Si衬底GaN基LED薄膜转移电镀金属基板研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电镀金属基板的最显著优势是提高GaN LED的散热性能和光电特性,尤其是大功率GaN LED。目前,将蓝宝石、SiC衬底GaN薄膜转移至电镀基板的技术已经得到了广泛的研究。然而据我们所知,有关Si衬底GaN薄膜转移至电镀基板研究的报道很少,而对转移前后应力变化的研究还未曾有过报道。
     本文采用电镀金属基板和化学腐蚀的方法将Si衬底GaN LED薄膜转移至金属基板,并结合高分辨X射线衍射(HRXRD)和光致发光(PL)的方法研究转移对GaN薄膜应力的影响。此外,为了改善电镀基板结构,本文初步摸索了图形化电镀方法。本文的主要研究内容和结果如下:
     1.本文制备了铜基板、铬基板、铜/镍/铜叠层基板等三种电镀基板,然后采用HRXRD和PL研究转移至这些电镀基板的GaN薄膜应力状况。应力分析表明:GaN薄膜从Si衬底转移至这三种电镀基板后,由外延生长引入的张应力都得到了释放,其中铬基板GaN薄膜的张应力最小。
     2.本文中的铬基板是由铜过渡层和铬主体层组成的。通过对铬主体层的厚度进行改变发现:随着电镀的铬基板中铬主体层厚度的增加,转移至铬基板的GaN薄膜应力不发生明显变化。
     3.本文采用光刻胶涂覆晶片沟槽,使电镀过程中金属材料被分开沉积。通过这种方法制作的铜基板呈现出了清晰明显的图形化,厚度约为20μm。后来通过采用两次该方法使图形化铜基板厚度达到了约40μm,然而第二次的铜层呈现出了粗糙的边缘。
     4.本文验证了铬不能直接电沉积在铂上,因此将铂沉积在沟槽里,以防止铬在沟槽上方形成。然而,通过这种方法制作的铬基板没能呈现出图形化,因为在电镀之前一些铂从沟槽里脱落下来,而剩下的铂在电镀过程中被铬覆盖,这些铬是从侧边生长过来的,而不是在铂上直接电沉积的。
Plating metal substrate has the most prominent advantages of enhancing the thermal conductivity, optical and electrical properties of GaN LED, especially the high-power GaN LED. At present, there has been an extensive investigation on the GaN films transfer from sapphire or SiC substrate to plating substrate. Whereas, there has been a few reports about the transfer of silicon substrate GaN films, and by now even no research on the stress transformation in the film transfer, according to our knowledge。
     In this thesis, plating and chemical etching method was adopted to transfer GaN films from silicon to metal substrate, and the stress transformation caused by transfer was researched by HRXRD (high resolution X-ray diffraction) and PL (photoluminescence)method. In addition, for the improvement of substrate structure, pattern plating method was investigated. To sum up, the main content of this thesis and some main conclusions are as follows:
     1. Three kinds of plating substrates were prepared, including copper, chrome and copper/nickel/copper substrates. Then HRXRD and PL were used to investigate the stress of GaN films on those plating substrates. And the stress analysis showed that, the tensile stress in GaN films caused by epitaxial growth can be released when GaN films was transferred to those plating substrates from silicon substrate. And the GaN films on chrome substrate had a least tensile stress.
     2. In this thesis, the chrome substrate were composed of copper transition layer and chrome sustentation layer. Then the thickness of chrome sustentation layer was investigated. And it was recognized that the thickness of chrome sustentation layer had no obvious influence on the stress of GaN films on the chrome substrate.
     3. In this thesis, photoresist was used to cover the groove on the wafer, which can made metal meterial electrodeposite dividually in the plating process. And the copper substrate fabricated by this method showed a transparent pattern with thickness of about 20 micron. Afterward, the thickness of pattern copper substrate reached about 40 micron by using that method twice, however, the second copper layer presented a rough edge.
     4. In this thesis, it was recognized that chrome can not electrodeposite directly on platinum. So platinum was deposited on the groove, in order to prevent chrome form above the groove. However, the chrome substrate prepared by this method can not show any pattern, because some platinum fell off the groove before plating and the rest platinum can be coverd by chrome which growed from side, not directly electrodeposited on platinum.
引文
[1]E. Fred Schubert. LIGHT-EMITING DIODES[M]. P:1
    [2]Isamu Akasaki. Key inventions in the history of nitride-based blue LED and LD. Journal of Crystal Growth,300(2007):2-10
    [3]E. Fred Schubert. LIGHT-EMITING DIODES[M]. P:8
    [4]E. Fred Schubert. LIGHT-EMITING DIODES[M]. P:17
    [5]Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu, et al. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Jpn. J. Appl. Phys.,28 (1989) PP.L2112-L2114
    [6]S. Nakamura, M. Senoh, T. Mukai. Highly p-type Mg-doped GaN films grown with GaN buffer layers. Jpn. J. Appl. Phys.,30(1991) pp.L1708-L1711
    [7]S. Nakamura, T. Mukai, M. Senoh, et al. Thermal annealing effects on P-type Mg-doped GaN films. Jpn. J. Appl. Phys.,31(1992) pp.L139-142.
    [8]S.Nakamura, T.Mukai, M. Senoh. Si-doped InGaN films grown on GaN films. Jpn.J.Appl.phys.,31(1992) pp.L1457
    [9]S. Nakamura, G.Fasol and S. Pearton, The Blue Laser Diode:the complete story (springer,New York,2000)
    [10]Shuji Nakamura, Masayuki Senoh, Naruhito Iwasa, et al. High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures. Jpn. J. Appl. Phys.,34 (1995) pp. L797-L799
    [11]Cree web site http://www.cree.com/products/ezbright.asp
    [12]H.Morkoc, S.Strite, G.B.Gao, et al. Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies. J. Appl.Phys.,76,1363 (1994)
    [13]A. R. Smith, R. M. Feenstra, D. W. Greve, et al. Reconstructions of the GaN(000[overline 1]) Surface. Phys.Rev. Lett.,79,3934 (1997)
    [14]梁春广,张翼.GaN--第三代半导体曙光.半导体学报,1999,20(2):89-99
    [15]F. A. Ponce, D. P. Bour, W. T. Yong, et al, Determination of lattice polarity for growth of GaN bulk single crystals and epitaxial layers. Appl.Phys.Lett.,69,337 (1996)
    [16]J.I.Pankove, J.E.Berkeyheiser, H.P.Maruska,et al. Solid state Commun.,8,1050,(1970)
    [17]B.Monemar, Phys.Rev.B. Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev.B.,10,676 (1974)
    [18]S.Bloom. Band structures of GaN and AIN. J.Phys.Chem.Solids.,1971.32(9):2027-2032
    [19]S.Bloom,G.Harbeke,E.Meier, I.B.Ortenburger. Band Structure and Reflectivity of GaN. Phys.Stat.Sol.B.,66,161,(1974)
    [20]G.D.Chen, M.Smith, J.Y.Lin, et al. Fundamental optical transitions in GaN. Appl.Phys.Lett., 68,2784,(1996)
    [21]M. Smith, J. Y. Lin, H. X. Jiang. Room temperature intrinsic optical transition in GaN epilayers:The band-to-band versus excitonic transitions. Appl. Phys. Lett.,71,635 (1997)
    [22]Li Shuti, Mo Chunlan, Wang li, et al. The influence of Si-doping to the growth rate and yellow luminescence of GaN grown by MOCVD. J. Luminesecence,2001,93(4):321-326
    [23]T.Ogino, M.Aoki. Mechanism of Yellow Luminescence in GaN. Jpn.J.Appl.Phys.,19, 2395(1980)
    [24]D.M.Hofmann, D.Kovalev, G.Steude, et al. Properties of the yellow luminescence in endoped GaN epitaxial layers. Phys.Rev.B52,16702(1995)
    [25]T.A.Kennedy, E.R.Glaser, J.A.Freitas, et al. Native defects and dopants in gan studied through photoluminescence and optically detected magnetic resonance. J. Electron. Mater.24, 219(1995)
    [26]E.R.Glaser, T.A.Kennedy, K.Doverspike, et al. Optically detected magnetic resonance of GaN films grown by organometallic chemical-vapor deposition. Phys.Rev.B51,13326(1995)
    [27]K.Saarinen, T.Laine, S.Kuisma, J.Nissila, et al. Observation of Native Ga Vacancies in GaN by Positron Annihilation. Phys.Rev.Lett.,79,3030(1997)
    [28]S.Nakamura. GaN Growth Using GaN Buffer Layer. Jpn.J.Appl.Phys.,30:L1705-1707 (1991)
    [29]T.L.Tansley, R.J.Egan. Point-defect energies in the nitrides of aluminum, gallium, and indium. Phys.Rev.B.,45:10942 (1992)
    [30]W.Gotz. Activation energies of Si donors in GaN. Appl.Phys.Lett.,68:3144 (1996)
    [31]J.Neugebauer, C.Van de Walle. Gallium vacancies and the yellow luminescence in GaN. Appl.Phys.Lett.,69:503 (1996)
    [32]T.Mattila, R.M.Nieminen. Point-defect complexes and broadband luminescence in GaN and AlN. Phys.Rev.B.,55:9571 (1997)
    [33]S.N.Mohammad, H.Morkoc. Progress and prospects of group-Ⅲ nitride semiconductors. Prog.Qquant.Electr.,20(5/6):370 (1996)
    [34]W.S. Wong, T. Sands, NW Cheung, et al.InxGa1-xN light emitting diodes on Si substrates fabricated by Pd-In metal bonding and laser lift-off[J].Appl. Phys. Lett.,2000,77(18),2822-2825.
    [35]Rainer Dohle, G. Callahan, J. Martin, et al. A new bonding technique for microwave devices, IEEE,1996,19(1):57-63
    [36]T. Fujii, Y. Gao, R. Sharma, et al. increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett.,84:855(2004)
    [37]S. C. Hsu, C. Y. Liu. Fabrication of Thin-GaN LED Structures by Au-Si Wafer Bonding. Electrochem. Solid-State Lett.,2006,9(5):G171-G173
    [38]Jin-Wook Jang, Scott Hayes, Jong-Kai Lin, et al. Interfacial reaction of eutectic AuSi solder with Si(100) and Si(111) surfaces. J. Appl. Phys,95,6077 (2004)
    [39]M Kneissl, DP Bour, CG Van de Walle, et al. Room-temperature continuous-wave operation of InGaN multiple-quantum-well laser diodes with an asymmetric waveguide structure. Appl. Phys. Lett.,75,581(1999)
    [40]WS Wong, M Kneissl, P Mei, et al. Continuous-wave InGaN multiple-quantum-well laser diodes on copper substrates. Appl. Phys. Lett., 7, 188(2001)
    [41]M. Kneissl et al. Materials Science and Engineering B93 (2002) 68~72
    [42]Lasers and Electro-Optics,2003. CLEO/Pacific Rim 2003. The 5th Pacific Rim Conferenceon][邱祥恩,国立中央大学 化学工程与材料工程研究所 硕士毕业论文,2006
    [43]Fang-I Lai, Chen-Fu Chu, Jung-Tang Chu, et al. Improvement of high power and high current operation of GaN Light Emitting Diodes by Laser Lift-off Technique. Optical Society of America,2003, http://rdweb.adm.nctu.edu.tw/admin/files/PHD2004/04D065paper.pdf
    [44]Bee Sim Tan, Shu Yuan, Xue Jun Kang. Performance enhancement of InGaN light-emitting diodes by laser lift-off and transfer from sapphire to copper substrate. Appl. Phys. Lett.,84, 2757(2004)
    [45]B. J. Zhang, Takashi Egawa et al, APPLIED PHYSICS LETTERS 86,071113 (2005)
    [46]High-power GaN light-emitting diodes with patterned copper substrates by electroplating. Phys. Stat. Sol. (a) 201, No.12,2786-2790 (2004)
    [47]T. Doan, C. Chu, C. Chen, et al. Vertical GaN based Light Emitting Diodes on Metal Alloy Substrate for Solid State Lighting Application. Proc. of SPIE Vol.6134,61340Q (2006)
    [48]Chao-Chen Cheng, Chen-Fu Chu, Wen-Huan Liu, et al. Highly Efficient GaN Vertical Light Emitting Diode on Metal Alloy Substrate from Near UV to Green Color for Solid State Lighting Application. Proc. SPIE, Vol.6337,633703 (2006)
    [49]Chao-Chen Cheng, Chen-Fu Chu Wen-Huan (?) Light-Emitting Diodes on Metal Alloy Substrate for Solid State Lighting Application. Proc. of SPIE Vol.6337,633705, (2006)
    [50]T. Doan, C. Chu, C. Chen, et al. Vertical GaN based Light Emitting Diodes on Metal Alloy Substrate Boosts High Power LED performance. Proc. of SPIE Vol.6669,666903, (2007)
    [51]方圆,郭霞,沈光地.激光剥离技术实现GaN薄膜从蓝宝石衬底转移至Cu衬底.激光与红外,37(1),2007
    [52]C. N. Han, C. F. Huang, et al, Sapphire-removed induced the deformation of high power InGaN light emitting diodes,9th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2008
    [53]陈学龙,国立成功大学博士学位论文,2007:http://etdncku.lib.ncku.edu.tw/ETD-db/
    [54]Shui-Jinn Wang, Kai-Ming Uang, Shiue-Lung Chen, et al. Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes. Appl. Phys. Lett.87,011111 (2005)
    [55]M. K. Kelly, O. Ambacher, B. Dahlheimer, et al. Optical patterning of GaN films, Appl. Phys. Lett.69 (12),16 September 1996
    [56]W. S. Wong, L. F. Schloss, G. S. Sudhir, et al. presented at the Materials Research Society 1996 Fall Meeting,2-6 December 1996, Boston, MA.
    [57]M. K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, and M. Stutzmann, Phys. Status Solidi A 159, R3~1997
    [58]W. S. Wong, T. Sands. Damage-free separation of GaN thin films from sapphire substrates, Appl. Phys. Lett.72 (5),1998
    [59]W. S. Wonga and T. Sands et al, Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl. Phys. Lett.,75(10),1999
    [60]William S. Wong et al, Continuous-wave InGaN multiple-quantum-well laser diodes on copper substrates. Appl. Phys. Lett.,78(9),2001
    [61]Chen Fuchu, Fang Ilai, Jung Tangchu,et al. Study of GaN light-emitting diodes fabricated by laser lift-off technique. Appl Phys.2004,95(8):3916-3923.
    [62]S Nakamura, S DenBaars-US Patent App.10/841,016,2004-Google Patents
    [63]W. H. Chen, X. N. Kang, X. D. Hu et al, Study of the structural damage in the (0001)GaN epilayer processed by laser lift-off techniques. Appl. Phys. Lett.,91,114(2007)
    [64]莫春兰,南昌大学博士学位论文,2006
    [65]S. Guha, N.A. Bojarczuk, Appl.Phys.Lett.72,415(1998)
    [66]C.A. Tran, A. Osinski, R.F. Karlicek, et al. Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy. Appl.Phys.Lett., 75,1494(1999)
    [67]J. W. Yang et al., Appl. Phys. Lett., Vol.76 (2000) p.273
    [68]A.Dadgar et al., Appl. Phys. Lett., Vol.78 (2001) p.2211
    [69]T. Egawa et al., Jpn. J. Appl. Phys., Vol.41 (2002) p. L663
    [70]T. Egawa, B.Zhang, and H.Ishikawa; IEEE ELECTRON DEVICE LETTERS 2005,26(3):69
    [71]Chunlan Mo, Wenqing Fang, Fengyi Jiang, et al., J. Cryst. Growth 285 (2005) 312.
    [72]熊传兵,江风益,方文卿.硅衬底GaN蓝色发光材料转移前后应力变化研究.物理学报,2008,57(5):3176-3181
    [73]张书明,杨辉,段俐宏.氮化镓基蓝、绿光LED中游工艺技术产业化研究.液晶与显示,20.03,18(1):44-47
    [74]S Nakamura, S DenBaars-US Patent App.10/841,016,2004-Google Patents.
    [75]Dadgar A, Christen J, Riemann T, et al. Bright blue electroluminescence from an InGaN/GaN multiquantum-well diode on Si(111):Impact of an AlGaN/GaN multilayer. Appl.Phys.Lett.,2001,78(15):2211-2213.
    [76]Krost A, Dadgar A. GaN-based optoelectronics on silicon substrates. Mater. Scie. and Eng. B.2002,93(1-3):77-84
    [77]Mo Chunlan, Fang Wenqing, Liu Hechu, et al. Growth and device characteristic of InGaN MQW LED on Si substrate.Chin High Tech Lett.,2005,15(5):58-61
    [78]熊传兵,江风益,王立.硅衬底垂直结构InGaAlN多量子阱发光二极管电致发光谱的干涉现象研究.物理学报,2008,57(12):7860-7864
    [79]许振嘉.半导体的检测与分析.北京:科学出版社,2007:142-146,172-176
    [80]宁宁,熊杰,周勋.HRXRD研究退火时间对Mg掺杂p型GaN薄膜应变状态的影响.功能材料,2009,40(2):242-245
    [81]李戈,刘斌,谢自力.高分辨X射线衍射研究InGaN/GaN多量子阱结构In组分及厚度.功能材料,2008,39(8):1259-1260
    [82]Shapiro N A, Feick H, Hong W, et al. Luminescence energy and carrier lifetime in InGaN/GaN quantum wells as a function of applied biaxial strain. Appl Phys.,2003,94(7): 4520-4529

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700