因生物发光菌研究及其在乳品科学研究中的应用.食品科技,2004,21:45-49
    [13]张逢春,罗速.发光杆菌荧光速酶的提取.北华大学学报.2001,11(2):32-34
    [14]杨汝德主编.现代工业微生物学.华南理工大学出版社.2000
    [15]钱铭镛主编.发酵工程优化控制.江苏科学出版社.1998
    [16]蒋爱民,魏素红,Wang H F等.Lux基因发光菌的研究及其在食品科学中的应用.中国食品学报.2003, 16(2):33-35
    [17]蒋爱民,杨公明,李元瑞等.Lux基因发光乳球菌构建方法的研究.中国食品学报. 2003, 17(3):51-54
    [18]Hajime K, Taku K. In vitro bacterial bioluminescence coupled with a mediated electrochemical process of flavin on a viologen polymer electrode. Bioelectrochemistry and Bioenergetics. 1998, 46:227-235
    [19] Meighen E A, Dunlap P V. Physiological, biochemical and genetic control of bacterial bioluminescence. Adv. Microb. Physiol., 1993, 34:65–67
    [20] Manfred K Z, Peter M, Sandro G. Bioluminescence emission of bacterial luciferase with 1-deaza-FMN.Eur.J.Biochem.1989,181:453-457
    [21]Watanabe H, Toshiyuki N, Humio I. Luminescence of a bacterial luciferase intermediate by reaction with H2O2: the evolutionary origin of luceferase and source of endogenous light emission. Biochimica et Biophysica Acta,1993, 1141:297-302
    [22]Erlanger B F, Isambert M F, Michelson A M. Insoluble Bacterial Luciferase: A new approach to Some Problems in Bioluminescence. Biochemical and Biophysical Research Communications.1970, 40(1):70-76
    [1] Jack T, Benfang L, Mengyao L et al. Crystallization and Preliminary Crystallographic Analysis of NADPH:FMN Oxidoreductase from Vibrio harveyi .J Mole Biology.1994,241(2):283-287
    [2]Ugarova N N, Lebedeva O V, Frumkina I G. Bioluminescent microassay of various metabolites using bacterial luciferase co-immobilized with multienzyme systems. Analytical Biochemistry. 1998,173(2):221-227
    [3]Caroll H, Earl K. Luciferase-based Assay for Rapid Screening of Antivirals against Human Cytomegalovirus. Antiviral Research.2008,78(2):57-58
    [4]Jukka L, Raimo R, Malkov Y et al. The effect of luciferase and NADH:FMN oxidoreductase concentration on the light kinetics of bacterial bioluminescence. Biochemical and Biophysical research communications. 1983,111(2):266-273
    [5] Rose S, Gregor J, David Y et al. Bright stable luminescent yeast using bacterial luciferase as a sensor. Biochemical and Biophysical Research Communications.2003,309(1):66-70
    [6]Edward J, Marlene D. Immobilization of bacterial luciferase and FMNreductase on glass rods. Biochemisty. 1976,73(11):3848-3851
    [7]汪家政,范明.蛋白质技术手册,科学出版社,2000-8
    [8]李忠琴,许小平,邬敏辰等.节杆菌黄嘌呤氧化酶提取优化的初步研究.中国生化药物杂志.2007,11(5):43-46
    [9]陆宏达,刘凯,张明辉.中华绒螯蟹血淋巴中酚氧化酶的部分生化特性.上海水产大学学报.2007,6(3):53-55
    [10]王玉美,田亚平,赵光鳌等.肠杆菌酸性脲酶的提取及基本特性.食品工业科技,2007,51(4):26-29
    [11]吴桂英,吴元欣,赵玉凤等.破碎酵母释放乙醛脱氢酶的研究.酿酒科技.2006,11(3):33-36
    [12]宋宇,王文栋,张瑾.出血性大肠杆菌O157:H7破碎方法的比较.辽东学院学报.2006,16(2):49-52
    [13]Miguel A G, Edward A G,Nicoli M Z et al. Purification and properties of Bacterial Luciferase. Journal of Biological chemistry.1971,247(2):398-404
    [14]Vetrova E, Esimbekova E, Remmel N et al. A bioluminescent signal system:detection of chemical toxicants in water. Luminescence.2007,96(11):35-41
    [15]Haruo W, Toshiyuki N, Humio I. Luminescence of a bacterial luciferase intermediate by reaction with H2O2: the evolutionary origin of luciferase and source of endogenous light emission. Biochimica et Biophysica Acta. 1993,1141:297-302
    [16]汪兴平,谢笔钧,程超等.反复冻融法在葛仙米破壁技术上的应用.食品科学.2005,11(3):45-47
    [17]许可,黄卓烈,邱桂英等.超声波对海芋过氧化物酶催化活性影响的机理.华南农业大学学报.2007,25(4):6-69
    [18]Daubner S C, Thomas O B. Interaction between Luciferase from Various species of Bioluminescent bacteria and the Yellow Fluorescent Protein of Vibrio fischeri strain Y-1.Biochemical and Biophysical Research Communications.1989,161(3):1191-1198
    [19]王雪青,苗惠,翟燕.微藻细胞破碎方法的研究.天津科技大学学报.2007,11(1):41-44
    [20]Jenny W, Homas O B. Individual a and ? subunits of Bacterial Luciferase Exhibit Bioluminescence Activity. Biochmical and Biophysical Research Communications. 1991,178 (3): 1188-1193
    [21]Thomas O B, Jon A C, Frank M R et al. Structure of bacterial luciferase. Current Opinion in Biology.1995,5:798-809
    [22]Fisher A J, Raushel F M, Baldwin T O et al. The three-dimensional structure of bacterial luciferase from Vibrio harveyi. Biochemistry.1995,34:6581-6586.
    [23]魏丽莉.细菌对抗生素耐药性的研究进展.生物学教学.2007, 9:51-53
    [24]王镜岩,朱圣庚,徐长法.生物化学.高等教育出版社.2002, 9
    [25]Thomas F H, Thomas O B. The effect of phosphate on the structure and stability of the luciferase from V.harvyi, P.photobacterium. Biochemical and Biophysical Research Comm- unications. 1980, 94(4): 1199-1206
    [1]李凯年,逯德山.水产品药物残留对中国水产品出口的影响与对策.世界农业,2007,117(9):56-58
    [2]赵健,桂文君,王美英等.食品中氯霉素检测方法研究进展.安徽农学通报.2007,18(17):35-37
    [3]徐国茂.我国畜产品质量安全与隐患.中国食物与营养.2004,8(4):61-64
    [4]唐江芳.水产药物残留的研究现状.南方农业.2007,16(1):41-43
    [5]Anon. Improvises testing for chloramphenicol in seafood. Seafood Export Journal, USFDA 2002,10(5):103-105
    [6]Fabiansson, S., Nilsson, T., Backstrom, J. Tissues concentrations of chloramphenicol after intramuscular injection in pigs. J Sci Food Agric. 1976,27:1156–1162.
    [7]Hanekamp, J. C. Chloramphenicol in shrimp. Global Aquacul Advo.2002,15 (10): 64?68.
    [8]Sorensen, L.K., Elbek, T.H., and Hansen, H. Determination of chloramphenicol in bovine milk by liquid chromatography/tandem mass spectrometry. Anal Chem. 2003, 86(3): 703–706.
    [9]沈建忠,吴永宁,何方洋等.动物食品中药物残留及化学污染物检测关键技术与试剂盒产业化.中国食品卫生杂志.2007,11(3):109-113
    [10]刘功良,王菊芳,李志勇等.重金属离子的免疫检测研究进展.生物工程学报,2006,22(6):877-880
    [11]GB/T 5009.17-2003.食品中总汞及有机汞的测定.中华人民共和国国家标准,2003:129-142
    [12]GB/T 5009.15-2003.食品中镉的测定.中华人民共和国国家标准,2003:111-120
    [13]GB/T 5009.123-2003.食品中铬的测定.中华人民共和国国家标准,2003:109-114
    [14]许牡丹,毛跟年.食品安全性与分析检测.北京:化学工业出版社,2003:186-188
    [15] Huang X B, Zheng Y X, Zhu W J, et al. The Isolation and Identification of Marine Luminous Bacteria From the Waters of The BoHai Sea. Marine Science. 1991,6: 61-65
    [16]赵军,朱晨,王晖.反相高效液相色谱法同时测定多种β-内酰胺类抗生素[J].山东大学学报(工学版),2006,6:69-72
    [17]宋燕玲,席志芳.高效液相色谱-蒸发光散射检测法测定磷霉素钙胶囊含量[J].中国抗生素杂志,2006,4:51-52
    [18]郑卫平,谢丽琪,吉彩霓,陈佩金.高效液相色谱法测定动物组织中四环素类抗生素残留量的研究[J].分析实验室,2006,10:24-28
    [19]王立,林洪,江洁.液相色谱法测定水产品中链霉素残留.中国食品学报.2006,3:204-207
    [20]徐英江,张秀珍,刘丽娟.水产品中氯霉素残留量气相色谱检测方法的探讨.食品科学,2006,7:222-224
    [21]秦永平.反相高效液相色谱法测定血浆中青霉素浓度.临床药学,2005,13:999-1000
    [22] Nelson, J. R., Copeland, K. F. T., Campbell, R. J., Forster, D. J., and Black, W. D. Sensitivegas–liquid chromatographic method for chloramphenicol in animal tissues using electron-capture detection. J Chromatog, 1983,27(6): 438?444.
    [23]Pfenning, A. P., Roybal, J. E., Rupp,H. S et al. Simultaneous determination of residues of chloramphenicol, florfenicol, florfenicol amine, and thiamphenicol in shrimp tissue by gas chromatography with electron capture detection. J- Assn offi Anal Chem, 2000,83(2): 26?31.
    [24] Arts, C., Wichen, P. V., Hestner, A., et al. A comparative study of two immunoassay for the detection of chloramphenicol in milk and shrimps. Paper presented at 117th AOAC Annual Meeting and Exposition, 2003, September 14– 18, Atlanta, Georgia, USA.
    [25]王华,王刚,吴筱丹,朱亚尔.反相高效液相色谱法检测人血浆中罗红霉素浓度.中国现代应用药学杂志.2006,9:922-923.
    [26]Sorensen, L. K., Elbek, T. H., Hansen, H.. Determination of chloramphenicol in bovine milk by liquid chromatography/tandem mass spectrometry. J- Assn offi Anal Chem, 2003,18(6): 703?706.
    [27]Tyrpenou, A E, Rigos, G G, Athanassopoulou, F. Determination of chloramphenicol residues in Gilthead Seabream (Sparus aurata L.) tissues by HPLC-PDA. J Liq Chromatogy R T, 2002,25(3): 655?663.
    [28]Elena F, Jean-Claude M, Isabel V. Study on the toxicity of binary equitoxic mixtures of metals using the luminescent bacteria Vibrio fischeri as a biological target[J]. Chemosphere 2005, 58(4): 551–557
    [29]Preston, S, Coad N, Townend, J, et al. Biosensing the acute toxicity of metal interactions: are they additive, synergistic, or antagonistic? Environmental Toxicology and Chemistry 2000,19(11): 775–780
    [30]Sisko T, Matti K, Wei C et al. Luminescent bacterial sensor for cadmium and lead. Biosensors and Bioelectronics.1998,13:931-938
    [31]胡昌勤.抗生素微生物检定法及其标准操作.气象出版社.2004,11
    [32] Performance Standards for Antimicrobial Disc Susceptibility Tests.NCCLS,U.S.A.1997
    [33]周德.微生物教程.高等教育出版社.2002,5
    [34]Korsrud, G O, Naylor J M, Salibury C D et al. A comparison of the three bioassay techniques for the selection of chloramphenicol residues in animal tissues. J Agr Food Chem, 1987,35: 556?559.
    [35]Munns R K, Holland D C, Roybal J E et al. Gas chromatographic determination of chloramphenicol residues in shrimp: Interlaboratory study. J- Assn offi Anal Chem, 1994, 77: 596?601.
    [36]Fabiansson S, Nilsson T, Backstrom J. Tissues concentrations of chloramphenicol after intramuscular injection in pigs. J Sci Food Agr, 1976, 27: 1156?1162.
    [37]SC/T 3018-2004.水产品中氯霉素残留量的测定.中华人民共和国水产行业标准2004,3
    [38]Mottier P, Veronique P, Gremaud E. Determination of the antibiotic chloramphenicol in meat and seafood products by liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogy, 2003, 24:75-84
    [39]Shakila R J, Vyla S A P, Sarvanakumar R et al. Photobacterium leiognathi for bioassay of chloramphenicol residues in shrimps. Indian J Microbiol, 2004,44, 16?19.
    [40]Shakila R J, Vyla S A P, Sarvanakumar R et al. Stability of chloramphenicol residues in shrimps subjected to heat processing treatments. J Food Microbiol, 2005,23, 47?51.
    [41]孙雅量,李光道,袁津玮.生物发光发测定氯霉素和金霉素含量.同济医科大学学报,1997,4:156-157.
    [42]Chi-Ying H, Meng-Hsiun T, David K Ret al. Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox chronic toxicity test. The Science of the Total Environment. 2004,320:37-50
    [43]Daly H R, Johns M J, Hart BT et al.Copper toxicity to Paratya Australiensis: III.Influence of dissolved organic matter. Envir on Toxicol Chem. 1990,9:1013–1018
    [44]Kong IC, Bitton G, Koopman B, Jung KH.Heavy metal toxicity testing in environmental samples.Rev Environ Contam Toxicol. 1995,142:119–147
    [45]Ren S J, Paul D. Frymier. Kinetics of the toxicity of metals to luminescent bacteria. Advances in Environmental Research.2003,7: 537–547
    [46]闫鹏,李百祥,王德才等.细菌发光传感器对污染物急性毒性快速检测的研究.中国卫生工程学.2002,1(2):65-68
    [47]黄正,汪亚洲,王家玲.细菌发光传感器在快速检测污染物急性毒性着那个的应用.Environmental Science.1997,4(7):15-18
    [48]袁星,郎佩珍,龙凤山等.硝基芳烃对发光菌及其它水生生物毒性的相关性.吉林大学自然科学学报.1994,11(4):97-99
    [49]黄满红,李咏梅,顾国维.污水毒性的生物测试方法.工业水处理.2003,23(11):14-17
    [50]金明华,吕春平,刘晓梅等.甲基汞对发光菌的毒性及锌的拮抗作用.吉林大学学报.2005,14(3):101-104
    [1]刘功良,王菊芳,李志勇等.重金属离子的免疫检测研究进展.生物工程学报,2006,22(6):877-880
    [2]GB/T 5009.17-2003.食品中总汞及有机汞的测定.中华人民共和国国家标准,2003:129-142
    [3]GB/T 5009.15-2003.食品中镉的测定.中华人民共和国国家标准,2003:111-120
    [4]GB/T 5009.123-2003.食品中铬的测定.中华人民共和国国家标准,2003:109-114
    [5]许牡丹,毛跟年.食品安全性与分析检测.北京:化学工业出版社,2003:186-188
    [6]宋宏新,李宏.肠出血性大肠杆菌O157:H7的检测方法进展.食品科学.2007,197(11):42-45
    [7]牛天贵,张宝芹.食品微生物检验.中国计量出版社.2003,11
    [8]周德庆.微生物教程.高等教育出版社.2002,5
    [9]中国预防医学科学院标准处.食品卫生国家标准汇编.北京:中国标准出版社.1987.
    [10]GB4789.1-4789.31-94中华人民共和国国家标准.
    [11]Michael S, Curiale.Dryrehydratable films for enumeration of coliforms and aerobic becteriain dairy products. J.ASSOC.OFF.ANAN.CHEM.1989,72(2):312-318
    [12]唐漪灵,郭弈芳,吴诩等.Petrifilm纸片法和国标法检测奶制品细菌总数和大肠杆菌群数的结果比较.中国卫生检验杂志.2006,10(6):325-327
    [13]王镜岩,朱圣庚,徐长法.生物化学.高等教育出版社.2002,9
    [14]蒋士强.食品质量安全检测中对科学仪器设备的需求.现代科学仪器.2007,10(4):25-28
    [15]黄正,汪亚洲,汪家玲.用于污染物毒性检测的细菌发光传感器的研制.传感器技术,1997,16(3):13-18
    [16]李百祥,王德才,闫鹏.急性毒性发光细菌传感器和急性毒性快速测定仪的研究.中国卫生检验杂志.2008,12(4):397-400
    [17]闫鹏,李百祥,王德才等.细菌发光传感器对污染物急性毒性快速检测的研究.中国卫生工程学.2002,1(2):65-68
    [18]Martini G, Ursini M V. A new lease of life for an old enzyme. Bioessays.1996, 18:613–637.
    [19]Stamler J S, Singel D J et al. Biochemistry of nitric oxide and its redox-activated forms. Science 1992,258:1898–1902.
    [20]Tian W N, Braunstein L D, Pang J et al. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J. Biol.Chem.1998, 273:10609–10617.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700