硫化锌硫化镉微纳米材料的液相控制合成及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料的制备工艺路线对于它们的应用非常重要,如何探索和发展纳米材料的设计与合成的新途径、新方法始终是纳米材料研究领域中的一个重要课题。目前合成纳米材料的方法虽然很多,但获得尺寸可控、粒度均匀的纳米材料仍然存在一定的困难,因此探索一种设计简单、操作方便、成本低、产率高的方法,来实现对纳米材料的尺寸大小、粒径分布以及晶体结构和形貌的控制仍然是化学家和材料学家关心的课题之一。
     ZnS和CdS等半导体纳米粉末在光、电、磁、催化和力学等方面有着特殊的性能,这与其具有多种晶体形态和不同形貌紧密相关,而制备可控粒度、形状、取向的ZnS和CdS半导体纳米粉末,研究其形貌的影响因素,同时解释晶体的生长机理是实现形貌和尺寸控制的一个重要途径,对材料付诸于工业应用具有十分重要的意义。
     本文选取了Ⅱ-Ⅵ族硫属化合物中的硫化锌和硫化镉为研究对象,对它们的制备以及形貌的控制方法进行了研究,论文的主要工作总结如下:
     1、水热分解法制备硫化锌微纳米材料
     以硫脲为硫源,与乙酸锌在水热条件下,通过改变不同的反应物配比、反应温度及时间,得到了硫化锌微米球及纳米粒子,通过TEM及SEM对产物的观察,发现硫化锌微米球是由小的纳米粒子聚集而成。当反应物摩尔比Zn~(2+):Tu=1:4,且反应温度为180℃,反应时间大于等于10h的条件下,得到粒径为100nm左右的硫化锌纳米粒子;而反应温度小于180℃且反应时间小于10h时,或者当反应物的摩尔比Zn~(2+):Tu<1:4时,得到的产物均为3-5μm的微米球。
     以硫氰酸铵为硫源,与氯化锌在水热条件下反应制备出了分散性良好,粒径为30-50nm的硫化锌球状纳米粒子。随着反应温度的升高,其粒径逐渐增大,并发现反应物的摩尔比对硫化锌产物形貌的影响较小,因此可以通过改变反应温度就可以控制硫化锌纳米粒子的粒径。
     2、水热分解法制备硫化镉有序微结构材料
     以硫脲为硫源,以氯化镉为镉源,采用水热分解的合成方法,在水热体系中,制备了具有有序微结构的CdS晶体,并考察了反应温度及反应物的摩尔配比对产物形貌的影响,实验结果显示反应物Cd~(2-)/Tu的摩尔配比是影响产物形貌的关键因素。初步讨论了其形成过程及可能的反应机理,硫脲在反应中可能起到了两种作用,一是作为硫源,与氯化镉反应生成硫化镉;二是作为配合物模板从而起到对硫化镉有序微结构的形貌控制的作用。
     以硫氰酸铵作为硫源,研究了改变反应温度和反应物的配比对产物形貌的影响,实验结果发现改变反应物Cd~(2+)/NH_4SCN的摩尔配比同样是控制产物硫化镉形貌的关键因素。
     3、表面活性剂辅助水热法制备硫化锌硫化镉纳米粒子
     选取十二烷基硫酸钠在溶液中形成的胶束作为软模板,在水热条件下,利用乙酸锌和硫代乙酰胺反应,制备出了分散性良好的硫化锌纳米粒子,考察了十二烷基硫酸钠的浓度对产物的影响,并讨论了可能的机理。
     初步研究了由常温常压下制得的无规则形貌的硫化镉通过加入表面活性剂十二烷基硫酸钠、十二烷基磺酸钠以及十六烷基三甲基溴化铵,然后在180℃下进行水热处理,并与未加表面活性剂时的产物进行了对比,讨论了表面活性剂在水热处理中起到的修饰作用。
     4、微乳液水热法制备硫化锌硫化镉纳米材料
     选用十二烷基硫酸钠(SDS)/正庚烷/正己醇/水(盐溶液)组成的微乳液体系,结合水热法在120℃时,利用硫代乙酰胺的分解与乙酸锌反应制备出了硫化锌纳米空心球,主要考察了反应体系中w值以及反应温度对产物形貌的影响。实验结果发现可以通过调整w值可以控制产物的粒径,同时当反应体系达到一个较高的温度即180℃时,微乳体系被破坏而不能形成纳米空心球。
     选用十六烷基三甲基溴化铵(CTAB)/正戊醇/环己烷/水(盐溶液)组成的微乳液体系,结合水热法在140℃时,利用硫代乙酰胺的分解与氯化镉反应成功制备出了硫化镉纳米多边锥结构。
The synthesis processes of nanomaterials are very important for their application. Up to now, it is still an important task in the field of materials that how to develop a new method for preparing nanomaterials. Although there are many methods reported for preparing nanomaterials, it is still difficult to obtain materials with controllable morphologies and sizes. Therefore, it is attracting a great deal of attention of the chemists and materials researchers to explore a new method for obtaining low-cost mild reaction.
     ZnS and CdS semiconductor nanoparticles have special properties in some fields such as photoelectricity, magnetism, catalyses and energetics and so on, which is closely related to their different structures and morphologies. So it is very necessary for the industrialization to prepare ZnS and CdS semiconductor nanoparticles with controllable particle size, shape and crystallinity and their assemble products.
     In this dissertation,Ⅱ-Ⅵmetal chalcogenides ZnS and CdS are choosen to prepare, and the methods of controlling the morphology of ZnS and CdS are studied. The main work of this paper was summarized are as follows:
     1. Preparation of micro- and nanocrystalline ZnS by a hydrothermal decompostion method. ZnS microspheres and nanoparticles have been prepared by a hydrothermal decomposition method, which thiourea(Tu) was selected as a sulfur source and Zn(Ac)2 as zinc source. The reaction conditions of different reactant mol ratio, temperature and time were also study to control the morphology of products.lt has been found that ZnS microspheres are assembled by nanoparticles through TEM and SEM tests. The appropriate reaction conditions of preparing nanoparticles are reactant mol ratio of Zn~(2-) Tu be at 14, hydrothermal temperature be at 180℃, and hydrothermal treatment time≥10 hours TEM and SEM results show the nanoparticles are well-crystallized and diameter is about 100nm When hydrothermal temperature<180℃, and hydrothermal treatment time<10hours, or reactant mol ratio of Zn~(2-) Tu <1 4, 3-5μm microspheres are obtained In addition. well dispersed ZnS nanoparticles of 30-50nm have been prepared by a hydrothermal decomposition method, which NH4SCN was selected as a sulfur source and ZnCl_2 as zinc source. It has been found that the diameter of ZnS increases with hydrothermal temperature increasing and reactant mol ratio has little effect on the morphology of the products. So the diameter can be controlled by changing reaction temperature.
     2. Preparation of hierarchical microstructure CdS by a hydrothermal decomposition method. Hierarchical microstructure CdS has been prepared by a hydrothermal decomposition method, which thiourea(Tu) was selected as a sulfur source and CdCl_2 as cadmium source. The effect of reaction temperature and reactant molar ratio on morphology of products was studied. It has been found that reactant molar ratio of Cd~(2+)/Tu is the key factor to control the morphology of products. The possible formation mechanism of CdS microstructure was investigated as well. In the reaction, thiourea acts two parts, one of which reacts with CdCl_2 as a sulfur source and the other is the complex template controlling the morphology of the CdS products. The effect of different reactant Cd~(2+)/NH4SCN mol ratio and hydrothermal temperature were also studied on the CdS morphology with NH4SCN as sulfur source. It is found that reactant Cd~(2+)/NH_4SCN mol ratio is the key factor to control the morphology of products as well.
     3. Preparation of ZnS and CdS nanoparticles with surfactant by a hydrothermal method. The micelle formed by SDS (sodium dodecyl sulfate) was chosen as the soft template. Well dispersed ZnS nanoparticles were prepared with the reaction of Zn(Ac)2 and thioacetamide(TAA) under the hydrothermal condition. Then the effect of different SDS concentration on the product was studied, and the possible mechanism was investigated as well. Amorphous cadmium sulfide prepared at normal temperature and pressure was treated under the hydrothermal condition by adding sodium dodecyl sulfate, sodium dodecyl sulfonate and cetyltrimethylammonium bromide (CTAB) respectively at 180℃. The made products were contrasted with that of no surfactants, and the modification effect that the surfactant played in the hydrothermal process was discussed.
     4. Preparation of ZnS and CdS nanomaterials by a microemulsion hydrothermal method. ZnS hollow nanospheres were prepared in quaternary micrormulsion system containing SDS/n-heptane/n-hexanol/water, combined with the hydrothermal method. In the reaction, TAA was decomposed at 120℃to react with Zn(Ac)_2. The effect of the value of w ([H_2O]/[SDS]) and the reaction temperature on morphology of ZnS was studied. The result showed that particle diameter was controlled by tuning the value of w. Meanwhile, when the reaction temperature was as high as 180℃, nanospheres can't be obtained for the microemulsion was destroyed. CdS nano-multilateral cones were prepared in quaternary micrognulsion system containing cetyltrimethylammonium bromide(CTAB)/n-pentanol/cyclohexane/water, combined with the hydrothermal method at 140℃and in the reaction, TAA was decomposed at 140℃to react with CdCl_2.
引文
1. 张立德,牟季美,“纳米材料和纳米结构[M]”,科学出版社,2001,3.
    
    2. 李民乾,“纳米科学技术——面向21世纪的新科技[J]”,物理,1992,21(2), 65-69.
    
    3. M. Mark, G. Schulz-Ekloff, N. I. Jaeger, "Particle size and photoabsorption of NaX encapsulated CdS and PbS [J]", Catal. Today, 1991, 8, 467-478.
    
    4.裘式纶,瞿庆洲,肖丰收,张宗涛, “纳米材料研究进展Ⅱ——纳米材料 的制备、表征与应用[J]”,化学研究与应用,1998,10(4),331.
    
    5.S. C. Tsang, Y. K. Chen, P. J. Harris, "A simple chemical method of opening and filling carbon nanotubes [J]", Nature, 1994, 372, 159.
    
    6. J. Stichmair, R. Proplesch, "Electro-extraction: 'A novel separation technique' [J]", Chem. Eng. Sci, 1992, 47(12), 3015-3022.
    
    7.R. A. Webb, "Observation of h/e aharonov-bohm oscillations in normal-metal rings [J]", Phys. Rev. Lett, 1985, 54, 2696-2699.
    
    8.H. W. Kroto, "C60: Buckminsterfullerene [J]", Nature, 1985, 318, 162-163.
    
    9.X. Zhu, R. Birringer, U. Herr, H. Gleiter, "X-ray diffraction studies of the structure of nanometer-sized crystalline materials [J]", Phys. Rev, 1987, B35, 9085-9090.
    
    10. D. X. Li, D. H. Ping, H. Q. Ye, et al., "HRTEM study of the microstructure in nanocrystalline materials [J]", Mater. Lett, 1993, 18(1-2), 29-34.
    
    11. C. Suryanarayana, F. H. Froes, "The structure and mechanical-properties of metallic nanocrystals [J]", Metall Trans. A, 1992, 23, 1071 -1081.
    
    12. A. D. Yoffe, "Low-dimensional systems-quantum-size effects and electronic-properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-2-dimensional systems [J]", Advances in Physics, 1993, 2, 173-266.
    
    13. K. J. Klabunde, J. Stark, O. Koper, et al., "Nanocrystals as stoichiometric reagents with unique surface chemistry [J]", J. Phys. Chem., 1996, 100, 12142-12153.
    14. A Henglein, "Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles [J]", Chem. Rev., 1989, 89, 1861-1873.
    15. L. E. Brus, "Electronic wave functions in semiconductor clusters: Experiment and theory [J]", J. Phys. Chem., 1986, 90, 2555-2560.
    16. A. R. Leheny, R. Rossetti, L. E. Brus, "Tetrathiafulvalene photoionization in micellar solutions: a time-resolved Raman scattering study of interfacial solvation [J]", J. Phys. Chem., 1985, 89, 4091-4093.
    17. Y. Wang, N. J. Herron, "Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties [J]", J. Phys. Chem., 1991, 95, 525-532.
    18. A. Hagfeld, M. Gratzel, "Light-induced redox reactions in nanocrystalline systems [J]", Chem. Rev., 1995, 95, 49-68.
    19. R. Denton, B. Muhlschlegel, D. J. Scalapino, "Electronic heat capacity and susceptibility of small metal particles [J]", Phys. Rev. Lett, 1971, 26, 707-711.
    20. R. Leon, P. M. Petroff, D. Leonard, S. Fafard, "Spatially resolved visible luminescence of self-assembled semiconductor quantum dots [J]", Science, 1995, 267, 1966-1968.
    21. O. Dag, A. Kuperman, G. A. Ozin, "Nanostructures: New forms of luminescent silicon [J]", Adv. Mater., 1995, 7, 72-78.
    22. V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, "Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]", Nature, 1994, 370, 354-357.
    23. G. A. Ozin, "Nanochemistry: Synthesis in diminishing dimensions [J]", Adv. Mater., 1992, 4, 612-649.
    24. R. Pool, "Materials science [J]", Science, 1994, 263, 1698-1699.
    25. Y. Wang, N. Herron, W. Mahler, A. Suna, "Linear- and nonlinear-optical properties of semiconductor clusters [J]", J. Opt. Soc. Am., 1989, B6, 808.
    26. G. A. Ozin, U. S. Patent, Jul.1990, 4942119.
    27. M. Wark, G. Schulz-Ekloff, N. I. Jaeger, "Particle size and photoabsorption of
    ??NaX encapsulated CdS and PbS [J]", Catal.Today, 1991, 8, 467-468.
    
    28. D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, P. L. McEuen, "A single-electron transistor made from a cadmium selenide nanocrystal [J]", Nature, 1997, 389, 699-701.
    
    29. B. O. Dabbousi, M. G. Onitsuka, M. F. Rubner, "Electrolumiescence from CdSe quantum-dot/polymer composites [J]",Appl. Phys. Lett, 1995, 66, 1316-1318.
    
    30. R. P. Andres, T. Bein, M. Dorogi, S. Feng, J. I. Henderson, C. P. Kubiak, W. Mahoney, R. G. Osifchin, R. Reifenberger, "'Coulomb staircase' at room temperature in a self-assembled molecular nanostructure [J]", Science, 1996, 272, 1323-1325.
    
    31. S. A. Empedocles, D. J. Norris, M. G. Bawendi, "Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots [J]", Phys. Rev. Lett., 1996, 77, 3873-3876.
    
    32. M. Nirmal, B. 0. Dabbousi, M. G Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, "Fluorescence intermittency in single cadmium selenide nanocrystals [J]", Nature, 1996, 383, 802-804.
    
    33. R. Dagani, C&EN, 1994, 72, 8.
    
    34. C .Weisbuch, "Applications of MBE-grown heterostructures and quantum wells in fundamental research and in advanced semiconductor devices [J]", J. Cryst. Growth, 1993, 127, 742-751.
    
    35. R. Notzel, J. Temmyo, T. Tamamura, "Self-organized growth of strained InGaAs quantum disks [J]", Nature, 1994, 369, 131-133.
    
    36. B. Sulzberger, G. Calzaferri, "Oxygen detection in photochemical experiments [J]", J. Photochem., 1982, 19, 321-327.
    
    37.陈伟,王占国,林兰英,林兆军,钱家骏,“沸石分子筛中半导体量子纳米 团簇的组装及应用前景[J]”,物理学进展,1997,17,84-101.
    
    38. R. D. Adams, "Foreword to special issue on frontiers in cluster science: 'Nanoclusters' [J]", J. Cluster Sci., 1997, 8, 157-157.
    
    39.张立德, “纳米材料研究的进展与我国的对策[J]”,科技导报,2000,10, 33-34.
    
    40. A. J. Legget, S. Chakravarty, A. T. Dorsey, "Dynamics of the dissipative 2-state system [J]", Rev. Mod Phys., 1987, 59, 1-85.
    
    41. D. D. Awschalom, M. A. McCord, G Grinstein, "Observation of macroscopic spin phenomena in nanometerscale magnets [J]", Phys. Rev. Lett., 1990, 65, 783-786.
    
    42. A. P. Davis, "Nanotechnology: syllthetic molecular motors [J]", Nature, 1999, 401, 120-121.
    
    43. R. F. Service, "Materials science: small clusters hit the big time [J]", Science, 1996, 271, 920-922.
    
    44. M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, "Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates [J]", J. Phys. Chem., 1987, 91, 4305-4310.
    
    45. J. J. Pietron, R. M. Stroud, D. R. Polison, "Using three dimensions in catalytic mesoporous nanoarchitectures [J]", Nano Lett, 2002, 2, 545-549.
    
    46. J. Q. Xiao, J. S. Jiang, C. L. Chien, "Giant magnetoresistance in nonmultilayer magnetic systems [J]", Phys. Rev.Lett, 1992, 68, 3749-3752.
    
    47. A. E. Berkowltz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten, G. Thomas, "Giant magnetoresistance in heterogeneous Cu-Co alloys [J]", Phys. Rev. Lett, 1992, 68, 3745-3748.
    
    48.巩雄,张桂兰,汤国庆,陈文驹,杨宏秀,“纳米晶体材料研究进展[J]”, 化学进展,1997,9,349-360.
    
    49. C. Macilwain, "Nanotech thinks big [J]", Nature, 2000, 405, 730-732.
    
    50.裘式纶,翟庆洲,肖丰收,张宗涛, “纳米材料研究进展Ⅱ:纳米材料的制 备,表征与应用[J]”, 化学研究与应用,1998,10,331-341.
    
    51.张立德, “纳米材料与纳米体系物理——面向21世纪的新领域[J]”,中国 科学基金,1994,7,198-201.
    
    52. C. S. Ju, M. G. Lee, S. S. Honn, "The effect of precipitation conditions on the shapes and size distribution of zinc oxide particles [J]", Hwahak Konahak, 1997, 35, 655-659.
    
    53. K. Shimizu, "Production of uhrafine powder of zinc oxide [P]", JP, 62260716,??1987, 63-72.
    
    54. R. Brringer, H. Gleiter, H. P. Klein, P. Marquit, "Nanocrystalline materials- an approach to a novel solid structure with gas-like disorder [J]", Phys. Lett, 1984, 102A, 365-369.
    
    55. H. Masui, M. Takeuchi, "Effects of crystallinity of hole transport layers on organic electroluminescent device performance [J]", Jpn. J. Appl. Phys., 1991, 30, L864-L866.
    
    56. M. S. El-Eskandarany, K. Sumiyama, K. Aoki, et al., "Morphological and structural evolutions of nonequilibrium titanium-nitride alloy powders produced by reactive ball milling [J]", J. Mater. Res., 1992, 7, 888-893.
    
    57. M. S. El-Eskandarany, K. Aoki, K. Suzuki, "Formation of amorphous aluminum tantalum nitride powders by mechanical alloying [J]", Appl. Phys. Lett., 1992, 60, 1562-1563.
    
    58. E. Mendelovici, "Mechanochemical transformation of pyrolusite via manganese reduction [J]", J. Mater. Sci. Lett., 1993, 12, 314-317.
    
    59. M. S. El-Eskandarany, K. Sumiyama, K. Aoki, et al.,"Mechanism of solid-gas reaction for formation of metastable niobium nitride alloy powders by reactive ball-milling [J]", J. Mater.Res., 1994, 9, 2891-2898.
    
    60. G. T. Fei, L. Liu, X. Z. Ding, L. D. Zhang, Q. Q. Zheng, "Preparation of nanocrystalline intermetallic compounds WSi_2 and MoSi_2 by mechanical alloying [J]", J. Alloys and Compounds, 1995, 229, 280-282.
    
    61. M. R. Deguire, S. E. Dorris, R. B. Poeppel, et al; "Coprecipitation synthesis of doped lanthanum chromite [J]", J. Mater. Res., 1993, 8, 2327-2334.
    
    62. C. W. Lu,; J. L. Shi, T. G. Xi, X. H. Yang, Y. X. Chen, "TG-DTA-MS studies on the thermal decomposition behaviour of homogeneously precipitated Zr_2(SO_4)(OH)_6·6H_2O [J]", Thernochimica Acta, 1994, 232, 77-84.
    
    63. J. L. Shi, J. H. Gao, "Preparation of spherical zirconium salt particles by homogeneous precipitation [J]", J. Mater. Sci, 1995, 30, 793-799.
    
    64. D. Jezequel, J. Guenot, N. Jouini, et al. "Submicrometer zinc-oxide particles-elaboration in polyol medium and morphological-characteristics [J]", J.??Mater. Res., 1995, 10, 77-83.
    
    65. J. A. Switzer, M. L. Shane, R. J. Phillips, "Electrodeposited ceramic superlattices [J]", Science, 1990, 247, 444-446.
    
    66. P. Peshev, M. Pecheva, "Preparation of spinel lithium ferrite by thermal treatment of spray-dried formates [J]", Mater. Res. Bull., 1978, 13, 1167-1174.
    
    67. H. Gleiter, "Nanocrystalline materials [J]", Prog. Mater. Sci., 1990, 33, 223-315.
    
    68. G. Pacheco-Malagon, A. Garcia-Borquez, D. Coster, A. Sklyarov, S. Petit, J. J. Fripiat, "TiO_2-Al_2O_3 nanocomposites [J]", J. Mater. Res., 1995, 10, 1264-1269.
    
    69. X. Z. Ding, "Effect of hydrolysis water on the preparation of nano-crystalline titania powders via a sol-gel process [J]", J. Mater. Sci. Lett., 1995, 14, 21-22.
    
    70. X. T. Dong, G. Y. Hong, D. C. Yu, et al."Synthesis and properties of cerium oxide nanometer powders by pyrolysis of amorphous citrate [J]", J. Mater. Sci. Technol, 1997, 13, 113.
    
    71. K. R. Venkatachari, D. Huang, S. P. Ostrander, W.A. Schulze, G. C. Stangle, "A combustion synthesis process for synthesizing nanocrystalline zirconia powders [J]", J. Mater. Res., 1995, 10, 748-755.
    
    72. H. Gleiter, "Nanocrystalline materials and nanometer-sized glasses [J]", Europhysics News, 1989, 20, 130-133.
    
    73. Z. L. Cui, L. F. Dong, Z. K. Zhang, "Oxidation behavior of nano-Fe prepared by hydrogen arc plasma method [J]", Nanostructured Mater., 1995, 5, 829-833.
    
    74. R. Birringer, H. Gleiter, H. P. Klein, P. Marquardt, "Nanocrystalline materials-an approach to a novel solid structure with gas-like disorder? [J]", Phys. Lett, 1984, 102A, 365-369.
    
    75.高晓云,陈进,王冕等, “激光气相合成FexSiy超微粉[J]”,无机材料 学报,, 1992,7,429-434.
    
    76.隋同波等, “激光法合成SiC超细粉末物理化学过程的研究[J]”,硅酸 盐学报,1993,21,33-37.
    
    77.郭广生等, “激光气相法制备Fe_2O_3超微粒子[J]”,无机材料学报,1993, 8,377-381.
    
    78.高晓云等, “激光热解法制备TiO_2超微粉[J]”,无机材料学报, 1993,8, 57-61.
    
    79.蔺恩惠,李新勇等, “激光气相合成氧化铁超细粉[J]”,无机材料学报, 1996,11,157-161.
    
    80. Y. Jiang, X. M. Meng, J. Liu, Z. R. Hong, S. T. Lee, "ZnS nanowires with wurtzite polytype modulated structure [J]", Adv. Mater, 2003, 15, 1195-1198.
    
    81. Y. Jiang, X. M. Meng, W. C. Ym, J. Liu, J. X. Ding, C. S. Lee, S. T. Lee, "Zinc selenide nanoribbons and nanowires [J]", J. Phys. Chem. B, 2004, 108, 2784-2787.
    
    82. Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, J. A. Zapien, S. T. Lee, "Homoepitaxial growth and lasing properties of ZnS nanowire and nanoribbon arrays [J]",Adv. Mater, 2006, 18, 1527-1532.
    
    83. J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, S. T. Lee, "Photoconductive characteristics of single-crystal CdS nanoribbons [J]", Nano Lett, 2006, 6, 1887-1892.
    
    84. J. S. Jie, W. J. Zhang, Y Jiang, S. T. Lee, "Single-crystal CdSe nanoribbon field-effect transistors and photoelectric applications [J]", Appl. Phys. Lett., 2006, 89, 133118-1-133118-3.
    
    85. J. S. Jie, W. J. Zhang, Y Jiang, S. T. Lee, "Transport properties of single-crystal CdS nanoribbons [J]",Appl. Phys. Lett., 2006, 89, 223117-1-223117-3.
    
    86. J. Q. Hu, Y Bando, J. H. Zhan, D. Golberg, "Fabrication of silica-shielded Ga-ZnS metal-semiconductor nanowire heterojunctions [J]", Adv. Mater, 2005, 17, 1964-1969.
    
    87. J. Q. Hu, Y Bando, D. Golberg, "Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures [J]", Small, 2005, 1, 95-97.
    
    88. J. Q. Hu, Y Bando, J. H. Zhan, Z. W. Liu, D. Golberg, S. P. Ringer, "Single-crystalline, submicrometer-sized ZnSe tubes [J]", Adv. Mater, 2005, 17, 975-979.
    
    89. J. Q. Hu, Y Bando, J. H. Zhan, D. Golberg, "Sn-filled single-crystalline wurtzite-type ZnS nanotubes [J]", Angew. Chem. Int. Ed, 2004, 43, 4606-4609.
    
    90.C. J. Barrelet, Y. Wu, D. C. Bell, C. M. Lieber, "Synthesis of CdS and ZnS nanowires using single-source molecular precursors [J]", J. Am. Chem. Soc, 2003, 125, 11498-11499.
    
    91.P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, C. M. Lieber, "General synthesis of manganese-doped II-VI and III-V semiconductor nanowires [J]", NanoLett., 2005, 5, 1407-1411.
    
    92.D. F. Moore, Y. Ding, Z. L. Wang, "Crystal-orientation ordered ZnS nanowirebundles [J]", J. Am. Chem. Soc, 2004, 126, 14372-14373.
    
    93.C. Ma, D. Moore, X. D. Wang, Z. L. Wang, "Single-crystal CdSe nanosaws [J]", J. Am. Chem. Soc, 2004, 126, 708-709.
    
    94.C. Ma, D. Moore, J. Li, Z. L. Wang, "Nanobelts, nanocombs and nano-windmills of wurtzite ZnS [J]", Adv. Mater, 2003, 15, 228-231.
    
    95.X. G. Peng, L. Manna, W D. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, "Shape control of CdSe nanocrystals [J]", Nature, 2000, 404, 59-61.
    
    96.L. Manna, E. C. Scher, A. P. Alivisatos, "Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals [J]", J. Am. Chem. Soc, 2000, 122, 12700-12706.
    
    97.Z. A. Peng, X. G Peng, "Mechanisms of the shape evolution of CdSe nanocrystals [J]", J. Am. Chem. Soc, 2001, 123, 1389-1395.
    
    98. Z. A. Peng, X. G Peng, "Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth [J]", J. Am. Chem. Soc, 2002, 124, 3343-3353.
    
    99. W. T. Yao, S. H. Yu, J. Jiang, L. Zhang, "Complex wurtzite ZnSe microspheres with high hierarchy [J]", Chem. Eur. J., 2006, 12,2066-2072.
    
    100.W. T. Yao, S. H. Yu, S. J. Liu, J. P. Chen, X. M. Liu, F. Q. Li, "Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property [J]", J. Phys. Chem. B, 2006, 110, 11704-11716.
    
    101.W. T. Yao, S. H. Yu, L. Pan, J. Li, Q. S. Wu, L. Zhang, J. Jiang, "Flexible wurtzite ZnS nanobelts with quantum size effects: a diethylenetiamine-assisted??solvothermal approach [J]", Small, 2005, 1, 320-325.
    
    102.W. T. Yao, S. H. Yu, X. Y. Huang, J. Jiang, L. Q. Zhao, L. Pan, J. Li,"Nanocrystals of an inorganic-organic hybrid semiconductor: Formation ofuniform nanobelts of [ZnSe](Diethylenetriamine)0.5 in ternary solution [J]", Adv.Mater, 2005, 17,2799-2802.
    
    103.J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan, C. L. Bai,"Mass production and high photocatalytic activity of ZnS nanoporousnanoparticles [J]",Angew. Chem. Int. Ed, 2005, 44, 1269-1273.
    
    104.J. P. Ge, S. Xu, J. Zhuang, X. Wang, Q. Peng, Y. D. Li, "Synthesis of CdSe,ZnSe, and ZnxCdl-xSe nanocrystals and their silicasheathed core/shell structures[J]", Inorg. Chem., 2006, 45, 4922-4927.
    
    105.D. B. Yu, D. B. Wang, Z. Y. Meng, J. Lu, Y. T. Qian, "Synthesis of closed PbSnanowires with regular geometric morphologies [J]", J. Mater. Chem., 2002, 12,403-405.
    
    106.Z. P. Liu, S. Peng, Q. Xie, Z. K. Hu, Y Yang, S. Y Zhang, Y T. Qian,"Large-scale synthesis of ultralong Bi_2S_3 nanoribbons via a solvothermal process[J]", Adv. Mater., 2003, 15, 936-940.
    
    107.Z. P. Liu, J. B. Liang, S. Li, S. Peng, Y T. Qian, "Synthesis and growthmechanicsm of Bi_2S_3 nanoribbons [J]", Chem. Eur. J., 2004, 10, 634-640.
    
    108.S. L. Xiong, B. J. Xi, C. M. Wang, G. F. Zou, L. F. Fei, W Z. Wang, Y. T. Qian,"Shape-controlled synthesis of 3D and 1D structures of CdS in a binary solutionwith L-Cysteine's assistance [J]", Chem. Eur. J., 2007, 13, 3076-3081.
    
    109.S. Xiong, B. Xi, C. Wang, D. Xu, X. Feng, Z. Zhu, Y Qian, "Tunable synthesis ofvarious wurtzite ZnS architectural structures and their photocatalytic properties[J]", Adv. Fund Mater., 2007, 2728-2738.
    
    110.张煮主编, “科学前沿与未来[M]”,北京:科学出版社,1995.
    
    111.Y. Wang, A. Suna, J. Mchugh, E. Hilinski, P. Lucas, R. D. Johnson, "Optical transient bleaching of quantum-confined CdS clusters: The effects of surface-trapped electron-hole pairs [J]", J. Chem. Phys., 1990, 92, 6927-6939.
    
    112.P. Calanda, A. Longo, V. T. Liveri, "Synthesis of ultra-small ZnS nanoparticles by??solid-solid reaction in the confined space of AOT reversed micelles [J]", J. Phys. Chem. 5,2003, 107,25-30.
    
    113.R. Kortan, R. Hull, R. L. Opila, M. G Bawendi, M. L. Steigerwald, P. J. Carroll, L. E. Brus, "Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media [J]", J. Am. Chem. Soc., 1990, 112, 1327-1332.
    
    1.L. V. Zavyalova, A. K. Savin, G. S. Svechnikov, "ZnS:Mn electroluminescent films prepared from chelate metal organic compounds [J]", Displays, 1997, 18, 73-78.
    
    2.M. Leskela, "Rare earths in electroluminescent and field emission display phosphors [J]", J. Alloy Compd, 1998, 275-277, 702-708.
    
    3.T. A. Bendikov, C. Yarnitzky, S. Licht, "Energetics of a zinc-sulfur fuel cell [J]", J. Phys. Chem. B, 2002, 106, 2989-2995.
    
    4.A. Olea, P. J. Sebastian, "(Zn, Cd)S porous layers for dye-sensitized solar cell application [J]", Sol. Energ. Mat. Sol. C, 1998, 55,149-156.
    
    5.C. L. Torres-Martinez, R. Kho, O. I. Mian, R. K. Mehra, "Efficient photocatalytic degradation of environmental pollutants with mass-produced ZnS nanocrystals [J]", J. Colloid Interf Sci, 2001, 240, 525-532.
    
    6.D. Jakubczyk, Y. Shen, M. Lai, C. Friend, K. S. Kim, J. Swiatkiewicz, P. N. Prasad, "Near-field probing of nanoscale nonlinear optical processes [J]", Opt. Lett, 1999, 24,1151-1153.
    
    7.E. J. Donahue, A. Roxburgh, M. Yurchenko, "Sol-gel preparation of zinc sulfide using organic dithiols [J]", Mater. Res. Bull., 1998, 33(2), 323-329.
    
    8.Y. Fujishiro, S. Uchida, T. Sato, "Synthesis and photochemical properties of semiconductor pillared layered compounds [J]", Int. J. Inorg. Mater., 1999, 1(1), 67-72.
    
    9.X. X. Li, Y. J. Xiong, Z. Q. Li, Y. Xie, "Large-scale fabrication of TiO_2 hierarchical hollow spheres [J]", Inorg. Chem., 2006, 45, 3493-3495.
    
    10.C. Falcony, C. Garcia, A. Ortiz, J. C. Alonso, "Luminescent properties of ZnS:Mn films deposited by spray pyrolysis [J]", J. Appl. Phys., 1992, 72, 1525-1527.
    
    11.T. V. Prevenslik, "Acoustoluminescence and sonoluminescence [J]", J. Lumin., 2000, 87-89, 1210-1212.
    
    12. P. Calandra, M. Gofferdi, V. T. Liveri, "Study of the growth of ZnS nanoparticles??in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy [J]", Colloids Surf. A, 1999, 160, 9-13.
    
    13. T. Trindade, P. O'Brien, N. L. Pickeu, "Nanocry stalline semiconductors synthesis properties and perspectives [J]", Chem. Mater., 2001, 13, 3843-3858.
    
    14. S. Yanagida, K. Mizumoto, C. J. Pac, "Semiconductor photocatalysis. Part 6. Cis-trans photoisomerization of simple alkenes induced by trapped holes at surface states [J]", J. Am. Chem. Soc, 1986, 108, 647-654.
    
    15. S. Yanagida, T. Azuma, Y. Midod, C. J. Pac, H. Sakurai, "Semiconductor photocatalysis. Part 4. Hydrogen evolution and photoredox reactions of cyclic ethers catalysed by zinc sulphide [J]", J. Chem. Soc. Per kin Trans. 2, 1985, 1487-1493.
    
    16. J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan, C. L. Bai, "Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles [J]",Angew. Chem. Int. Ed, 2005, 44, 1269-1273.
    
    17. M. Kazes, D. Y. Lewis, Y. Ebenstein,T. Mokari, U. Banin, "Lasing from semiconductor quantum rods in a cylindrical microcavity [J]", Adv. Mater., 2002, 14,317-321.
    
    18. M. Lomascolo, A. Creti, G. Leo, L. Vasanelli, "Exciton relaxation processes in colloidal core/shell ZnSe/ZnS nanocrystals [J]", Appl. Phys. Lett, 2003, 82, 418-420.
    
    19. S. H. Yu, M. Yoshimura, "Shape and phase control of ZnS nanocrystals: template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS·(NH_2CH_2CH_2NH_2)_(0.5) [J]", Adv. Mater., 2002, 14, 296-300.
    
    20. Q. T. Zhao, L. S. Hou, R. A. Huang, "Synthesis of ZnS nanorods by a surfactant-assisted soft chemistry method [J]", Inorg. Chem. Comm., 2003, 6, 971-973.
    
    21. X. C. Jiang, Y. Xie, J. Lu, L. Zhu, W. He, Y. T. Qian, "Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by γ-irradiation [J]", Chem. Mater., 2001, 13, 1213-1218.
    
    22. C. J. Barrelet, Y. Wu, D. C. Bell, C. M. Lieber, "Synthesis of CdS and ZnS nanowires using single-source molecular precursors [J]", J. Am. Chem. Soc, 2003, 125,11498-11499.
    
    23. Q. S. Wu, N. W. Zheng, Y. P. Ding, Y. D. Li, "Micelle-template inducing synthesis of winding ZnS nanowires [J]", Inorg. Chem. Comm., 2002, 5, 671-673.
    
    24. Y. Jiang, X. M. Meng, J. Liu, Z. Y. Xie, C. S. Lee, S. T. Lee, "Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale [J]", Adv. Mater., 2003, 15(4), 323-327.
    
    25. K. Sooklal, B. S. Cullum, S. M. Angel, C. J. Murphy, "Photophysical properties of ZnS nanoclusters with spatially localized Mn~(2+) [J]", J. Phys. Chem., 1996, 100, 4551-4555.
    
    26. N. Tokio, F. Keisuke, K. Akio, "High-efficiency cadmium-free Cu(In,Ga)Se_2 thin-film solar cells with chemically deposited ZnS buffer layers [J]", IEEE Trans. Electron. Devices, 1999, 46, 2093-2097.
    
    27. F. Akihito, W. Hideo, S. Ken-Ichiro, N. Shigeru, H. Masato, "Diamond-ZnS composite infrared window [J]", Proc. SPIE (The International Society for Optical Engineering), 2001,4375, 206-217.
    
    28. C. Falcony, M. Garcia, A. Ortiz, "Luminescent properties of ZnS:Mn films deposited by spray pyrolysis [J]", J. Appl. Phys., 1992, 72, 1525-1527.
    
    29. W. Tang, D. C. Cameron, "Electroluminescent zinc sulphide devices produced by sol-gel processing [J]", Thin Solid Films, 1996, 280, 221-226.
    
    30. N.I. Kovtyukhova, E. V. Buzaneva, C. C. Waraksa, T. E. Mallouk, "Ultrathin nanoparticle ZnS and ZnS: Mn films: surface sol-gel synthesis, morphology, photophysical properties [J]", Mater. Sci. Eng. B, 2000, 69-70, 411-417:
    
    31. R. Vacassy, S. M. Scholz, J. Dutta, C. J. G Plummer, R. Houriet, H. Hofmann, "Systhesis of contralled spherical zinc sulfide particles by precipitation from homogeneous solutions [J]", J. Am. Ceram. Soc, 1998, 81, 2699-2705.
    
    32. B. Bhattacharjee, D. Ganguli, S. Chaudhuri, A. K. Pal, "ZnS.Mn nanocrystallites in SiO_2 matrix: preparation and properties [J]", Thin Solid Films, 2002, 422, 98-103.
    
    33. W. Chen, R. Sammyneiken, Y. Huang, J. O. Malm, R. Wallenberg, J. O. Bovin, V. Zwiller, N. Kotov, "Crystal field, phonon coupling and emission shift of Mn~(2+) in ZnS:Mn nanoparticles [J]", J. Appl. Phys., 2001, 89, 1120-1129.
    
    34. J. C. Sanchez-Lopez, A. Fernandez, "The gas-phase condensation method for the preparation of quantum-sized ZnS nanoparticles [J]", Thin Solid Films, 1998, 317, 497-499.
    
    35. J. F. Suyver, S. F. Wuister, J. J. Kelly, A. Meijerink, "Synthesis and photoluminescence of nanocrystalline ZnS:Mn~(2+) [J]", Nano Lett., 2001, 1,429-433.
    
    36. S. Wageh, S. L. Zhao, X. R. Xu, "Growth and optical properties of colloidal ZnS nanoparticles [J]", J. Crystal Growth, 2003, 255, 332-337.
    
    37. H. Yang, P. H. Holloway, B. B. Ratna, "Photoluminescent and electroluminescent properties of Mn-doped ZnS nanocrystals [J]", J. Appl. Phys., 2003, 93, 586-592.
    
    38. F. H. Su, B. S. Ma, Z. L. Fang, K. Ding, G H. Li, W. Chen, "Temperature behavior of the orange and blue emissions in ZnS:Mn nanoparticles [J]", J. Phys: Condens. Matter, 2002, 14, 12657-12664.
    
    39. S. Wageh, S. M. Liu, T. Y. Fang, X. R. Xu, "Optical properties of strongly luminescing mercaptoacetic-acid-capped ZnS nanoparticles [J]", J. Lumin., 2003, 102-103, 768-773.
    
    40. M. Tanaka, "Photoluminescence properties of Mn~(2+)-doped Ⅱ - Ⅵsemiconductor nanocrystals [J]", J. Lumin., 2002, 100, 163-173.
    
    41. R. N. Bhargave, D. Gallagher, "Optical properties of manganese-doped nanocrystals of ZnS [J]", Phys. Rev. Lett, 1994, 72, 416-419.
    
    42. A. A. Bol, J. Ferwerda, J. A. Bergwerff, A. Meijerink, "Luminescence of nanocrystalline ZnS:Cu~(2+) [J]",J. Lumin., 2002, 99, 325-334.
    
    43. P. Yang, M. Lu, D. Xu, D. L. Yuan, G J. Zhou, "ZnS nanocrystals co-activated by transition metals and rare-earth metals-a new class of luminescent materials [J]", J. Lumin., 2001,93, 101-105.
    
    44. Y. T. Qian, Y. Su, Y. Xie, Q. W. Chen, Z. Y. Chen, Y. Li, "Hydrothermal preparation & characterization of nanocrystalline powder of sphalerite [J]", Mater.??Res. Bull., 1995, 30, 601-605.
    
    45.X. B. Yu, L. H. Mao, Z. Fan, L. Z. Yang, S. P. Yang, "The synthesis of ZnS:Mn~(2+) nano-particles by solid-state method at low temperature and their photoluminescence characteristics [J]", Mater. Lett., 2004, 58, 3661-3664.
    
    46. E. M. Wong, J. E. Bonevich, P. C. Searson, "Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions [J]", J. Phys. Chem. B, 1998, 102, 7770-7775.
    
    47. J. Park, V. Privman, E. Matijevie, "Model of formation of monodispersed colloids [J]", J. Phys. Chem. B, 2001, 105, 11630-11635.
    
    48. R. L. Penn, "Kinetics of oriented aggregation [J]", J. Phys. Chem. B, 2004, 108, 12707-12712.
    
    49. R. L. Penn, G. Oskam, T. J. Strathmann, P. C. Searson, A. T. Stone, D. R. Veblen, "Epitaxial assembly in aged colloids [J]", J. Phys. Chem. B, 2001, 105, 2177-2182.
    
    50. R. L. Penn, J. F. Banfield, "Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania [J]", Geochimica et Cosmochimica Acta, 1999, 63, 1549-1557.
    
    51. V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, "Light-emittingdiodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]", Nature, 1994, 370, 354-357.
    
    52. N. D. Kumar, M. P. Joshi, C. S. Friend, P. N. Prasad, R. Burzynski, "Organic-inorganic heterojunction light emitting diodes based on poly(p-phenylenevinylene)/cadmium sulfide thin films [J]", Appl. Phys. Lett, 1997, 71, 1388-1390.
    
    1.C. B. Burda, X. B. Chen, R. Narayanan, M. A. El-Sayed, "Chemistry and properties of nanocrystals of different shapes [J]", Chem. Rev., 2005, 105, 1025-1102.
    
    2.Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan, "One-dimensional nanostructures: synthesis, characterization, and applications [J]", Adv. Mater., 2003, 15, 353-389.
    
    3.N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Bamn, "Efficient near-infrared polymer nanocrystal light-emitting diodes [J]", Science, 2002, 295, 1506-1508.
    
    4.J. Z. Zhang, "Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles [J]", J. Phys. Chem. B, 2000, 104, 7239-7253.
    
    5.G. Shen, J. H. Cho, J. K. Yoo, G. C. Yi, C. J. Lee, "Synthesis of single-crystal CdS microbelts using a modified thermal evaporation method and their photoluminescence [J]", J. Phys. Chem. B, 2005, 109, 9294-9298.
    
    6.L. Weinhardt, T. Gleim, O. Fuchs, C. Heske, E. Umbach, M. Bar, H. J. Muffler, C. H. Fischer, M. C. Lux-Sterner, Y. Zubavichus, T. P. Niesen, F. Karg, "CdS and Cd(OH)_2 formation during Cd treatments of Cu(In,Ga)(S,Se)2 thin-film solar cell absorbers [J]", Appl. Phys. Lett, 2003, 82, 571-573.
    
    7.J. Yang, J. H. Zeng, S. H. Yu, L. Yang, G. E. Zhou, Y. T. Qian, "Formation process of CdS nanorods via solvothermal route [J]", Chem. Mater., 2000, 12, 3259-3263.
    
    8.C. J. Barreiet, Y. Wu, D. C. Bell, C. M. Lieber, "Synthesis of CdS and ZnS nanowires using single-source molecular precursors [J]", J. Am. Chem. Soc, 2003, 125, 11498-11499.
    
    9.D. Xu, Z. P. Liu, J. B. Liang, Y. T. Qian, "Solvothermal Synthesis of CdS Nanowires in a Mixed Solvent of Ethylenediamine and Dodecanethiol [J]", J. Phys. Chem. B, 2005, 109, 14344-14349.
    
    10. F. Gao, Q. Y. Lu, S. H. Xie, D. Y. Zhao, "A simple route for the synthesis of multi-armed CdS nanorod-based materials [J]", Adv. Mater., 2002, 14,??1537-1540.
    
    11. F. Gao, Q. Y. Lu, D. Y. Zhao, "Ligand-assisted solvothermal growth of CdS nanowires [J]", Chem. Lett., 2002, 7, 732-733.
    
    12. C. Ye, G. Meng, Y. Wang, Z. Jiang, L. Zhang, "On the growth of CdS nanowires by the evaporation of CdS nanopowders [J]", J. Phys. Chem. B, 2002, 106, 10338-10341.
    
    13. A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, K. Chen, "Stimulated emissions in aligned CdS nanowires at room temperature [J]", J. Phys. Chem. B, 2005, 109, 24268-24272.
    
    14. S. Kar, S. Chaudhuri, "Shape selective growth of CdS one-dimensional nanostructures by a thermal evaporation process [J]", J. Phys. Chem. B, 2006, 110,4542-4547.
    
    15. Y. Wang, G. Meng, L. Zhang, C. Liang, J. Zhang, "Catalytic growth of large-scale single-grystal CdS nanowires by physical evaporation and their photoluminescence [J]", Chem. Mater., 2002, 14, 1773-1777.
    
    16. R. Thiruvengadathan, O. Regev, "Hierarchically ordered cadmium sulfide nanowires dispersed in aqueous solution [J]", Chem. Mater., 2005, 17, 3281-3287.
    
    17. M. Zhang, M. Drechsler, A. H. E. Muller, "Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core-shell cylindrical polymer brushes [J]", Chem. Mater., 2004, 16, 537-543.
    
    18. C. C. Chen, C. Y. Chao, Z. H. Lang, "Simple solution-phase synthesis of soluble CdS and CdSe nanorods [J]", Chem. Mater., 2000, 12, 1516-1518.
    
    19. P. Zhang, L. Gao, "Synthesis and characterization of CdS nanorods via hydrothermal microemulsion [J]", Langmuir, 2003, 19, 208-210.
    
    20. B. A. Simmons, S. Li, V. T. John, G. L. McPherson, A. Bose, W. Zhou, J. He, "Morphology of CdS nanocrystals synthesized in a mixed surfactant system [J]", Nano Lett, 2002, 2, 263-268.
    
    21. A. B. Panda, G. Glaspell, M. S. El-Shall, "Microwave synthesis of highly aligned ultra narrow semiconductor rods and wires [J]", J. Am. Chem. Soc, 2006, 128,??2790-2791.
    
    22. F. Shieh, A. E. Saunders, B. A. Korgel, "General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures [J]", J. Phys. Chem. B, 2005, 109, 8538-8542.
    
    23. H. Chu, X. Li, G. Chen, W. Zhou, Y, Zhang, Z. Jin, J. Xu, Y. Li, "Shape-controlled synthesis of CdS nanocrystals in mixed solvents [J]", Cryst. Growth Des., 2005, 5, 1801-1806.
    
    24. J. Zhang, F. Jiang, L. Zhang, "Fabrication of single-crystalline semiconductor CdS nanobelts by vapor transport [J]", J. Phys. Chem. B, 2004, 108, 7002-7005.
    
    25. S. Lijima, "Helical microtubules of graphitic carbon [J]", Nature, 1991, 354, 56-58.
    
    26.夏建白,“半导体纳米材料和物理[J]”,物理2003,32,693-699.
    
    27. R. N. Bhargava, "Blue and UV light emitting diodes and laser [J]", Optoelectronics-Devices and Technologies, 1992, 7, 19-47.
    
    28. Y. N. Bobrenko, V V Kislyuk, K. V. Kolezhuk, V. N. Komashchenko, S. Yu. Pavelets, T. E. Shengeliya, " II -IV thin-film polycrystalline multilayer converters for solar photovoltaics [J]", Solar Energy Materials and Solar Cells, 1994, 33, 83-90.
    
    29. M. C. Schlamp, X. G Peng, A. P. Alivisatos, "Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer [J]", J. Appl. Phys., 1997, 82, 5837-5842.
    
    30. C. H. Liu, J. A. Zapien, Y Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz, S. T. Lee, "High-density, ordered ultraviolet light-emitting ZnO nanowire arrays [J]", Adv. Mater., 2003, 15, 838-841.
    
    31. C. Ma, D. Moore, J. Li, Z. L. Wang, "Nanobelts, nanocombs, and nanowindmills of wurtzite ZnS [J]", Adv. Mater., 2003,15, 228-231.
    
    32. Y T. Didenko, K. S. Suslick, "Chemical aerosol flow synthesis of semiconductor nanoparticles [J]", J. Am. Chem. Soc, 2005, 127, 12196-12197.
    
    33. M. Marandi, N. Taghavinia, A. I. Zad, S. M. Mahdavi, "A photochemical method for controlling the size of CdS nanoparticles [J]", Nanotechnology, 2005, 16,??334-338.
    
    34. P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, C. M. Lieber, "General synthesis of manganese-doped Ⅱ-Ⅳ and Ⅲ-Ⅴ semiconductor nanowires [J]", Nano Lett., 2005, 5, 1407-1411.
    
    35. J. W. Grebinski, K. L. Hull, J. Zhang, T. H. Kosel, M. Kuno, "Solution-based straight and branched CdSe nanowires [J]", Chem. Mater., 2004, 16, 5260-5272.
    
    36. C. J. Barrelet, Y. Wu, D. C. Bell, C. M. Lieber, "Synthesis of CdS and ZnS nanowires using single-source molecular precursors [J]", J. Am. Chem. Soc., 2003, 125, 11498-11499.
    
    37. P. Hoyer, "Semiconductor nanotubes formation by a two-step template process [J]",Adv. Mater, 1996, 8, 857-859.
    
    38. Y. J. Doh, J. A. Van Dam, A. L. Roest, E. P. A. M. Barkkers, L. P. Kouwenhoven, S. De Franceschi, "Tunable supercurrent through semiconductor nanowires [J]", Science, 2005, 309, 272-275.
    
    39. A. S. Ethiraj, N. Hebalkar, S. K. Kulkarni, R. Pasricha, J. Urban, C. Dem, M. Schmitt, W. Kiefer, L. Weinhardt, S. Joshi, R. Fink, C. Heske, C. Kumpf, E. Umbach, "Enhancement of photoluminescence in manganese-doped ZnS nanoparticiles due to a silica shell [J]", J. Chem. Phys., 2003, 118, 8945-8953.
    
    40. K. Keem, H. Kim, G T. Kim, J. S. Lee, B. Min, K. Cho, M. Y. Sung, S. Kim, "Photocurrent in ZnO nanowires grown from Au electrodes [J]", Appl. Phys. Lett., 2004, 84, 476-478.
    
    41. X. L. Liu, C. Li, S. Han, J. Han, C. W. Zhou, "Synthesis and electronic transport studies of CdO nanoneedles [J]", Appl. Phys. Lett., 2003, 82, 1950-1952.
    
    42. V. A. L. Roy, A. B. Djuisic, H. Liu, X. X. Zhang, Y. H. Leung, M. H. Xie, J. Gao, H. F. Liu, C. Suryu, "Magnetic properties of Mn doped ZnO tetrapod structures [J]",AppI. Phys. Lett, 2004, 84, 756-758.
    
    43. K. M. Ip, C. R. Wang, Q. Li, S. K. Hark, "Excitons and surface luminescence of CdS nanoribbons [J]", Appl. Phys. Lett., 2004, 84, 795-797.
    
    44. Y Q. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cinqolani, G Giqli, "White organic light-emitting devices with CdSe/ZnS quantum dots as a red??emitter [J]", J. Appl. Phys., 2005, 97, 1-4.
    
    45. X. F. Duan, Y. Huang, R Agarwal, C. M. Lieber, "Single-nanowire electrically driven lasers [J]", Nature, 2003, 421, 241-245.
    
    46. D. Shvydka, J. Drayton, A. D. Compaan, V. G Karpov, "Piezo-effect and physics of CdS-based thin-film photovoltaics [J]", Appl. Phys. Lett., 2005, 87, 123505-123507.
    
    47. T. Aramoto, F. Adurodija, Y. Nishiyama, T. Arita, A. Hanafusa, K. Omura, A. Morita, "A new technique for large-area thin film [J]", Solar Energy Materials and Solar Cells, 2003, 75, 211-217.
    
    48. J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, C. J. Murphy, "Luminescence spectral properties of CdS nanoparticles [J]", J. Phys. Chem. B, 1999, 103, 7613-7620.
    
    49. J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, C. J. Murphy, "Emission spectral properties of cadmium sulfide nanoparticles with multiphoton excitation [J]", J. Phys. Chem. B, 2002, 106, 5365-5370.
    
    50. C. Ye, G Meng, Y. Wang, et al, "On the growth of CdS nanowires by the evaporation of CdS nanopowders [J]", J. Phys. Chem. B, 2002, 106, 10338-10341.
    
    51. D. Routkevitch, T. Bigioni, M. Moskovits, J. M. Xu, "Electrochemical fabrication of CdS nanowires arrays in porous anodic aluminum oxides [J]", J. Phys. Chem. B, 1996, 100,14037-14047.
    
    52. F. C. Fan, T. Gao, G W. Meng, Y. W. Wang, X. Liu, L. D. Zhang, "Synthesis of CdS nanowires by sulfurization [J]", Mater. Lett, 2002, 57, 656-659.
    
    53. K. B. Tang, Y. T. Qian, "Solvothermal route to semiconductor nanowires [J]", Adv. Mater., 2003, 15,448-450.
    
    54.钱逸泰, “结晶化学导论[M]”,中国科学技术大学出版社,合肥,1999.
    
    55.俞文海,“晶体结构的对称群[M]”,中国科学技术大学出版社,合肥,1991.
    
    56. A. Wold, "Solid State Chemistry. Synthesis, structure and properties of selected oxides andsulfides", Chapman and Hall, Inc., 1993, London.
    
    57. S. D. Scott, H. L. Barnes, "Nonstoichiometric phase changes in sphalerite and??wurtzite (abstr) [J]", Can. Mineral., 1967, 9, 306-309.
    
    58. J. Yang, J. H. Zeng, S. H. Yu, L. Yang, G. E. Zhou, Y. T. Qian, "Formation process of CdS nanorods via solvothermal route [J]", Chem. Mater., 2000, 12, 3259-3263.
    
    59. D. Xu, Z. Liu, J. Liang, Y. Qian, "Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol [J]", J. Phys. Chem. B, 2005, 109, 14344-14349.
    
    60. Y. J. Xiong, Y. Xie, J. Yang, R. Zhang, C. Z. Wu, G. A. Du, "In situ micelle-template-interface reaction route to CdS nanotubes and nanowires [J]", J. Mater. Chem., 2002,12, 3712-3716.
    
    61. F. Gao, Q. Lu, S. Xie, D. Zhao, "A simple route for the synthesis of multi-armed CdS nanorod-based architecture [J]", Adv. Mater., 2002, 14, 1537-1540.
    
    62. H. Chu, X. Li, G. Chen, W. Zhou, Y. Zhang, Z. Jin, J. Xu, Y. Li, "Shape-controlled synthesis of CdS nanocrystals in mixed solvents [J]", Cryst. Growth Des., 2005, 5, 1801-1806.
    
    63. M. H. Cao, T. F. Liu, S. Gao, G. B. Sun, X. L. Wu, C. W. Hu, Z. L. Wang, "Single-crystal dendritic micro-pines of magnetic α-Fe_2O_3: large-scale synthesis,formation mechanism, and properties [J]", Angew. Chem. Int. Ed, 2005, 44, 4197-4201.
    
    64. J. P. Liu, X. T. Huang, Y. Y. Li, K. M. Sulieman, X. He, F. L. Sun, "Hierarchical nanostructures of cupric oxide on a copper substrate: controllable morphology and wettability [J]", J. Mater. Chem., 2006, 16,4427-4434.
    
    65. S. O. Cho, E. J. Lee, H. M. Lee, J. K. Kim, Y. J. Kim, "Controlled synthesis of abundantly branched, hierarchical nanotrees by electron irradiation of polymers [J]", Adv. Mater., 2006, 18, 60-65.
    
    66. N. Tohge, S. Tamaki, K. Okuyama, "Formation of fine particles of zinc sulfide from thiourea complexes by spray pyrolysis [J]", Jpn. Appl. Phys., 1995, 34, L207-L209.
    
    67. S. Tamaki, N. Tohge, K. Okuyama, "Formation of CdS fine particles by spray pyrolysis [J]", J. Mater. Sci. Lett., 1995, 14, 1388-1390.
    
    1.R.赞恩(著),唐善彧,程绍进(译), “表面活性剂溶液研究新方法[M]”, 石油工业出版杜,1992,193-218.
    
    2. 张哗,胡耿源, “表面活性剂化学[M]”,浙江大学出版社,1996,173-185.
    
    3. 国家自然科学基金委员会编,自然科学学科发展战略调研报告,物理化学, 北京: 科学出版社,1994,9,8-11.
    
    4.张中太,林元化,唐子龙等, “纳米材料及其技术的应用前景[J]”,材料 工程,2000,3,42-47.
    
    5.J.H.芬德勒著, “尖端材料的膜模拟[M]”, 北京: 科学出版社,1999.
    
    6.陈航榕等, “非硅组成有序介孔材料的合成及应用[J]”,硅酸盐学报, 2000,28,250-263.
    
    7.Q. S. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Y. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka,F. Schuth, G. D. Stucky, "Organization of organic molecules with inorganic molecular species into nanocom-posite biphase arrays [J]", Chem. Mater., 1994, 6, 1176-1191.
    
    8.J. Y. Ying, C. P. Mehnert, M. S. Wong, "Synthesis and applications of supramolecular-templated mesoporous materials [J]", Angew. Chem. Int. Ed Engl., 1999, 38, 56-77.
    
    9.C. T. Kresge, M. E. Leonowicz, W. J. Roth, et al., "Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]", Nature, 1992,359, 710-712.
    
    10.周祖康,顾焬人,马季铭, “胶体化学基础[M]”,北京大学出版社,1987, 59-80.
    
    11.J. Eastoe, T. F. Towey, B. H. Robinson, J. Williams, R. K. Heenan, "Structure of bis(2-ethylhexyl) sulfosuccinate aggregates in cyclohexane [J]", J. Phys. Chem., 1993, 97, 1459-1463.
    
    12. R. A. Day, B. H. Robinson, J. H. R. Clarke, J. V. Doherty, "Characterisation of water-containing reversed micelles by viscosity and dynamic light scatering methods, characterisation of reversed micelles [J]", J. Chem. Soc, Faraday Trans.??1, 1979, 75, 132-139.
    
    13. D. Fioreno, M. Freda, S. Mannaioli, G. Onori, A. Santucci, "Infrared and dielectric study of Ca(AOT)_2 reverse micelles [J]", J. Phys. Chem. B, 1999, 103, 2631-2635.
    
    14. M. Zulauf, H. F. Eicke, "Inverted micelles and microemulsions in the ternary system H_2O/aerosol-OT/isooctaneas studied by photon correlation spectroscopy J. Phys. Chem., 1979, 83, 480-485.
    
    15.李汶军,施尔畏,郑燕青等, “硫化物晶体的生长习性[J]”,无机材料学 报,2000,15,392-396.
    
    16. E. M. Wong, J. E. Bonevich, P. C. Searson, "Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions [J]", J. Phys. Chem. B, 1998, 102, 7770-7775.
    
    17. J. Park, V. Privman, E. Matijevie, "Model of formation of monodispersed colloids [J]", J. Phys. Chem. B, 2001, 105, 11630-11635.
    
    1.T. P. Hoar, J. H. Schulman, "Transparent water-in-oil dispersions: the oleopathic hydromicelle [J]", Nature, 1943, 152, 102-105.
    
    2.J. H. Schulman, W. Stoeckenius, L. M. Prince, "Mechanism of formation and structure of microemulsions by electron microscopy [J]", J. Phys. Chem., 1959, 63, 1677-1680.
    
    3.P. G. De Gennes, C. Taupin, "Microemulsions and the flexibility of oil/water interfaces [J]", J. Phys. Chem., 1982, 86, 2294-2304.
    
    4.D. Langevin, "Microemulsions [J]", Acc. Chem. Res., 1988, 21, 255-260.
    
    5.M. J. Schwuge, K. Stickdorn, R. Schomacker, "Microemulsions in technical processes [J]", Chem. Rev., 1995, 95, 849-864.
    
    6.W. M. Gelbart, A. Ben-Shail, "The 'new' science of 'complex fluids' [J]", J. Phys. Chem., 1996,100, 13169-13189.
    
    7.P. Stilbs, K. Rapacki, B. J. Lindman, "Effect of alcohol cosurfactant length on microemulsion structure [J]", J. Colloid Interface Sci., 1983, 95, 582-585.
    
    8.J. H. Fendler, "Atomic and molecular clusters in membrane mimetic chemistry [J]", Chem. Rev., 1987, 87, 877-899.
    
    9.M. Boutonnet, J. Kizling, P. Stenius, G. Maire, "The preparation of monodisperse colloidal metal particles from microemulsions [J]", Colloids Surf., 1982, 5, 209-225.
    
    10.K. Kurihara, J. Kizling, P. Stenius, J. H. Fendler, "Laser and pulse radiolytically induced colloidal gold formation in water and in water-in-oil microemuisions [J]", J. Am. Chem. Soc, 1983, 105, 2574-2579.
    
    11.C. Tojo, M. C. Blanco, F. Rivadulla, M. A. Lopez-Quintela, "Kinetics of the formation of particles in microemulsions [J]", Langmuir, 1997, 13, 1970-1977.
    
    12.I. Capek, "Preparation of metal nanoparticles in water-in oil (w/o) microemulsions [J]", Advances in Colloid and Interface Science, 2004, 110, 49-74.
    
    13.D. W. Matson, J. L. Fulton, R. D. Smith, "Formation of fine particles in??supercritical fluid micelle systems [J]", Mater. Lett., 1987, 6, 31-33.
    
    14. M. P. Pileni, "Synthesis in situ of nanoparticles in reverse micelles [J]", Progr. Colloid Polym. Sci., 1992, 93, 1-9.
    
    15. M. P. Pileni, "Nanosized particles made in colloidal assemblies [J]", Langmuir, 1997, 13, 3266-3276.
    
    16.沈兴海,高宏成, “纳米微粒的微乳液制备[J]”,化学通报,1995,1,6-9.
    
    17. K. M. Manoj, R. Jagakuma, K. Rakshits, "Physiochemical studies on reversemicelles of sodium bis(2-ethyl-hexy) sulfosuccinate at low water content [J]", Langmuir, 1996, 12,4068-4072.
    
    18.赵国玺, “表面活性剂物理化学[M]”,北京:北京大学出版社,1991.
    
    19.陈龙武,甘礼华,岳天仪等, “微乳液反应法制备α-Fe_2O_3超细粒子的研究 [J]”,物理化学学报,1994,10,781-784.
    
    20. M. L. Curri, A. Agostiano, L. Manna, M. D. Monica, M. Catalano, L. Chiavarone, V. Spagnolo, M. Lugara, "Synthesis and characterization of CdS nanoclusters in a quaternary microemulsion: the role of the cosurfactant [J]", J. Phys. Chem. B, 2000, 104, 8391-8397.
    
    21. G. Palazzo, F. Lopez, M. Giustini, G. Colafemmina, A. Ceglie, "Role of the cosurfactant in the CTAB/water/n-pentanol/n-hexane water-in-oil microemulsion. 1. pentanol effect on the microstructure [J]", J. Phys. Chem. B, 2003, 107, 1924-1931.
    
    22. J. Zhang, L. D. Sun, X. C. Jiang, C. S. Liao, C. H. Yan, "Shape evolution of one-dimensional single-crystalline ZnO nanostructures in a microemulsion system [J]", Crystal Growth&Design, 2004, 4, 309-313.
    
    23. J. Tanori, N. Duxin, C. Petit, I. Lisiecki, P. Veillet, M. P. Pileni, "Synthesis of nanosized metallic and alloyed particles in ordered phased [J]", J. Colloid Polym. Sci., 1995, 273, 886-892.
    
    24. F. J. Arriagada, K. Osseo-Asate, "Synthesis of nanosized silica in a nonionic water-in-oil microemulsion [J]", J. Colloid Interface Sci., 1999, 211, 210-220.
    
    25. F. Filankembo, M. P. Pileni, "Shape control of copper nanocrystals [J]", Applied Surface Science, 2000, 164, 260-267.
    
    26. J. H. Boulonnet, J. Kizling, P. Stenium, G. Maire, "The preparation of colloidal metal particles from microemulsions [J]", Colloids and Surfaces, 1982, 5, 209-225.
    
    27. P. Barnicker, A. Wokaun, W. Sager, "Size tailoring of silver colloids by reduction in W/O microemulsions [J]", Coll. Inter. Sci., 1992, 148, 80-90.
    
    28. M. Artuto, Q. Lopez, J. Rivas, "Chemical reactions in microemulsions: a powerful method to obtain ultrafine particles [J]", Coll. Inter. Sci., 1993, 158, 446-451.
    
    29: C. Petit, T. K. Jain, F. Billoudet, M. P. Pileni, "Oil in water micellar solution used to synthesize CdS particles: structural study and photoelectron transfer reaction [J]", Langmuir, 1994, 10, 4446-4450.
    
    30. J. Cizeron, M. P. Pileni, "Solid solution of Cd_yZn_(1-y)S nanosize particles made in reverse micelles [J]", J. Phys. Chem., 1995, 99, 17410-17416.
    
    31. J. Cizeron, M. P. Pileni, "Solid solution of Cd_yZn_(1-y)S nanosized particles: photophysical properties [J]", J. Phys. Chem. B, 1997, 101, 8887-8891.
    
    32. M. Gobe, K. Kon-no, K. Kandori, A. Kitahara, "Preparation and characterization of monodisperse magnetite sols in W/O microemulsion [J]", J. Colloid Interface Sci., 1983, 93, 293-295.
    
    33. K. Kandori, K. Kin-no, A. Kitahara, "Formation of ionic water/oil microemulsions and their application in the preparation of CaCO_3 particles [J]", J. Colloid Interface Sci., 1988, 122, 78-82.
    
    34. P. Lianos, J. K. Thomas, "Cadmium sulfide of small dimensions produced in inverted micelles [J]", Chem. Phys. Lett, 1986, 125, 299-302.
    
    35. C. Petit, P. Lixon, M. P. Pilieni, "Synthesis of cadmium sulfide in situ in reverse micelles. 2. Influence of the interface on the growth of the particles [J]", J. Phys. Chem., 1990,94, 1598-1603.
    
    36. C. Petit, P. Lixon, M. P. Pilieni, "In situ synthesis of silver nanocluster in AOT reverse micelles [J]", J. Phys. Chem., 1993, 97, 12974-12983.
    
    37. L. Motte, C. Petit, P. Lixon, L. Boulanger, M. P. Pilieni, "Synthesis of cadmium sulfide in situ in cadmium bis(2-ethylhexyl) sulfosuccinate reverse micelle.??polydispersity and photochemical reaction [J]", Langmuir, 1992, 8, 1049-1053.
    
    38. M. Li, H. Schnablegger, S. Mann, "Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization [J]", Nature, 1999, 402, 393-395.
    
    39. J. D. Hopwood, S. Mann, "Synthesis of barium sulfate nanoparticles and nanofilaments in reverse micelles and microemulsions [J]", Chem. Mater., 1997, 9, 1819-1828.
    
    40. M. Li, S. Mann, "Emergence of morphological complexity in BaSO_4 fibers synthesized in AOT microemulsions [J]", Langmuir, 2000, 16, 7088-7094.
    
    41. G. D. Rees, G. R. Evans, S. J. Hammond, B. H. Robinson, "Formation and morphology of calcium sulfate nanoparticles and nanowires in water-in-oil microemulsions [J]", Langmuir, 1999, 15, 1993-2002.
    
    42. L. Qi, J. Ma, H. Cheng, Z. Zhao, "Reverse micelle based formation of BaCO_3 nanowires [J]", J. Phys. Chem. B, 1997, 101, 3460-3463.
    
    43. S. Kwan, F. Kim, T. Akana, "Synthesis and assembly of BaWO_4 nanorods [J]", Chem. Commun., 2001, 5, 447-448.
    
    44. K. Kazuhiko, K. N. Kijiro, K. Ayao, "Formation of ionic water/oil microemulsions and their application in the preparation of CaCO_3 particles [J]", J. Colloid Interface Sci, 1987, 122, 78-82.
    
    45. A. M. Morales, C. M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]", Science, 1998, 279, 208-211.
    
    46.庄京,周海成,王训等,“反相胶束法控制合成不同形貌半导体Ag_2S纳米晶 [J]”,化学学报,2003,61(3),372-376.
    
    47.周海成,徐建,李亚栋,“PbSO_4纳米片晶的微乳液法制备与组装[J]”,高 等化学学报,2002,23(9),1645-1658.
    
    48.周海成,徐建,李亚栋,“低维纳米材料CuI的制备[J]”,无机化学学报,2003, 19(6),621-624.
    
    49.周海成,徐建,徐晟,李亚栋等,“CaSO_4纳米棒(线)的微乳液制备与表征[J]”, 无机化学学报,2002,18(8),815-817.
    
    50.吴庆生,郑能武,丁亚平,“氯化铅纳米线的胶束模板诱导合成及其机理研 究[J]”,高等学校化学学报,2001,22(6),898-901.
    
    51.甘礼华,岳天仪,陈龙武等,“微乳液反应法制备草酸铜均匀微粒[J]”, 物理化学学报,1998,14(2),97-100.
    
    52.齐锋,吴庆生,刘璐等,“反相胶束软模板法合成Ag_2S半导体纳米棒[J]”, 南开大学学报(自然科学版),2002,35(4),96-98.
    
    53. Y. K. Liu, C. L. Zheng, W. Z. Wang, Y. J. Zhan, G. H. Wang, "Production of SnO_2 nanorods by redox reaction [J]", J. Cryst. Growth, 2001, 233, 8-12.
    
    54.X. M. Ni, X. B. Su, Z. P. Yang, H. G. Zheng, "The preparation of nickel nanorods in wate r-in-oil microemulsion [J]", J. Cryst. Growth, 2003, 252, 612-617.
    
    55. Y. K. Liu, Z. H. Liu, G. H. Wang, "Synthesis and characterization of ZnO nanorods [J]", J. Cryst. Growth, 2003, 252, 213-218.
    
    56. Q. S. Wu, N. W. Zheng, Y. P. Ding, Y. D. Li, "Micelle-template inducing synthesis of winding ZnS nanowires [J]", Inorg. Chem. Commun., 2002, 5, 671-673.
    
    57. J. C. Lin, J. T. Dipre, M. Z. Yates, "Microemulsion-directed synthesis of molecular sieve fibers [J]", Chem. Mater., 2003, 15, 2764-2773.
    
    58. S. J. Xu, S. J. Chua, B. Liu, L. M. Gan, C. H. Chew, G. Q. Xu, "Luminescence characteristics of impurities-activated ZnS nanocrystals, repared in microemulsion with hydrothermal treatment [J]", App. Phys. Lett, 1998, 73, 478-480.
    
    59. W. W. So, J. S. Jang, Y. W. Rhee, K. J. Kim, S. J. Moon, "Preparation of nanosized crystalline CdS particles by the hydrothermal treatment [J]", J. Colloid Interface Sci., 2001, 237, 136-141.
    
    60. B. Liu, G. Q. Xu, L. M. Gan, C. H. Chew, W. S. Li, Z. X. Shen, "Photoluminescence and structural characteristics of CdS nanoclusters synthesized by hydrothermal microemulsion [J]", J. Appl. Phys., 2001, 89, 1059-1063.
    
    61. P. Zhang, L. Gao, "Synthesis and characterization of CdS nanorods via??hydrothermal microemulsion [J]", Langmuir, 2003, 19, 208-210.
    
    62. P. Zhang, L. Gao, "Copper sulfide fakes and nanodisks [J]", J. Mater. Chem., 2003, 13, 2007-2010.
    
    63. D. Chen, L. Gao, P. Zhang, "Synthesis of nickel sulfide via hydrothermal microemulsion process: nanosheet to nanoneedle [J]", Chem. Lett, 2003, 32, 996-997.
    
    64. M. H. Cao, C. W. Hu, E. B. Wang, "The first fluoride one-dimensional nanostructures: microemulsion-mediated hydrothermal synthesis of BaF_2 whiskers [J]", J. Am. Chem. Soc, 2003, 125, 11196-11197.
    
    65. M. H. Cao, Y. H. Wang, Y. J. Qi, C. X. Guo, C. W. Hu, "Synthesis and characterization of MgF_2 and KMgF_3 nanorods [J]", J. Solid State Chem., 2004, 177, 2205-2209.
    
    66. J. H. Xiang, S. H. Yu, B. H. Liu, Y. Xu, X. Gen, L. Ren, "Shape controlled synthesis of PbS nanocrystals by a solvothermal-microemulsion approach [J]", Inorg. Chem. Commun., 2004, 7, 572-575.
    
    67. Z. L. Yin, Y. Sakamoto, J. H. Yu, S. X. Sun, O. Terasaki, R. R. Xu, "Microernulsion-based synthesis of titanium phosphate nanotubes via amine extraction system [J]", J. Am. Chem. Soc, 2004, 126, 8882-8883.
    
    68.仲维卓,刘光照,施尔畏等,“在热液条件下晶体的生长基元与晶体形成机 理[J]”,中国科学(B辑),1994,24,349-350.
    
    69. A. I. Ivaschenko, M. Aoki, "Photoconductivity and crystal perfection in n-CdS grown from Te solution [J]", Jpn. J. Appl. Phys., 1979, 18, 1873-1874.
    
    [1] L. Qi, H. Colfen and M. Antonietti, Chem. Mater. 12, (2000), 2392.
    
    [2] Y. Xia, P. Yang, Y. Sun, Y Wu, B. Mayers, B. Gates,Y Yin, F. Kim and H. Yan, Adv. Mater. 15,(2003), 353.
    
    [3] G. M. Whitesides and B. Grzybowski, Science 295, (2002), 2418.
    
    [4] Y. Chang and H. C. Zeng, Crystal Growth Des. 4, (2004), 273.
    
    [5] M. S. Gudiksen, J. Wang and CM. Lieber, J. Phys. Chem. B 103, (2001), 4062.
    
    [6] J. Heath and F. K. LeGoues, Chem. Phys. Lett. 208, (1993), 263.
    
    [7] M. B. Mohamed, K. Z. Ismail, S. Link and M. El-Sayed, J. Phys. Chem. B 102, (1998), 9370.
    
    [8] S. Iijima, Nature 354, (1991), 56.
    
    [9] R. Tenne, L. Margulis, M. Genut and G. Hodes, Nature 360, (1992), 444.
    
    [10] S. Mann and G.A. Ozin, Nature 382, (1996), 313.
    
    [11] K. Keis, L. Vayssieres, S.-E. Lindquist and A. Hagfeldt, Nanostruct. Mater. 12, (1999), 487.
    
    [12] N. Beermann, L. Vayssieres, S. E. Lindquist and A. Hagfeldt, J. Electrochem. Soc. 7, (2000),2456.
    
    [13] L. Vayssieres, A. Hagfeldt and S. E. Lindquist, Pure Appl. Chem. 72, (2000), 47.
    
    [14] M. Li, H. Schnablegger and S. Mann, Nature 402, (1999), 393.
    
    [15] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang,Science 292, (2001), 1897.
    
    [16] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A.P. Alivisatos,Nature 404, (2000), 59.
    
    [17] S. Chen, Adv. Mater. 12, (2000), 186.
    
    [18] A. Hatzor and P.S. Weiss, Science 291, (2001), 1019.
    
    [19] T. Yoshida and H. Minoura, Adv. Mater. 12, (2000), 1219.
    
    [20] A. P.Alivisatos, Science 271, (1996), 933.
    
    [21] L. Manna, D. J. Milliron, A. Meisel, E. C. Scher and A. P.Alivisatos, Nat. Mater. 2, (2003),382.
    
    [22] Z. L. Xiao, C. Y.Han, W. K. Kwok, H. H.Wang, U. Welp, J. Wang and G. W. Crablree, J.Am. Chem. Soc. 126, (2004), 2316.
    
    [23] D. Moore, C. Ronning, C. Ma and Z. L. Wang, Chem. Phys. Lett. 385, (2004), 8.
    
    [24] Y. Wang, G. Z. Wang, M. Y. Yau, C. Y. To and D. H. L. Ng, Chem.Phys. Lett. 407, (2005),510.
    
    [25] D. B. Wang, C. X. Song, Z. S. Hu and X. Fu, J. Phys. Chem. B 109, (2005), 1125.
    
    [26] X. D. Gao, X. M. Li and W. D. Yu, J.Phys. Chem. B 109, (2005), 1155.
    
    [27] Z. P. Zhang, X. Q. Shao, H. D. Yu, Y. B. Wang and M. Y. Han, Chem. Mater. 17, (2005),332.
    
    [28] Q. Y. Lu, F. Gao and S. Komarneni, J. Am. Chem. Soc. 126, (2004), 54.
    
    [29] M. Chen, Y. Xie, J. Lu, Y. J. Xiong, S. Y. Zhang, Y.T. Qian and X. M. Liu, J. Mater. Chem.12, (2002), 748.
    
    [30] H. Zhang, X. Y. Ma, Y. J. Ji, J. Xu and D. R. Yang, Chem. Phys. Lett. 377, (2003), 654.
    
    [31] M. H. Cao, T. F. Liu, S. Gao, G. B. Sun, X. L. Wu, C. W. Hu and Z. L. Wang, Angew.Chem., Int. Ed. 44, (2005), 2.
    
    [32] V. Fleury, Nature 390, (1997), 145.
    
    [33] X. W. Zheng, L. Y. Zhu, X. J. Wang, A. H. Yan and Y. Xie, J. Cryst.Growth 260, (2004), 255.
    
    [34] K. Lee and W. Losert, J. Cryst. Growth 269, (2004), 592.
    
    [35] X. Y. Chen, X. Wang, Z. H. Wang, X. G. Yang and Y. T. Qian, Cryst.Growth Des. 5, (2005),347.
    
    [36] Q. Q. Wang, G. Xu and G. R. Han, J. Solid State Chem. 178, (2005), 2680.
    
    [37] F. Gao, Q. Y. Lu, S. H. Xie and D. Y. Zhao, Adv. Mater, 14, (2002), 1537.
    
    [38] G. Z. Shen and C. J. Lee, Crystal Growth Des. 5, (2005), 1085.
    
    [39] F. Dutault and J. Lahaye, Bull. Soc. Chim. Fr. 5-6, (1980), 236.
    
    [40] M. Krunks, E. Y. Mellikov and E. Sork, Zh. Neorg. Khim. 30, (1985), 1373.
    
    [41] N. N. Golovnev, M. B. Egizaryan, V. A. Fedorov and V. E. Mironov, Zh. Neorg. Khim. 41,(1996), 104.
    
    [42] M. K. Karanjai and D. Dasgupta, Mater. Lett. 4, (1986), 368.
    
    [43] M. K. Karanjai and D. Dasgupta, Thin Solid Films. 155, (1987), 309.
    
    [44] M. Krunks, E. Y. Mellikov and E. Sork, Thin Solid Films. 145, (1986), 105.
    
    [45] N. Tohge, M. Asuka and T. Minami, J. Non-Cryst. Solids. 147-148, (1992), 652.
    [46] N. Tohge, S. Tamaki and K. Okuyama, Jpn. Appl. Phys. 34, (1995), L207.
    [47] S. Tamaki, N. Tohge and K. Okugama, J. Mater. Sci. Lett. 14, (1995), 1388.
    [48] K. Okugama, I. W. Lenggoro, N. Tagami, S. Tamaki and N. Tohge, J. Mater. Sci. 32, (1997), 1229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700