农杆菌介导的小麦遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遗传转化技术可以将外源DNA片段导入到受体基因组中,是进行遗传改良和功能基因研究的重要技术手段。农杆菌介导法是目前应用较为广泛的转化方法之一,但在小麦中,只有包括Bobwhite和扬麦158在内的少数几个基因型被成功用于农杆菌介导的小麦遗传转化中,为了拓宽小麦农杆菌转化的受体基因型范围,本研究对10个不同基因型的材料进行了转化实验。B31706和B31575的转化率明显高于对照材料Bobwhite
     其中,B31706转化后再生率及总抗性苗愈伤比例均为最高,在受到农杆菌侵染损伤后再生效率下降幅度最小。B31575在可再生愈伤组织中的抗性苗愈伤比例最高,该基因型的分化能力最强,但是受到农杆菌侵染后再生率会大幅下降。同时,研究了不同载体对转化效率的影响,结果显示,转化效率在不同载体之间不存在明显差异。
The genetic transformation technique is the most important tool for research in genetic improvements and functionanl genomics. The method of Agrobacterium-mediated transformation is the most widely used in genetic transformation. To this day, only several genotypes such as Bobwhite and Yangmai158 have been used in transformation successfully. To widen the recipient genotypes, ten different genotypes were transformated by Agrobacterium-mediated In our study, transformation efficiency of B31706 and B31575 were significantly higher than Bobwhite. Moreover, regeneration rate and resistant plantlet rate of Agrobacterium-mediated genetic transformation in B 31706 immature embryos callus was the highest one among the genotypes. At mean time, the decline of regeneration rate after Agrobacterium co-cultivation of B31706 was less than others. B31575, the resistant plantlet rate of regeneration plants was higher than others. Though the Regeneration rate without transformation of B31575 was the highest, it was dropped after co-cultivation. In addition, the difference of transformation efficiency among vectors was studied. From the results, there was no significant difference among different vectors in transformation efficiency.
引文
Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748-1755
    Agarwal S, Loar S, Steber C, Zale J (2009) Floral transformation of wheat. Methods in molecular biology (Clifton, NJ) 478:105-113
    Altpeter F, Diaz I, McAuslane H, Gaddour K (1999) Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Molecular Breeding
    Amoah BK, Wu H, Sparks C, Jones HD (2001) Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J Exp Bot 52:1135-1142
    An G, Jeong DH, Jung KH, Lee S (2005) Reverse Genetic Approaches for Functional Genomics of Rice. Plant Mol Biol 59(1) 111-123
    Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54:1101-1111
    Arencibia AD, Carmona ER, Tellez P, Chan MT, Yu SM, Trujillo LE, Oramas P (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:213-222
    Ballester A, Cervera M, Pena L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Reports 26:39-45
    Bancroft I, Dean C (1993) Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics 134:1221-1229
    Barakat A, Gallois P, Raynal M, Mestre Ortega D, Sallaud C, Guiderdoni E, Delseny M, Bernardi G (2000) The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS Lett 471:161-164
    Barcelo P, Rasco-Gaunt S, Thorpe C, Lazzeri P (2001) Transformation and gene expression. Advances in Botanical Research Incorporating Advances in Plant Pathology, Vol 34:59-126
    Barro F, Cannell M, Lazzeri P, Barcelo P (1998) The influence of auxins on transformation of wheat and tritordeum and analysis of transgene integration patterns in transformants. Theoretical and Applied Genetics 97:684-695
    Baulcombe DC (2004) RNA silencing in plants. Nature 431:356-363
    Beachy RN (1997) Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr Opin Biotechnol 8:215-220
    Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In:Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants.
    Brunaud V, Baizergue S, Dubreucq B (2002) T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep 3:1152-1157
    Bytebier B, Deboeck F, De Greve H, Montagu MV, Hernalsteens JP (1987) T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis. Proc Natl Acad Sci USA 84:5345-5349
    Carr JP, Zaitlin M (1993) Replicase-mediated resistance. Semin Virol 4:339-347
    Carthew RW (2001) Gene silencing by double-stranded RNA. Curr Opin Cell Biol 13:244-248
    Chen SY, Jin WZ, Wang MY, Zhang F, Zhou J, Jia QJ, Wu YR, Liu FY, Wu P (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36:105-113
    Chen WP, Chen PD, Liu D, Kynast R, Friebe B, Velazhahan R, Muthukrishnan S, Gill BS (1999) Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theoretical and Applied Genetics 99:755-760
    Chen WP, Gu X, Liang GH, Muthukrishnan S, Chen PD, Liu D, Gill BS (1998) Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolistic bombardment and the bar gene as a selectable marker. Theoretical and Applied Genetics 97:1296-1306
    Cheng M, Fry J, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic Transformation of Wheat Mediated by Agrobacterium tumefaciens. Plant Physiol 115:971-980
    Citovsky V, Kozlovsky S V, Lacroix B, Zaltsman A, Dafny-Yelin M, Vyas S, Tovkach A, Tzfira T (2007) Biological systems of the host cell involved in Agrobacterium infection. Cellular microbiology 9:9-20
    Curtis BC, Rajaram S, Macpherson HG (eds) (2002) Bread wheat:improvement and production. FAO plant production and protection series, No.30. Food and Agriculture Organization of the United Nations, Rome
    Delseny M, Salses J, Cooke R, Sallaud C, Regad F, Lagoda P, Guiderdoni E, Ventelon M, Brugidou C, Ghesquiere A (2001) Rice genomics:present and future. Plant Physiol Biochem 39:323-334
    Ding L, Li S, Gao J, Wang Y, Yang G, He G (2007) Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Mol Biol Rep 36: 29-36
    Djukanovic V, Orczyk W, Gao H, Sun X, Garrett N, Zhen S, Gordon-Kamm W, Barton J, Lyznik LA (2006) Gene conversion in transgenic maize plants expressing FLP/FRT and Cre/loxP site-specific recombination systems. Plant biotechnology journal 4:345-357
    Endo S, Kasahara T, Sugita K, Matsunaga E, Ebinuma H (2001) The isopentenyl transferase gene is effective as a selectable marker gene for plant transformation in tobacco (Nicotiana tabacum cv. Petite Havana SRI). Plant Cell Reports 20:60-66
    Fedoroff NV, Furtek DB, Nelson OE (1984) Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable element Activator (Ac). Proc Natl Acad Sci USA 81:3825-3829
    Fedoroff NV, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Plant Cell 35:235-242
    Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. NATURE GENETICS 38:953-956
    Gadaleta A, Giancaspro A, Blechl AE, Blanco A (2006) Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation. Journal of Cereal Science 43:31-37
    Gadaleta A, Giancaspro A, Blechl AE, Blanco A (2007) A transgenic durum wheat line that is free of marker genes and expresses 1Dy 10. Journal of Cereal Science 48:439-445
    Gelvin SB (2003) Agrobacterium-mediated plant transformation:the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 67:16-37
    Gils M, Marillonnet S, Werner S, Gratzner R, Giritch A, Engler C, Schachschneider R, Klimyuk V, Gleba Y (2008) A novel hybrid seed system for plants. Plant biotechnology journal 6:226-235
    Giroux MJ, Shaw J, Barry G, Cobb BG, Greene T, Okita T, Hannah LC (1996) A single mutation that increases maize seed weight. Proc Natl Acad Sci USA 93:5824-5829
    Goodwin JL, Pastori GM, Davey MR, Jones H (2005) Selectable markers:antibiotic and herbicide resistance. Methods Mol Biol 286:191-202
    Gopalakrishna S, Singh P, Singh NK (2003) Enhanced transformation of plant cells following co-bombardment of VirE2 protein of Agrobacterium. Current Science 85:1343-1347
    Greco R, Ouwerkerk PB, Taal AJ, Favalli C, Beguiristain T, Puigdomenech P, Colombo L, Hoge JH and Pereira A (2001) Early and multiple Ac transposition in rice suitable for efficient insertional mutagenesis. Plant Mol Biol 46:215-227
    Greco R, Ouwerkerk PBF, de Kam RJ, Sallaud C, Favalli C,Colombo L, Guiderdoni E, Meijer AH, Hoge JHC, Pereira A (2003) Transpositional behaviour of an AclDs system for reverse genetics in rice. Theor Appl Genet 108:10-24
    Gressel J (1992) The need for herbicide-resistant crops. In:Denholm I, Devonshire AL, Holloman DW (eds) Resistance'91:achievements and developments in combating pesticide resistance. Elsevier, London, p 283
    Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM (2005) An Introduction to Genetic Analysis,8th edn., Freeman, San Francisco, pp.424-450
    Guangmin X, Chenxia H, Huimin C, Zhongyi L (1999) Transgenic plant regeneration from wheat (Triticum aestivum L.) mediated by Agrobacterium-tumefaciens. Acta Phytophysiologica Sinica (China) 25:22-28
    Haldrup A, Noerremark M, Okkels F (2001) Plant selection principle based on xylose isomerase. In Vitro Cellular & Developmental Biology Plant 37:114-119
    Haliloglu K, Baenziger PS (2003) Agrobacterium tumefaciens-mediated wheat transformation. Cereal Res Commun 31:9-16 Hannon GJ (2002) RNA interference. Nature 418:244-251
    Hansen G, Chilton MD (1996) "Agrolistic" transformation of plant cells:integration of T-strands generated in planta. Proc Natl Acad Sci USA 93:14978-14983
    Hansen G, Das A, Chilton MD (1994) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Natl Acad Sci USA 91:7603-7607
    Hansen G, Shillito RD, Chilton MD (1997) T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proc Natl Acad Sci USA 94:11726-11730
    Harwood WA, Ross SM, Cilento P, Snape J (2000) The effect of DNA/gold particle preparation technique, and particle bombardment device, on the transformation of barley (Hordeum vulgare). Euphytica 111:67-76
    He DG, Mouradov A, Yang YM, Mouradova E, Scott KJ (1994) Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts. Plant Cell Rep 14:t92-196
    Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen:a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819-832
    Hoa TT, Bong BB, Huq E, Hodges TK (2002) Cre/lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet 104:518-525
    Hu Q, Kononowicz-Hodges H, Nelson-Vasilchik K, Viola D, Zeng P, Liu H, Kausch AP, Chandlee JM, Hodges TK, Luo H (2008) FLP recombinase-mediated site-specific recombination in rice. Plant biotechnology journal 6:176-188
    Hu T, Metz S, Chay C, Zhou HP, Biest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F, Fry J (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21:1010-1019
    Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Naxl, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718-1727
    Jeon JS, Lee S, Jung KH (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561-570
    Jin SG, Komari T, Gordon MP, Nester EW (1987) Genes responsible for the supervirulence phenotype of Agrobacterium-tumefaciens A281. J Bacteriol 169:4417-4425
    Jones JDG, Carland F, Lim E, Ralston E, Dooner HK (1990) Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell 2: 701-707
    Khanna HK, Daggard GE (2003) Agrobacterium-tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep 21:429-436
    Kirubakaran SI, Begum SM, Ulaganathan K, Sakthivel N (2008) Characterization of a new antifungal lipid transfer protein from wheat. Plant Physiol Biochem 46:918-927
    Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium-tumefaciens and segregation of transformants free from selection markers. Plant J 10:165-174
    Koprek T, McElroy D, Louwerse J, Williams-Carrier R, Lemaux PG (2000). An efficient method for dispersing Ds elements in the barley genome as for determining gene function. Plant J 24:253-263
    Kuraparthy V, Sood S, Dhaliwal HS, Chhuneja P, Gill BS (2007) Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet 114:285-294
    Lamacchia C, Shewry PR, Di Fonzo N, Forsyth JL, Harris N, Lazzeri PA, Napier JA, Halford NG, Barcelo P (2001) Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot 52:243-250
    Langridge P, Brettschneider R, Lazzeri P, Lorz H (1992) Transformation of cereals via Agrobacterium and the pollen pathway:a critical assessment. Plant J 2:631-638
    Lawrence RJ, Pikaard CS (2003) Transgene-induced RNA innosference:a strategy for overcoming gene redundancy in polyploids to generate loss-of-function mutations. Plant J 36:114-121
    Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology (NY) 9:963-967
    Lewis JM, Mackintosh CA, Shin S, Gilding E, Kravchenko S, Baldridge G, Zeyen R, Muehlbauer GJ (2008) Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development. Plant Cell Rep 27:1217-1225
    Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. NATURE 422:618-621
    Linthorst HJM (1991) Pathogenesis-related proteins of plants. Crit Rev Plant Sci 10:123-150
    Loukoianov A, Yan L, Blechl A, Sanchez A, Dubcovsky J (2005) Regulation of VRN-1 vernalization genes in normal and transgenic wheat. Plant Physiol 138:2364-2373
    Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007)'GM-gene-deletor':fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant biotechnology journal 5:263-274
    Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102:17531-17536
    Lyznik LA, Mitchell JC, Hirayama L, Hodges TK (1993) Activity of yeast FLP recombinase in maize and rice protoplasts. Nucleic acids research 21:969-975
    Lyznik LA, Rao KV, Hodges TK (1996) FLP-mediated recombination of FRT sites in the maize genome. Nucleic acids research 24:3784-3789
    Ma ZQ, Sorrel M E, Tanksley S D (1995) RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3 and Pm4 in wheat. Theor Appl Genet 90:601-606
    Mackintosh CA, Garvin DF, Radmer LE, Heinen SJ, Muehlbauer GJ (2006) A model wheat cultivar for transformation to improve resistance to Fusarium Head Blight. Plant Cell Rep 25:313-319
    Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically Engineered Resistance to Fusarium Head Blight in Wheat by Expression of Arabidopsis NPR1 MPMI 19:123-129
    Marx J (2000) Interfering with gene expression. Science 288:1370-1372
    McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biot 18:455-457
    Mentewab A, Stewart CN (2005) Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nat Biotechnol 23:1177-1180
    Meyer FD, Smidansky ED, Beecher B, Greene T, Giroux MJ (2004) The maize Sh2r6hs ADP-glucose pyrophosphorylase (AGP) large subunit confers enhanced AGP properties in transgenic wheat (Triticum aestivum). Plant Science 167:899-911
    Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol.138:1903-1913
    Mooney PA, Goodwin PB (1991) Adherence of Agrobacterium tumefaciens to the cells of immature wheat embryos. Plant Cell Tissue Org Cult 25:199-208
    Murashige T, Skoog F, (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15,473-497
    Nadolska Orczyk A, Orczyk W (2003) Agrobacterium-mediated transformation of cereals. Plant Genetic Engineering 2:1-25
    Ow DW (2001) The right chemistry for marker gene removal? Nat Biotechnol 19:115-116
    Pastori GM, Wilkinson MD, Steele SH, Sparks CA, Jones HD, Parry MA (2001) Age-dependent transformation frequency in elite wheat varieties. J Exp Bot 52:857-863
    Patnaik D, Khurana P (2001) Wheat biotechnology:A minireview. EJB Electronic Journal of Biotechnology 4:1-29
    Patnaik D, Khurana P (2003) Genetic transformation of Indian-bread (T. aestivum) and pasta (T. durum) wheat by particle bombardment of mature embryo-derived calli. BMC Plant Biology 3:1-11
    Perret SJ, Valentine J, Leggett JM, Morris P (2003) Integration, expression and inheritance of transgenes in hexaploid oat (Avena sativa L.). J Plant Physiol 160:931-943
    Radhakrishnan P, Srivastava V (2005) Utility of the FLP-FRT recombination system for genetic manipulation of rice. Plant Cell Reports 23:721-726
    Ramamoorthy V, Zhao X, Snyder AK, Xu JR, Shah DM (2007) Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum. Cell Microbiol 9:1491-1506
    Rasco-Gaunt S, Liu D, Li CP, Doherty A, Hagemann K, Riley A, Thompson T, Brunkan C, Mitchell M, Lowe K, Krebbers E, Lazzeri P, Jayne S, Rice D (2003) Characterisation of the expression of a novel constitutive maize promoter in transgenic wheat and maize. Plant Cell Rep 21:569-576
    Rasco-Gaunt S, Riley A, Cannell M, Barcelo P, Lazzeri PA (2001) Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J Exp Bot 52:865-874
    Rasmussen JL, Kikkert JR, Roy MK, Sanford JC (1994) Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles. Plant Cell Rep 13:212-217
    Reynolds M, Tuberosa R (2008) Translational research impacting on crop productivity in drought-prone environments. Current Opinion in Plant Biology 11:171-179
    Rubtsova M, Kempe K, Gils A, Ismagul A, Weyen J, Gils M (2008) Expression of active Streptomyces phage phiC31 integrase in transgenic wheat plants. Plant Cell Reports 27:1821-1831
    Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Meth Enzymol 217:483-509
    Satyavathi VV, Jauhar PP, Elias EM, Rao MB (2004) Effects of Growth Regulators on In Vitro Plant Regeneration in Durum Wheat. Crop Sci 44:1839-1846
    Scutt CP, Zubko E, Meyer P (2002) Techniques for the removal of marker genes from transgenic plants. Biochimie 84:1119-1126
    Shrawat AK, Lorz H (2006) Agrobacterium-mediated transformation of cereals:a promising approach crossing barriers. Plant biotechnology journal 4:575-603
    Shwry PR, Tatham AS, Barro F, Barcelo P, Lazzeri P (1995) Biotechnology of breadmaking:unraveling and manipulating the multi-protein gluten complex. Biotechnology (NY) 13:1185-1190
    Sivamani E, Bahieldinl A, Wraith JM, Al-Niemi T, Dyer WE, Ho TD, Qu R (2000a) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1-9
    Sivamani E, Brey CW, Dyer WE, Talbert LE, Qu R (2000b) Resistance to wheat streak mosaic virus in transgenic wheat expressing the viral replicase (NIb) gene. Molecular Breeding 6:469-477
    Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci USA 99:1724-1729
    Smidansky ED, Martin JM, Hannah LC, Fischer AM, Giroux MJ (2003) Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta 216:656-664
    Smidansky ED, Meyer FD, Blakeslee B, Weglarz TE, Greene TW, Giroux MJ (2007) Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 225:965-976
    Smith MC, Till R, Brady K, Soultanas P, Thorpe H (2004) Synapsis and DNA cleavage in phiC31 integrase-mediated site-specific recombination. Nucleic acids research 32:2607-2617
    Smith RH, Hood EE (1995) Agrobacterium-tumefaciens transformation of monocotyledons. Crop Sci 35:301-309
    Springer PS (2000) Gene traps:tools for plant development and genomics. Plant Cell 12:1007-1020
    Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z (2005) Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep 24:86-94
    Stone MC, (2003) Understanding the role of gibberellin in the developmental physiology of wheat using a transgenic approach. In PhD thesis, Plant Sciences Department. Bristol University, pp.231
    Sundaresan V (1996) Horizontal spread of transposon mutagenesis:new uses for old elements. Plant Sci 1:184-190
    Svitashev SK, Pawlowski WP, Makarevitch I, Plank DW, Somers DA (2002) Complex transgene locus structures implicate multiple mechanisms for plant transgene rearrangement. Plant J 32:433-445
    Sykorova B, Kuresova G, Daskalova S, Trckova M, Hoyerova K, Raimanova I, Motyka V, Travnickova A, Elliott MC, Kaminek M (2008) Senescence-induced ectopic expression of the A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield. Journal of Experimental Botany 59:377-387
    Szabados L, Kovace I, Oberschall A (2002) Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. Plant J 32:233-242
    Takumi S, Murai K, Mori N, Nakamura C (1999) Trans-activation of a maize Ds transposable element in transgenic wheat plants expressing the Ac transpose gene. Theor Appl Genet 98:947-953
    Thorneycroft D, Hosein F, Thangavelu M, Clark J, Vizir I, Burrell MM, Ainsworth C (2003) Characterization of a gene from chromosome 1B encoding the large subunit of ADPglucose pyrophosphorylase from wheat:evolutionary divergence and differential expression of Agp2 genes between leaves and developing endosperm. Plant Biotechnol J 1:259-270
    Thorpe HM, Smith MC (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proceedings of the National Academy of Sciences of the United States of America 95:5505-5510
    Travella S, Ross SM, Harden J, Everett C, Snape J, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780-789
    Travella S, Ross SM, Harden J, Everett C, Snape-JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780-789
    Urushibara S, Tozawa Y, Kawagishi-Kobayashi M, Wakasa K (2001) Efficient transformation of suspension-cultured rice cells mediated by Agrobacterium tumefaciens. Breed Sci 51:33-38
    Uze M, Potrykus I, Sautter C (2000) Factors influencing t-DNA transfer from agrobacterium to precultured immature wheat embryos (Triticum aestivum L.). Cereal Res Commun 28:17-23
    Uze M, Wunn J, Puonti-Kaerlas J, Potrykus I, Sautter C (1997) Plasmolysis of precultured immature embryos improves Agrobacteriummediated gene transfer to rice (Oryza sativa L.). Plant Sci 130:87-95
    van der Fits L, Deakin EA, Hoge JH, Memelink J (2000) The ternary transformation system:constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43:495-502
    Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium-tumefaciens essential for crown gall-inducing ability. NATURE 252:169-170
    Vasil IK (1996) Phosphinothricin-resistant crops. In:Duke SO (ed) Herbicide-resistant crops. CRC Press, Boca Raton, pp 85-91
    Vasil IK (2007) Molecular genetic improvement of cereals:transgenic wheat (Triticum aestivum L.). Plant Cell Reports 26 (8) pp.1133-54
    Vasil IK, Anderson OD (1997) Genetic engineering of wheat gluten. Trends Plant Sci 2:292-297
    Vasil IK, Vasil V (2006) Transformation of wheat via particle bombardment. Methods Mol Biol 318:273-283
    Vasil IK, Vasil V (2006) Transformation of wheat via particle bombardment,2nd edn. In: Loyola-Vargas VM, Vazquez-Flota F (eds) Methods in molecular biology:plant cell culture protocols. Humana Press, Totowa, vol 318, pp 273-283
    Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide Resistant Fertile Transgenic Wheat Plants Obtained by Microprojectile Bombardment of Regenerable Embryogenic Callus. Nat Biotech 10:667-674
    Vasil V, Redway FA& Vasil IK (1990) Regeneration of plants from embryogenic suspension culture protoplasts of wheat (Triticum aestivum L.) Bio/Technology 8:429-434
    Wan Y, Layton J. (2006) Wheat (Triticum aestivum L.). Methods Mol Biol vol.343 pp. 245-53
    Wang Y, Chen B, Hu Y, Li J, Lin Z (2005) Inducible excision of selectable marker gene from transgenic plants by the cre/lox site-specific recombination system. Transgenic Res 14:605-614
    Weir B, Gu X, Wang M, Upadhyaya N, Elliott AR, Brettell RIS (2001) Agrobacterium-tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Functional Plant Biol 28:807-818
    Wenck AR, Quinn M, Whetten RW, Pullman G, Sederoff R (1999) High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol Biol 39:407-416
    Wilmink A, Dons J (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Molecular Biology Reporter 11:165-185
    Wu H, Doherty A, Jones HD (2007) Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes. Transgenic Res 17 (3) pp.425-36
    Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659-668
    Wu H, Sparks C, Jones H (2006) Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation. Molecular Breeding 18:195-208
    Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor downregulated by vernalization. Science 303:1640-1644
    Yao Q, Cong L, Chang JL, Li KX, Yang GX, He GY (2006) Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. Journal of Experimental Botany 57:3737-3746
    Yao Q, Cong L, He G, Chang J, Li K, Yang G (2007) Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Mol Biol Rep 34:61-67
    Zhang Y, (2001) Genetic manipulation of seed storage protein and carbohydrate metabolism in barley (Hordium vulgare L.). In PhD thesis, Rothamsted Research and Nottingham University, p.245
    Zhang Y, Li H, Ouyang B, Lu Y, Ye Z (2006) Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol Lett 28:1247-1253
    Zhao TJ, Zhao SY, Chen HM, Zhao QZ, Hu ZM, Hou BK, Xia GM (2006) Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep 25:1199-1204
    Zhao TJ, Zhao SY, Chen HM, Zhao QZ, Hu ZM, Hou BK, Xia GM (2006) Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep 25:1199-1204
    Zhou H, Arrowsmith JW, Fromm ME, Hironaka CM, Taylor ML, Rodriguez D, Pajeau ME, Brown SM, Santino CG, Fry J (1995) Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep 15:159-163
    Zhou H, Berg JD, Blank SE, Chay C, Chen G, Eskelsen SR, Fry J, Hoi S, Hu T, Isakson PJ, Lawton MB, Metz S, Rempel CB, Ryerson DK, Sansone AP, Shook AL, Starke RJ, Tichota JM, Valenti SA (2003) Field efficacy assessment of transgenic roundup ready wheat. Crop Science 43:1072-1075
    何道一,李中存,王洪刚(2003)农杆菌介导的小麦活体转化.中国农业科学36:1437-1441
    侯文胜,郭三堆,路明(2003)利用花粉管通道法将cryIa基因导入小麦.作物学报29:806-809
    毕瑞明,贾海燕,封德顺,王洪刚(2006)农杆菌介导抗储粮害虫转基因小麦(Triticum aestivum L.)的获得及分析.生物工程学报22:431-437
    郭亮,文玉香,梁玉梅(1997)苏云金芽孢杆菌毒蛋白基因在小麦基因组中的甲基化修饰.遗传学报24:255-262
    郭光沁许智宏卫志明陈惠民(1993)用PEG法向小麦原生质体导入外源基因获得转基因植株.科学通报38(13):1227-1231
    魏松红,曹远银(2003)小麦转化受体体系的建立:小麦幼胚组织培养研究沈阳农业大学学报36(1):21-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700