核型多角体病毒p74基因在苏云金芽胞杆菌中克隆与表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)是目前世界上应用范围最广的杀虫微生物,其杀虫活性主要来源于芽胞形成期产生的杀虫晶体蛋白。传统的Bt菌株均存在杀虫谱窄、毒力低等缺陷,因此,通过生物技术手段构建高效广谱的Bt工程菌一直是国内外研究的热点和方向。本研究利用Bt的cry1Ac基因与核型多角体病毒的p74基因构建融合基因,并获得新型杀虫工程菌株XBU-H1Acp74。
     从苜蓿银纹夜蛾核型多角体病毒(Autographa californicamulticapsid nucleopolyhedrovirus,简称AcMNPV)中提取病毒DNA,设计引物p74-F/p74-R,以病毒DNA为模版PCR扩增p74基因;从研究室保存的菌株Bt 4.0718(CCTCC No.M200016)中提取质粒,设计引物Ac-F/Ac-R和Act-F/Act-R,以质粒为模版PCR分别扩增cry1Ac基因及cry1Ac基因的终止下游序列cry1Act;以pMD18-T作为大肠杆菌亚克隆载体,分别构建含有目的基因p74、cry1Ac、cry1Act的T载体pTp74、pT1Ac和pT1Act;用SmaⅠ和NcoⅠ双酶切pTp74和pT1Act,回收两个酶切片段并进行连接,构建中间载体质粒pTp74Act;再分别用SalⅠ和BglⅡ双酶切pT1Ac和中间载体pTp74Act,回收两个酶切片段并进行连接,构建中间载体质粒pT1Acp74;然后将中间载体pT1Acp74和穿梭载体pHT304分别用SalⅠ和XmaⅠ双酶切,回收两个酶切片段并进行连接,构建表达载体质粒pH1Acp74,将表达载体pH1Acp74电转化至Bt无晶体突变株XBU001,获得目的重组菌株XBU-H1Acp74。
     SDS-PAGE分析显示,工程菌株XBU-H1Acp74可表达130 kD的Cry1Ac蛋白和50 kD的P74蛋白;原子力显微镜观察显示,工程菌株XBU-H1Acp74可产生呈菱形的晶体蛋白;生测结果显示,工程菌株XBU-H1Acp74与普通工程菌HTX-42(cry1Ac单价基因转XBU001)相比,对初孵棉铃虫在48 h的LC_(50)是47.624μg/ml,72 h的LG_(50)是29.0782μg/ml,分别低于HTX-42在48h的116.4880μg/ml和72h的90.7526μg/ml,表明P74蛋白可以协同Cry1Ac的杀虫效果。
     本研究成功构建了cry1Ac基因和p74基因融合的Bt工程菌,为进一步研究和构建新型生物杀虫剂的工程菌株,研制出高效、广谱、安全的杀虫剂提供了新的技术途径。
Bacillus thuringiensis(Bt)is one of the most widely used insecticidal microbe which can produce insecticidal crystal proteins(ICPs)during its sporulation.As one of the biopesticides,most traditional Bt products have some similar drawbacks,such as narrow host range,low toxicity target pest, being resisted by insect,etc.So it is a hot topic study to build a recombinant strain with highly insecticidal activity and widely host range by biotechnology.In this work,the cry1Ac gene and p74 gene were recombinanted and constructed into XBUO01 to enhance the toxicity of crystal proteins,and a new effective recombinant strains,named XBU-H1Acp74,maybe gained.
     First,the p74 gene was amplified from the genosome of Autographa californica multicapsid nucleopolyhedrovirus by using primer p74-F/p74-R,the cry1Ac gene and the terminator gene of cry1Ac,named cry1Act,were amplified from the plasmid of Bt 4.0718 strain which was stored in our lab by using primer Ac-F/Ac-R and Act-F/Act-R.Three T vectors,named pTp74,pT1Ac and pT1Act,which held the aimed gene p74,cry1Ac and cry1Act respectively,were builted by using pMD18-T.The two T vectors, pTp74 and pT1Act,were digested by SmaⅠand NcoⅠ,then the two fragments were extracted and linked by T4 DNA ligase,and the middle-vector pTp74Act which held the p74-cryAct fusing gene was built.The other T vectors,pT1Ac,was digested by SmaⅠand NcoⅠas well as the middle-vector pTp74Act,and the two fragments were also extracted and linked by T4 DNA ligase,so the other middle-vector pT1Acp74 which held the cry1Ac-p74- cry1Act fusing gene was built.And then pT1Acp74 and the shuttle plasmid PHT304 were digested by SalⅠ/XmaⅠ,the two fragments were extracted and linked by T4 DNA ligase similarly,and an expressing-vector pH1Acp74 was built.Finally,pH1Acp74 was transformed into the acrystalliferous strain XBU001 and the aimed recombinant strain XBU-H1Acp74 would be gotten.
     The expression of Bt transformant XBU-H1Acp74 was analyzed by SDS-PAGE,which showed XBU-H1Acp74 could produce 130kD Cry1Ac protein and 50kDP74 protein.The observation of Atomic Force Microscopy demonstrated that the recombinant crystals appeared bipyramidal crystals.The insecticidal activity of transformant against Helicoverpa armigera Hubner was evaluated comparing with the contrast strains HTX-42(only cry1Ac gene was transformed into XBU001)after autolysis.The LC_(50)of HTX-42 was higher than the XBU-H1Acp74's,which implyed that P74 could increase the efficacy and range of Bt Cry toxins in insect control.
     This work constructed the fusion gene of cry1Ac and p74 successfully,which made a good ground for constructing the fusion genes of Bt cry gene and other foreign genes.
引文
[1] Aronson AI, Geng Chaoxian, Wu L. Aggregation of Bacillus thuringiensis CrylA toxins upon binding to target insect larval midgut vesicles. Appl Envir Microbiol, 1999,65:2503-2507.
    [2] Ayres MD, Howard SC, Kuzio J, et al. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology, 1994,202(2): 586-605.
    [3] Bietlot HP, Schernthaner JP, Milne RE, et al. Evidence that the CryIA crystal protein from Bacillus thuringiensis is associated with DNA. J Biol Chem, 1993,268(11): 8240-8245.
    [4] Birnbaum MJ, Clem RJ, Miller LK. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motif. J Virol, 1994, 68:2521-2528.
    [5] Blissard GW, Wenz JR. Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J Virol, 1992,66:6829-6835.
    [6] Beck NB, Sidhu JS, Omiecinski CJ. Baculovirus vectors repress phenobarbital-mediated gene induction and stimulate cytokine expression in primary cultures of rat hepatocytes. Gene therapy, 2000, 7(15), 1274-1283.
    [7] Chaturvedi R, Bhakuni V, Tuli R. The 6-endotoxin proteins accumulate in Escherichia coli as a protein-DNA complex that can be dissociated by hydrophobic interaction chromatography. Protein Express Purif, 2000,20(1): 21-26.
    [8] Clem RJ, Fechheimer M, Miller LK. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science, 1991,254:1388-1390.
    [9] Coux F, Vachon V, Rang C, et al. Role of interdomain salt bridges in the pore-forming ability of the Bacillus thuringiensis toxins CrylAa and Cry1Ac.J Biol Chem,2001,276(38):35546-35551.
    [10]Crickmore N,Zeigler DR,Feitelson J,et al.Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins.Microbiol.Mol Biol Rev,1998,62:807-813.
    [11]Crook NE,Clem RJ,Miller LK.An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif.J Virol,1993,67:2168-2174.
    [12]Feldmann F,Dullemans A,Waalwijk C.Binding of the CryIVD toxin of Bacillus thuringiensis subsp,israelensis to larval dipteran midgut proteins.Appl Env Microbiol,1995,61:2601-2605.
    [13]Friesen PD & Miller LK.Divergent transcription of early 35-and 94-kilodalton protein genes encoded by the Hind K genomic fragment of the baculovirus Aotographa califronica nuclear polyhedrosis virus.J Virol,1987,61:2264-2272.
    [14]Gazit E,Rocca PL,Sansom MSP,et al.The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis δ-endotoxin are consistent with an "umbrella-like" structure of the pore.PNAS,1998,95:12289-12294.
    [15]Griffitts JS,Whitacre JL,Stevens DE,et al.Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme.2001,293:860-864.
    [16]Grochulski P,Masson L,Borisova S,et al.Bacillus thuringiensis CryIA(a)insecticidal toxin:crystal structure and channel formation.J Mol Biol,1995,254:447-464.
    [17]Hershberger D,Dickson JA,Friesen PD,et al.Site-specific mutagenesis of the 35-kilodaltonprotein gene encoded by Autographa californica nuclear polyhedrosis virus:cellline-specific effects on virus replication.J Virol,1992,66:5525-5533.
    [18]Herrmann M,Lorenz HM,Voll R,et al.A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res, 1994,22:5506-5507.
    [19] Hill JE, Faulkner P. Identification of the gp67 gene of a baculovirus pathogenic to the spruce budworm, Choristoneura fumiferana multinucleocapsid nuclear polyhedrosis virus. J Gen Virol, 1994,75:1811-1813.
    [20] Hofte, H, Whiteley HR. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev, 1989.53:242-255.
    [21] Hofmann C, Luthy P, Hutter R, et al Binding of the delta endotoxin from Bacilus thuringiensis to brush border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur J Biochem, 1988,173:85-91.
    [22] Hofmann C, Vanderbruggen H, Hofte H, et al. Specificity of Bacillus thuringiensis δ -endotoxin is correlated with the presence of high affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci, USA, 1988, 85:7844-7848.
    [23] Indrasith LS, Hori H. Isolation and partial characterization of binding protein for immobilized delta endotoxin from solubilized brush border membrane vesicles of the silkworm, Bombyx mori, and the common cutworm, Spodoptera litura. Comp Biochem physiol., 1992,102B: 605-610.
    [24] Jenkins JL, Lee MK, Valaitis A P, et al. Bivalent sequential binding model of a Bacillus thuringiensis toxin to gypsy moth aminopeptidase N receptor. J Boil Chem, 2000, 275(19): 14423-14431.
    [25] Johnson DE & McGaughey WH. Contribution of Bacillus thuringiensis spores to toxicity of purified Cry proteins towards Indianmeal moth larvae. Curr Microbiol, 1996, 33:54-59.
    [26] Kasman LM, Volkman LE. Filamentous actin is required for lepidopteran nucleopolyhedrovirus progeny production. J Gen Virol, 2000,81:1881-1888.
    [27]Ohkawa T,Volkman LE.Nuclear f-actin is required for AcMNPV nucleocapsid morphogenesis.Virology,1999,264:1-4.
    [28]Cbariton CA,Volkman LE.Sequential rearrangement and nuclear polymerization of actin in baculovirus-infected Spodoptera frugiperda cells.J Virol,1991,65(3):1219-1227.
    [29]Kamita SG,Majima K,Maeda S.Identification and characterization of the p35 gene of Bombyxmori nuclear polyhedrosis virus-induced apoptosis.J Virol,1993,67:455-463.
    [30]Keddie BA,Volkman LE.Infevtivity difference between the two phenotypes of Autographa californica nuclear polyhedrosis virus:importance of the 64k envelope glycoprotein.J Gen Virol,1985,66:1195-2000.
    [31]Knowles BH,Ellar DJ.Characterization and partial purification of a plasma membrane receptor for Bacillus thuringiensis var.kurstaki lepidopteran specific delta endotoxin.J Cell Sci,1986,83:89-101.
    [32]Kogan PH,Blissard GW.A baculovirus gp64 early promoter is activated by host transcription factor binding to CACGTA and GATA elements.J Virol,1994,68:813-822.
    [33]Kogan PH,Chert XY,Blissard GW.Overlapping TATA-dependent and TATA-independent early promoter activities in the baculovirus gp64 envelope fusion protein gene.J Virol,1995,69:1452-1461.
    [34]Li J,Koni PA,and Ellar DJ.Structure of the mosquitocidal δ-endotoxin CytB from Bacillus thuringiensis sp.kyushuensis and implications for membrane pore formation.J Mol Biol,1996,257:129-152.
    [35]Liu YB,Tabashnik BE.Inheritance of resistance to the Bacillus thuringiensis toxin Cry1C in the diamondback moth.Appl Environ Microbiol,1997,63:2218-2223.
    [36]Masson L,Tabashnik BE,Yong-Biao Liu,et al.Helix 4 of the Bacillus thuringiensis CrylAa toxin lines the lumen of the ion channel. J Biol Chem, 1999,274: 31996-32000.
    [37] Monsma SA, Blissard GW. Identification of a membrane fusion domain and an oligomerization domain in the baculovirus GP64 envelope fusion protein. J Virol, 1995,69:2583-2595
    [38] Monsma SA, Oomens AGP, Blissard GW. The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J Virol, 1996,70:4607
    [39] Oppert B, Kramer KJ, Beeman RW, et al. Proteinase- mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem, 1997,272:23473-23476.
    [40] Rawlings ND, Pearl LH, Buttle DJ. The baculovirus Autographa californica nuclear polyhedrosis virus genome includes a papain-like sequence. Biol Chem Hoppe Seyler, 1992,73:1211-1215.
    [41] Schernthaner JP, Milne RE, Kaplan H. Characterization of a novel insect digestive DNase with a highly alkaline pH optimum. Insect Biochem Mol Biol, 2002,32(3): 255-263.
    [42] Schnepf E, Crickmore N, Rie JV, et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol Biol Rev, 1998, 62(3):775-806.
    [43] Sedlak M, Walter T, Aronson A. Regulation by overlapping promoter of the rate of synthesis and deposition into crystalline inclusions of Bacillus thuringiensis delta-endotoxin. J Bacteriol, 2000,18:734-741.
    [44] Stewart LMD, Hirst M, Ferber ML, et al. Construction of an improved baculovirus insecticide containing an insect-specific tox in gene. Nature, 1991, 352:85-88.
    [45] Suarez P, Diaz-Guerra M, Prieto C, et al. Open reading frame 5 of porcine reproductive and respiratory syndrome vims as a cause of virus-induced apoptosis. J Virol, 1996,70:2876-2882
    [46] Thiery I, Delecluse A, Tamayo MC, et al. Identification of a gene for CytlA-like hemolysin from Bacillus thuringiensis subsp. medellin and expression in a crystal-negative B thuringiensis strain. Appl Environ Microbiol, 1997,63:468-473.
    [47] Van Rie J, Jansens S, Hofte H, et al. Receptors on the brush border membrane of the insect midgut as determimants of the specificity of Bacillus thurngiensis deltaendotoxin. Appl Env Microbiol, 1990, 56:1378-1385.
    [48] Vaux DL & G Haecker. An evolutionary perspective on apoptosis.Cell, 1994, 76:777-779.
    [49] Westendrop MO, Frank R, Ochsenbauer C, et al. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tag and gp120. Nature,1995,375:497-500.
    [50] Whitford M, Stewart S, Kuzio J, et al. Identification and sequence analysis of a gene encoding gp67, an abundant envelope glycoprotein of the baculovirus Autographa californica nuclear polyhedrosis virus.J Virol, 1989,63:1393-1399.
    [51] Lanier ML, Volkman LE. Actin binding and nucleation by Autographa californica multiple nucleopolyhedrosis virus. Virology,1998,243:167-177.
    [52] Ciampor F. The role of cytoskeleton and nuclear matrix in virus replication. Acta Virol, 1988, 32:168-189.
    [53] Volkman LE, Goldsmith PA, Hess RT. Evidence for microfilament involvement in budded Autographa californica nucleopolyhedrosis virus production. Virology, 1987, 156:32-39.
    [54] Chen X, ljkel WF, Tarchini R, et al. The sequence of the Helicoverpa armnigera single nucleocapsid nucleopolyhedrovkus genome. J Gen Virol, 2001, 82(Pt 1): 241-257.
    [55] Lua LH, Reid S. Virus morphogenesis of Helicoverpa armigera nucleopolyhedrovirus in Helicoverpa gea serum-free suspension culture.J Gen Virol,2000,81:2531-2543.
    [56]Lanier LM,Slack JM,Volkman LE.Actin binding and proteolysis by the baculovirus AcMNPV:the role of virion-associated V-CATtf.Virology,1996,216:380-388.
    [57]Hom LG,Volkman LE.Characterrization of v-oath,a cathpsin L-like proteinase expressed by the baculovims Autographa californica multiple nuclear nucleopolyhedrosis virus.Gen Virol,1995,76:1091-1098.
    [58]Liu De-li,Xiao Hua-zhong,Qi Yi-peng,Yao Lun-guang.Construction and function of the recombinant AcNPV with two copies of v-cath gene.Chin Sci Bull,2001,46(15):1288-1294.
    [59]J.萨姆布鲁克.分子克隆实验指南(第二版).
    [60]王瑛,白成,温洁.苏云金杆菌晶体与芽胞分离的研究.微生物学报,1980,20(3):285-288.
    [61]黄永秀,齐义鹏,李晓锋.昆虫病毒多角体蛋白对病毒粒子的异源包装.病毒学报,1995,111:88-91.
    [62]裴子飞,齐义鹏,刘映乐,等.海灰翅夜蛾核型多角体病毒p49蛋白的表达及其抑制细胞凋亡的机制.科学通报,2001,46:1786-1790.
    [63]刘岚,陈新文,孙修炼,等.棉铃虫单核衣壳核多角体病毒组织蛋白酶基因的序列分析和进化研究.中国病毒学,2001,16(3):229-235.
    [64]陈新文,胡志红,Vlak J M.中国棉铃虫单粒包埋型多角体病毒多角体蛋白基因的序列分析.中国病毒学,1997,12(4):345-353.
    [65]王根,张传溪,季平,等.中国棉铃虫核型多角体病毒DNA聚合酶基因的克隆和序列分析中国病毒学,1998,13(1):77-82.
    [66]彭辉银,李星,张双民,等.中国棉铃虫核型多角体病毒几丁质酶基因的定位与克隆.中国病毒学,1998,13(2):139-143.
    [67]柴立新,张立人,李淑琴,等.山楂粉蝶NPV的形态发生及其宿主细胞器的超微病理变化.中国病毒学,1996,11(2):138-143.
    [68]陈其津,龙綮新,甘才光,等.斜纹夜蛾核型多角体病毒不同分离株的毒力比较.杀虫微生物,1989,3:150-152.
    [69]邓塔,蔡秀玉.烟青虫感染核型多角体病毒后围食膜的病变.昆虫学报,1992,35(1):123-124.
    [70]胡志红.具有生物安全性的杆状病毒杀虫剂基因工程技术的发展与前景.中国病毒学,1997,12(1):14-25.
    [71]李广存,王秀丽等.马铃薯病毒检测中DAS ELISA的改进及注意问题.中国马铃薯,2000,14(5):305-307.
    [72]李广泽,尤锡镇,毕庶春,等.柞蚕脓病多角体的裂解观察和毒力测定.蚕业科学,1980,6(3):137-140.
    [73]梁布锋,刘明富.柞蚕成虫卵巢细胞株的建立及其对病毒敏感性的研究.微生物学杂志,1997,17(4):8-11.
    [74]刘强,丁翠.昆虫病毒增效蛋白的研究进展.应用与环境生物学报,1999,5(3):326-332.
    [75]刘淑珊,何龙.柞蚕蛹卵巢细胞原代培养及对柞蚕核型多角体病毒的敏感性.蚕业科学,1988,14(4):224-225.
    [76]吕鸿声.昆虫病毒的分子生物学.中国农业科技出版社,1998,614-615.
    [77]蒲蛰龙.昆虫病毒的研究.科学技术文献出版社,1982,2-5.
    [78]沈卫德,等.从野桑蚕分离的NPV和BmNPV、AcNPV间的RAPD 分析.蚕业科学,2003,29(2):148-150.
    [79]王文兵,季平,吴峻,等.家蚕NPV SOD基因序列和大肠杆菌中表达.生物化学与生物物理学报,1999,31(4):405-408.
    [80]王峋章,谢伟东,等.形成多角体的杆状病毒载体系统的建立.病毒学报,1991,7:253-261.
    [81]吴福泉.甜菜夜蛾NPV在昆虫细胞的增殖生物学的特性研究.华南农业大学,2001:8-10.
    [82]谢薇,谢天恩.苜蓿丫纹夜蛾核型多角体病毒囊膜内核衣壳排列图式的电镜观察.中国病毒学,1999,14(3):280-283. 毒DNA的分离和提纯.病毒学集刊,1982,1:153-161.
    [84]张箐,钟江,苏德明.不同细胞系对棉铃虫核型多角体病毒复制的受纳性研究.病毒学报,1993,9:171-178.
    [85]张光裕.棉铃虫核型多角体病毒的生产方法及其在生物防治中的应用.植物保护学报,1981,8(4):235-240.
    [86]庞义,姚斌,范云六,等.利用蝎毒基因改良杆状病毒杀虫剂.昆虫天敌,1995,17:90-92.
    [87]蒋杰贤,梁广文,曾玲.斜纹夜蛾核型多角体病毒流行的时间动态.应用生态学报,2000,11(4):472-475.
    [88]吴洁芳,匡石滋,王晓容,等.核型多角体病毒对斜纹夜蛾两种酶活性的影响.仲恺农业技术学院学报,2004,17(2):23-27.
    [89]王晓容,刘明富,刘润忠,等.一株斜纹夜蛾核型多角体病毒毒力及基因酶切的研究.中国病毒学,1994,9(4):378-380.
    [90]张春发,胡裕文.柞蚕核型多角体病毒(ApNPV)转移载体质粒pApM2614的组建.病毒学报.1990,6(3):280-282.
    [91]张春发,刘淑珊.柞蚕核型多角体病毒载体表达系统基因工程研究进展.华南农业大学学报.1995,16(1):133-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700