转4-1BBL基因的小鼠肝癌细胞疫苗抗肿瘤作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机体对肿瘤的免疫主要靠细胞免疫,特别是T细胞免疫。而T细胞的激活除了MHC-抗原多肽复合物与T细胞受体(TCR)的结合所提供的第一信号外,共刺激分子(costimulatory molecules)提供的第二信号也起着至关重要的作用。目前发现的共刺激分子有B7、4-1BBL、CD40L及ICAM-1等,缺乏这些共刺激分子将导致T细胞进入克隆无能(clone angergy)或凋亡。因此,将共刺激分子导入肿瘤细胞以制备肿瘤疫苗成为近来肿瘤生物治疗的研究热点。
     4-1BBL为新近发现的共刺激分子,结构上属肿瘤坏死因子超家族成员,其与4-1BB(为肿瘤坏死因子受体超家族成员)共同组成配体/受体对,研究表明,4-1BBL与其受体的结合可以调节多种免疫细胞的功能,可以有力的共刺激T细胞,使其增殖,增加它们的溶细胞能力。因此,应用4-1BBL诱发机体的抗肿瘤T细胞反应有着美好的前景。为了研究4-1BBL在抗肝癌免疫中的应用价值,我们克隆了小鼠4-1BBLcDNA并将其导入小鼠肝癌细胞Hepa1-6中制成肿瘤疫苗,观察了该肿瘤疫苗在体内外的特异性抗肿瘤作用。
     首先我们采用RT-PCR的方法检测了4-1BBL在淋巴细胞及多株肝癌细胞中的表达,结果发现在经PHA诱导活化的人外周血淋巴细胞以及小鼠的脾淋
    
     第四军医大学鹰士学位论文
    巳细胞均可检测到 41 BBL的表达,但是未经诱导的静止的淋巴细胞则不表
    达 41 BBL;对五株肝癌细胞系及一株正常肝细胞系的检测中,发现只有
    HePGZ可表达 41 BBL,其它细胞系均未检测到表达。
     为了获得4lBBL的全长基因,我们首先根据GENEBANK中小鼠4lBBL
    的基因序列,设计了用于克隆4lBBLCDNA的引物,实验中选用C57BL/6
    小鼠的脾细胞作为总RNA的来源,并预先用植物血凝素进行刺激,结果表明,
    采用 RT-PCR的方法从活化的小鼠脾淋巴细胞中成功地克隆到了 m41 BBL基
    因,并经测序证实序列完全正确;所构建的真核表达质粒
    PCDNA3·l(+)-m41 BBL在 COS-7细胞中获得了高效表达。
     利用基因转染技术将共刺激分子 4-IBBL基因导入小鼠肝癌细胞,经筛选
    后以期获得稳定表达克隆,结果显示,G4 18筛选后的Hepal6-m4lBBL细胞
    能有效表达 m41 BBL,并且经提取基因组分析表明导入的基因己整合至基因
    组中,而未转染的Hepal6细胞则未见m4lBBL的表达。体外增殖实验显
    示转染后的细胞其生长速度,克隆形成能力等方面均不受影响,并且能持续
    表达所导人的基因,说明外源基因导入后对野生瘤原有的生物学特性改变不
    大。同系小鼠体内成瘤实验显示,与野生瘤相比,导入 41 BBL后皮下接种
    的HePal6-m4lBBL细胞成瘤率显著降低,潜伏期延长,成瘤所需的起始细
    胞数增加,成瘤后其生长速度减慢。
     为了观察转染m4lBBL的小鼠Hepal6细胞是否具有诱导特异性抗肿瘤
    免疫反应能力,我们采用了合适剂量的丝裂霉素C处理肿瘤细胞制备所需的
    的肿瘤疫苗。然后观察了该肿瘤疫苗体外诱导CTL杀伤活性及刺激脾细胞产
    生细胞囚于的作用,结果显示转 41 BBL的肝癌细胞疫苗能够诱导有效的针
    对野生瘤的CTL杀伤效应,而对其它来源的肿瘤无效。将该肿瘤疫苗体外与
    脾淋巴细胞共培养,其刺激脾细胞产生的IL2,TNF a及GM-CSF水平明显
    上升。
     应用上述肿瘤细胞疫苗观察了其对同系小鼠的兔疫保护和肿瘤模型的免
    疫治疗作用,结果显示,应用 TCV-41 BBL免疫后,对亲本肝癌细胞有完全
    的免疫保护作用,对接种的早期肿瘤模型,经 TCV-41 BBL治疗后可以使部
    分小鼠保持无瘤生存,或者使肿瘤潜伏期延长、生长速度减慢。但对晚期模
    型,其治疗效果不佳。
     6
    
     第四军医大学博士学位论文
     综上所述,转 41 BBL的小鼠肝癌细胞疫苗,不论在体内还是体外,均
    能够诱导有效的特异性抗肿瘤免疫应答,利用 4-IBBL进行免疫基因治疗,
    为临床抗肿瘤应用研究提供了一个新的途径,继续研究其功能及其相关的调
    节机制,或者设计更为合理有效安全的治疗方案将会为未来利用 41 BBL抗
    肿瘤治疗开辟一片新的天地。
The immune responses to tumors are mostly dependent on the cell immunity, especially on T cell-mediated immunity. Successful T cell activation requires not only signals provided when antigen/MHC complex binds to the TCR, the other signals provided by costimulatory molecules are also important. Up to now many costimulatory molecules have been found, such as B7> 4-lBBLx CD40L and ICAM-1. The absence of these costimulatory molecules has been shown to lead to T cell anergy or apoptosis. Therefore, the introduction of costimulatory molecules into tumor cells to prepare tumor vaccine become to be a hotspot in the field of tumor biotherapeutic research in recent years.
    4-IBB ligand (4-1 BBL) is a newly found costimulatory molecule. It is a member of the tumor necrosis factor (TNF) gene family that binds to 4-IBB, a T cell activation antigen which belongs to the TNF/nerve growth factor super family. The studies have demonstrated that the binding of 4-1 BBL with 4-IBB can
    
    
    regulate the functions of several immune cells. 4-1BB-4-1BBL interactions can deliver a costimulatory signal for T cell activation and growth and promote the cell function of cytolysis. The powerful effects of 4-1BBL triggering on the T cell antitumor immune responses provide a novel strategy for increasing the potency of vaccines against tumors. To explore the prospects of the application of 4-1BBL in the anti-hepatocarcinoma immune response, we cloned a cDNA gene coding for the mouse costimulatory molecule 4-1BBL and further transfered it into murine hepatocellular carcinoma cell line Hepal-6. Then we observed the effects of this specific antitumor vaccine in vitro and in vivo.
    Firstly, the expression of 4-1BBL in lymphocyte and several hepatocellular carcinoma cell lines were analyzed by RT-PCR. The results showed that 4-1BBL could be found in the human peripheral blood lymphocytes and murine splenocytes induced by PHA, but 4-1BBL could not be found in the quiescent and non-induced lymphocytes. Only one hepatocellular carcinoma cell line HepG2 could be detected the expression of 4-1BBL while the negative results were found in the other four hepatocellular carcinoma cell lines and one normal hepatic cell line.
    To obtain the full gene sequence of 4-1BBL, we designed the primers of 4-1BBL according to the murine 4-1BBL gene sequence from GENEBANK. The total RNA was isolated from the murine splenocytes of C57BL/6 and the cells were induced by PHA before the abstraction of RNA. The m4-lBBL cDNA was obtained successfully by RT-PCR from the murine splenic lymphocytes. Sequencing analysis revealed that the amino acid sequence of m4-lBBL has no variation in nucleotide sequence as compared with the published sequence. The PCR product was cloned into pcDNA3.1(+) eukaryotic expression vector. This pCDNA3.1(+)- m4-lBBL vector was used to transfer the m4-lBBL gene into COS-7 cells, and the efficient expression was achieved.
    We used the above vector to transfer the costimulatory molecule 4-1BBL gene into syngeneic murine hepatocellular carcinoma cell line Hepal-6. The clones with stable expression were obtained through G418 screening. The
    
    Hepal-6-m4-lBBL cells efficiently expressed m4-lBBL after G418 selecting, and the exogenous gene was confirmed to have been integrated into chromosome of target cell. The gene of m4-lBBL didn't be detected in non-transfected Hepal-6 cells. The proliferation test in vitro showed that the growth rate and the ability in cloning of Hepal-6 cells weren't affected by the transfection, and they could express the m4-lBBL gene continuously. This demonstrated that the biological characters didn't be changed in wild-type tumor transfected with exogenous gene. The results of tumorigenicity experiment in syngeneic mice revealed that, as compared to wild-type tumor, mice subcutaneously injected with tumors expressing the vector Hepal-6-m4-lBBL developed fewer tumors and the latent period of tumor development was prolonged, the cell numbers for tumor development were increased and remarkable tumor growth inhibition was observed.
    To
引文
[1] Van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 1991; 254(5038): 1643-7.
    [2] De Plaen E, Ardenk, Traversari C, et al. Structure, chromosomal localization, and expression of 12 genes of the MAGE family, Immunogenetics, 1994; 40(5): 360-369
    [3] Lurquin C, De Smet C, Brasseur F, et al. Two members of the human MAGEB gene family located in Xp21.3 are expressed in tumors of various histological origins. Genomics, 1997. 46(3): 397-408
    [4] Dalerba P, Frascella E, Macino B, ct al. MAGE, BAGE and GAGE gene expression in human rhabdomyosarcomas. Int J Cancer. 2001 Jul 1; 93(1): 85-90.
    [5] Zambon A, Mandruzzato S, Parenti A, et al. MAGE, BAGE, and GAGE gene expression in patients with esophageal squamous cell carcinoma and adenocarcinoma of the gastric cardia. Cancer. 2001 May 15; 91(10): 1882-8.
    [6] Kavalar R, Sarcevic B, Spagnoli GC, et al. Expression of MAGE tumour-associated antigens is inversely correlated with tumour differentiation in invasive ductal breast cancers: an immunohistochemical study. Virchows Arch. 2001 Aug; 439(2): 127-31.
    [7] Park MS, Park JW, Jeon CH, et al. Expression of melanoma antigen-encoding genes (MAGE) by common primers for MAGE-A1 to -A6 in colorectal carcinomas among Koreans. J Korean Med Sci. 2002 Aug; 17(4): 497-501.
    [8] Kocher T, Zheng M, Bolli M, et al. Prognostic relevance of MAGE-A4 tumor antigen expression in transitional cell carcinoma of the urinary bladder: a tissue microarray study. Int J Cancer. 2002 Aug 20; 100(6): 702-5.
    [9] Kobayashi Y, Higashi T, Nouso K, et al. Expression of MAGE, GAGE and BAGE genes in human liver diseases: utility as molecular markers for hepatocellular carcinoma. J Hepatol. 2000 Apr; 32(4): 612-7.
    [10] Chen CH, Huang GT, Lee HS, el al. High frequency of expression of MAGE genes in human hepatocellular carcinoma. Liver, 1999; 19(2): 110-4.
    [11] Zhao H, Rui J, Cong X, Zhao Y, et al. Expression and clinical significance of MAGE-4 gene in human hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi. 2002 Apr; 10(2): 100-2.
    [12] Grobholz R, Verbeke CS, Schleger C, et al. Expression of MAGE antigens and analysis of the inflammatory T-cell infiltrate in human seminoma. Urol Res. 2000 Dec; 28(6): 398-403.
    [13] Lee KD, Chang HK, Jo YK, Kim BS, et al. Expression of the MAGE 3 gene product in squamous cell carcinomas of the head and neck. Anticancer Res. 1999 Nov-Dec; 19(6B): 5037-42.
    [14] Anichini A, Molla A, Mortarini R, et al. An expanded peripheral T cell population to a
    
    cytotoxic T lymphocyte (CTL)-defined, melanocyte-specific antigen in metastatic melanoma patients impacts on generation of peptide-specific CTLs but does not overcome tumor escape from immune surveillance in metastatic lesions. J Exp Med 1999 Sep 6; 190(5): 651-67
    [15] Rawson P, Hermans IF, Huck SP, et al. Immunotherapy with dendritic cells and tumor major histocompatibility complex class I-derived peptides requires a high density of antigen on tumor cells. Cancer Res. 2000 Aug 15; 60(16): 4493-8.
    [16] Lafferty KJ, Gazda LS. Tolerance: a case of self/not-self discrimination maintained by clonal deletion? Hum Immunol, 1997, 52(2): 119-126
    [17] Riker A, Cormier J, Panelli M, et al. Immune selection after antigen-specific immunotherapy of melanoma. Surgery. 1999 Aug; 126(2): 112-20.
    [18] Matsui S, Ahlers JD, Vortmeyer AO, et al. A model for CDS+ CTL tumor immunosurveillance and regulation of tumor escape by CD4 T cells through an effect on quality of CTL.J Immunol. 1999 Jul 1; 163(1): 184-93.
    [19] Costello RT, Gastaut JA, Olive D.Tumor escape from imrmune surveillance. Arch Immunol Ther Exp (Wavsz), 1999; 47(2): 83-8
    [20] Marincola FM, Jaffee EM, Hicklin DJ, et al. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol. 2000; 74: 181-273.
    [21] Wetzler M, Baer MR, Stewart SJ, et al. HLA class Ⅰ antigen cell surface expression is preserved on acute myeloid leukemia blasts at diagnosis and at relapse. Leukemia. 2001 Jan; 15(1): 128-33.
    [22] Youngchun B, Jianqiong Z, Zehui H, et al. Association of HLA class Ⅰ antigen expression in human hepatocellular carcinoma with improved progosis. Tissue Antigens.2002; 59(suppl 2): 105-6.
    [23] Garrido F, Ruiz cabello F, Cabrera T, et al. Implications for immunosurveillance of altered HLA class L phenotypes in human tumors. Immunol Today, 1997; 18(2): 89-95
    [24] Wang Z, Cao Y, Albino AP, et al. Lack of HLA class Ⅰ antigen expression by melanoma cells SK-MEL-33 caused by a reading frameshifi in beta 2-microglobulin messenger RNA.J Clin Invest. 1993 Feb; 91(2): 684-92.
    [25] Lehmam F, Marchand M, Hainaut P, et al. Differences in the antigens recognized by cyto lytic T cells on two successive matastases of a melanoma patient are consistent with immune selection. Eur J Immunol, 1995; 25:340
    [26] Real LM, Jimenez P, Canton J, et al. In vivo and in vitro generation of a new altered HLA phenotype in melanoma-tumor-cell variants expressing a single HLA class Ⅰ allele, Int J Cancer, 1998; 75:317
    [27] Seiters, Marincola FM. The multiple ways to tumor torlerance Mod ASP Immunbiol, 2000; 1(3): 121
    
    
    [28] Bontkes HJ, Walboomeras JMM, Meijer CJLM, et al. Specific HLA class Ⅰ down-regulation is an early event in cervical dysplasia asociated with clinical progression. Lancet, 1998; 351:187
    [29] Cormier JN, Panelli MC, Hackett JA, et al. Natural variation of the expression of HLA and endogenous antigen modulates CTL recognition in an in vitro melanoma model. Int J Cancer. 1999 Mar 1; 80(5): 781-90.
    [30] Seliger B, Ritz U, Abele R, et al. Immune escape of melanoma: first evidence of structural alterations in two distinct components of the MHC class Ⅰ antigen processing pathway. Cancer Res. 2001 Dec 15; 61(24): 8647-50.
    [31] Campoli M, Chang CC, Ferrone S. et al. HLA class Ⅰ antigen loss, tumor immune escape and immune selection. Vaccine. 2002 Dec 19; 20 Suppl 4: A40-5.
    [32] Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic Cells. Annu Rev Immunol, 2000; 18:767
    [33] McRae BL, Semnani RT, Hayes MP, et al. Type Ⅰ IFNs inhibit human dendritic cell IL-12 production and Th1 cell development. J Immunol. 1998 May 1; 160(9): 4298-304.
    [34] Lespagnard L, Gancberg D, Rouas G, et al. Tumor-infiltrating dendritic cells in adeno carcinomas of the breast: A study of 143 neoplasms with a correlation to usual prognostic factors and to clinical outcome. Int J Cancer, 1999; 84(3): 309
    [35] Chaux P, Favre N, Martin M, et al. Tumor-infiltrating dendritic cells are defective in their antigen-presenting function and inducible B7 expression in rats. Int J Cancer, 1997; 72(4): 619
    [36] Steinbrink K, Wolfl M, Jonuleit H, et al. Induction of tolerance by IL-10-treated dendritic cells. J Immunol, 1997 Nov 15; 159(10): 4772-80.
    [37] Gabrilovich DI, Chen HL, Girgis KR, et al. Production of vascular endothelial growth factor by tumors inhibits the functional maturation of dendritic cells. Nat Med, 1996; 2:1096
    [38] De Caestecker MP, Piek E, Roberts AB. Role of transforming growth factor-beta signaling in cancer. J Natl Cancer Inst. 2000 Sep 6; 92(17): 1388-402.
    [39] Ohm JE, Carbone DP. VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res. 2001;23(2-3): 263-72. Review.
    [40] Medema JP, de Jong J, Peltenburg LT, et al. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci U S A. 2001 Sep 25; 98(20): 11515-20.
    [41] Toes RE, Ossendorp F, Offringa R, et al. CD4 T cells and their role in antitumor immune responses. J Exp Med. 1999 Mar 1; 189(5): 753-6.
    [42] Adler AJ, Marsh DW, Yochum GS, et al. CD4+ T cell tolerance to parenchymal
    
    self-antigens requires presentation by bone marrow-derived antigen-presenting cells. J Exp Med 1998 May 18; 187(10): 1555-64
    [43] O'Connell J, Bennett MW, O'Sullivan GC, et al. The Fas counterattack: cancer as a site of immune privilege, Immunol Today. 1999 Jan; 20(1): 46-52.
    [44] Walker PR, Saas P, Dietrich PY. Tumor expression of Fas ligand (CD95L) and the consequences. Curt Opin Immunol. 1998 Oct; 10(5): 564-72.
    [45] Reichmann E. The biological role of the Fas/FasL system during tumor formation and progression. Semin Cancer Biol 2002 Aug; 12(4): 309-15
    [46] Nagashima H, Mori M, Sadanaga N, et al. Expression of Fas ligand in gastric carcinoma relates to lymph node metastasis. Int J Oncol 2001 Jun; 18(6): 1157-62
    [47] O'Connell J, Bennett MW, O'Sullivan GC, et al. Fas ligand expression in primary colon adenocarcinomas: evidence that the Fas counterattack is a prevalent mechanism of immune evasion in human colon cancer. J Pathol. 1998 Nov; 186(3): 240-6.
    [48] Nyhus JK, Wolford C, Feng L, et al. Direct in vivo transfection of antisense Fas-ligand reduces tumor growth and invasion. Gene Ther 2001 Feb;8(3): 209-14
    [49] Bennett MW, O'Connell J, O'Sullivan GC, et al. Fas ligand and Fas receptor are coexpressed in normal human esophageal epithelium: a potential mechanism of apoptotic epithelial turnover. Dis Esophagus. 1999; 12(2): 90-8.
    [50] Peli. J, Schroter. M, Rudaz. C, et al. Oncogenic Ras inhibits Fas ligand-mediated apoptosis by down regulating the expression of Fas. EMBO J. 18 (1999), pp. 1824-1831.
    [51] Schroter. M, Peli.J, Hahne. M, et al. Fas-dependent tissue turnover is implicated in tumor cell clearance. Oncogene 19 (2000), pp. 1794 - 1800.
    [52] French LE, Tschopp J. Inhibition of death receptor signaling by FLICE-inhibitory protein as a mechanism for immune escape of tumors. J Exp Med. 1999 Oct 4; 190(7): 891-4.
    [53] Restifo NP. Not so FAS: Re-evaluating the mechanisms of immune privilege and tumor escape. Nat Med, 2000, 6(5): 493
    [54] Chouaib S, Asselin Paturel C, Mami Chouaib F, et al. The host-tumor immune conflict: from immunosuppression to resistance and destruction. Immunol Today, 1997; 18(10): 493-497
    [55] D'Orazio TJ, Niederkorn JY. A novel role for TGF-beta and IL-10 in the induction of immune privilege. J Immunol, 1998; 160(5): 2089-2098
    [56] Halliday GM, Le S.Transforming growth factor-beta produced by progressor tumors inhibits, while IL-10 produced by regressor tumors enhances, Langerhans cell migration from skin. Int Immunol 2001 Sep; 13(9):1147-54
    [57] De Visser KE, Kast WM. LZhao W, Kobayashi M, Ding W, et al. Suppression of in vivo tumorigenicity of rat hepatoma cell line KDH-8 cells by soluble TGF-beta
    
    receptor type Ⅱ.Cancer Immunol Immunother 2002 Sep; 51(7): 381-8
    [58] De Visser KE, Kast WM. Leukemia, et al. Effects of TGF-beta on the immune system: implications for cancer immunotherapy. Leukemia, 1999; 13(8): 1188-1199
    [59] Salazar-Onfray F. Interleukin-10: a cytokine used by tumors to escape immunosurveillance. Med Oncol, 1999; 16(2): 86-94
    [60] Takahashi A, Kono K, Itakura J, et al. Correlation of vascular endothelial growth factor-C expression with tumor-infiltrating dendritic cells in gastric cancer. Oncology 2002; 62(2): 121-7
    [61] Gabrilovich D, Ishida T, Oyama T, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 1998 Dec 1; 92(11): 4150-66
    [62] Gabrilovich DI, Chen HL, Girgis KR, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996 Oct; 2(10): 1096-103
    [63] Ohm JE, Carbone DP. VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res 2001; 23(2-3): 263-72
    [64] Voorazanger N, Touitou R, Garcia E, et al. Interleukin (IL)-10 and IL-6 are produced in vivo by non-Hodgkin's lymphoma cells and act as cooperative growth factors. Cancer Res, 1996; 56(23): 5499-3505
    [65] Finke J, Ferrone S, Frey A, et al. Where have all the T cells gone? Mechanisms of immune evasion by tumors, Immunol Today. 1999 Apr; 20(4): 158-60.
    [66] Langman RE, Cohn M. Self-nonself discrimination revisited, Introduction. Semin Immunol 2000 Jun; 12(3): 159-62
    [67] Watts TH, DeBenedette MA. T cell co-stimulatory molecules other than CD28.Curr Opin Immunol 1999 Jun; 11(3): 286-93
    [68] Mueller DL. T cells: A proliferation of costimulatory molecules. Curr Biol. 2000 Mar 23; 10(6): R227-30.
    [69] Whitmire JK, Ahmed R. Costimulation in antiviral immunity: differential requirements for CD4(+) and CD8(+) T cell responses. Curr Opin Immunol. 2000 Aug; 12(4): 448-55.
    [70] Punnonen J, Kainulainen L, Ruuskanen O, et al. IL-4 synergizes with IL-10 and anti-CD40 MoAbs to induce B-cell differentiation in patients with common variable immunodeficiency. Scand J Immunol. 1997 Feb; 45(2): 203-12.
    [71] Hasbold J, Lyons AB, Kehry MR, et al. Cell division number regulates IgG1 and IgE switching of B cells following stimulation by CD40 ligand and IL-4. Eur J Immunol. 1998 Mar; 28(3): 1040-51.
    [72] Mackus WJ, Lens SM, Medema RH, et al. Prevention of B cell antigen receptor-induced apoptosis by ligation of CD40 occurs downstream of cell cycle
    
    regulation. Int Immunol. 2002 Sep; 14(9): 973-82.
    [73] Hase H, Kanno Y, Kojima H, et al. CD27 and CD40 inhibit p53-independent mitochondrial pathways in apoptosis of B cells induced by B cell receptor ligation. J Biol Chem. 2002 Dec 6; 277(49): 46950-8.
    [74] Xerri L, Bouabdallah R, Devilard E, et al. Sensitivity to Fas-mediated apoptosis is null or weak in B-cell non-Hodgkin's lymphomas and is moderately increased by CD40 ligation. Br J Cancer. 1998 Jul; 78(2): 225-32.
    [75] Nakanishi K, Matsui K, Kashiwamura S, et al. IL-4 and anti-CD40 protect against Fas-mediated B cell apoptosis and induce B cell growth and differentiation. Int Immunol. 1996 May;8(5): 791-8.
    [76] Wesa A, Galy A. Increased production of pro-inflammatory cytokines and enhanced T cell responses after activation of human dendritic cells with IL-1 and CD40 ligand. BMC Immunol. 2002 Oct 18; 3(1): 14.
    [77] Rogers NJ, Jackson IM, Jordan WJ, et al. CD40 can costimulate human memory T cells and favors IL-10 secretion. Eur J Immunol. 2003 Apr; 33(4): 1094-104.
    [78] Grewal IS, Xu J, Flavell RA. Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature. 1995 Dec 7; 378(6557): 617-20.
    [79] Bourgeois C, Rocha B, Tanchot C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science. 2002 Sep 20; 297(5589): 2060-3.
    [80] Rosenzwajg M, Jourquin F, Tailleux L, et al. CD40 ligation and phagocytosis differently affect the differentiation of monocytes into dendritic cells. J Leukoc Biol. 2002 Dec; 72(6): 1180-9.
    [81] Lederman S. The role ofCDl54 (CD40-ligand) in costimulation. Transplant Proc. 2001 Feb-Mar; 33(1-2): 202-6.
    [82] Ohshima Y, Tanaka Y, Tozawa H, et al. Expression and function of OX40 ligand on human dendritic cells. J Immunol. 1997 Oct 15; 159(8): 383 8-48.
    [83] Walker LS, Gulbranson-Judge A, Flynn S, et al. Co-stimulation and selection for T-cell help for germinal centres: the role of CD28 and OX40.Immunol Today. 2000 Jul; 21(7): 333-7.
    [84] Lane P. Role of OX40 signals in coordinating CD4 T cell selection, migration, and cytokine differentiation in T helper (Th)1 and Th2 cells. J Exp Med. 2000 Jan 17; 191(2):201-6.
    [85] Vinay DS, Kwon BS. Relative abilities of 4-1BB (CD137) and CD28 to co-stimulate the response of cytokine deflected Th1 and Th2 cells. Immunobiology. 1999 Jun; 200(2):246-63.
    [86] Bocko D, Kosmaczewska A, Ciszak L, et al. CD28 costimulatory molecule--expression, structure and function. Arch Immunol Ther Exp (Warsz). 2002; 50(3): 169-77.
    [87] Nishimura H, Agata Y, Kawasaki A, et al. Developmentally regulated expression of the
    
    PD-1 protein on the surface of double-negative (CD4-CD8-) thymocytes. Int Immunol. 1996 May;8(5): 773-80.
    [88] Yamazaki T, Akiba H, Iwai H, et al. Expression of programmed death 1 ligands by murine T cells and APC.J Immunol. 2002 Nov 15; 169(10): 5538-45.
    [89] Brown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol. 2003 Feb 1; 170(3): 1257-66.
    [90] Mazanet MM, Hughes CC. B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis. J Immunol. 2002 Oct 1; 169(7): 3581-8.
    [91] Latchman Y, Wood CR, Chernova T, el al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2001 Mar; 2(3): 261-8
    [92] Flesch IE. Inducible costimulator (ICOS). J Biol Regul Homeost Agents. 2002 Jul-Sep; 16(3): 214-6.
    [93] Flesch IE. Inducible costimulator-ligand (ICOS-L). J Biol Regul Homeost Agents. 2002 Jul-Sep; 16(3): 217-9.
    [94] Kwon BS, Weissman SM. cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci U S A. 1989 Mar; 86(6): 1963-7.
    [95] Kwon BS, Kestler DP, Eshhar Z, et al. Expression characteristics of two potential T cell mediator genes. Cell Immunol. 1989 Jul; 121(2): 414-22.
    [96] Pollok KE, Kim YJ, Zhou Z, et al. Inducible T cell antigen 4-1BB. Analysis of expression and function. J Immunol. 1993 Feb 1; 150(3): 771-81.
    [97] Goodwin RG, Din WS, Davis-Smith T, et al. Molecular cloning of a ligand for the inducible T cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor. Eur J Immunol. 1993 Oct; 23(10): 2631-41.
    [98] Alderson MR, Smith CA, Tough TW, et al. Molecular and biological characterization of human 4-1BB and its ligand. Eur J Immunol. 1994 Sep; 24(9): 2219-27.
    [99] Schwarz H, Blanco FJ, von Kempis J, et al. ILA, a member of the human nerve growth factor/tumor necrosis factor receptor family, regulates T-lymphocyte proliferation and survival. Blood. 1996 Apr 1; 87(7): 2839-45.
    [100] Schwarz H, Arden K, Lotz M. et al. CD137, a member of the tumor necrosis factor receptor family, is located on chromosome lp36, in a cluster of related genes, and colocalizes with several malignancies. Biochem Biophys Res Commun. 1997 Jun 27; 235(3):699-703.
    [101] Kwon BS, Kozak CA, Kim KK, et al. Genomic organization and chromosomal localization of the T-cell antigen 4-1BB. J Immunol. 1994 Mar 1; 152(5): 2256-62.
    [102] Zhou Z, Kim S, Hurtado J, et al. Characterization of human homologue of 4-1BB and its ligand. Immunol Lett. 1995 Feb; 45(1-2): 67-73.
    [103] Kwon B, Lee HW, Kwon BS. New insights into the role of 4-1BB in immune
    
    responses: beyond CD8+ T cells. Trends Immunol. 2002 Aug; 23(8): 378-80.
    [104] Kienzle G, yon Kempis J. CD137 (ILA/4-1BB), expressed by primary human monocytes, induces monocyte activation and apoptosis of B lymphocytes, Int Immunol. 2000 Jan; 12(1): 73-82.
    [105] Heinisch Ⅳ, Daigle Ⅰ, Knopfli B, et al. CD137 activation abrogates granulocyte-macrophage colony-stimulating factor-mediated anti-apoptosis in neutrophils. Eur J Immunol. 2000 Dec; 30(12): 3441-6.
    [106] Lindstedt M, Johansson-Lindbom B, Borrebaeck CA. Expression of CD137 (4-1BB) on Human Follicular Dendritic Cells. Scand J Immunol. 2003 Apr; 57(4): 305-10.
    [107] Pauly S, Broll K, Wittmann M, et al. CD137 is expressed by follicular dendritic cells and costimulates B lymphocyte activation in germinal centers. J Leukoc Biol. 2002 Jul; 72(1): 35-42.
    [108] Wilcox RA, Chapoval AI, Gorski KS, et al. Cutting edge: Expression of functional CD137 receptor by dendritic cells. J Immunol. 2002 May 1; 168(9): 4262-7.
    [109] Futagawa T, Akiba H, Kodama T, et al. Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells, Int Immunol. 2002 Mar; 14(3): 275-86.
    [110] Heinisch Ⅳ, Bizer C, Volgger W, et al. Functional CD137 receptors are expressed by eosinophils from patients with IgE-mediated allergic responses but not by eosinophils from patients with non-IgE-mediated eosinophilic disorders. J Allergy Clin Immunol. 2001 Jul; 108(1): 21-8.
    [111] Von Kempis J, Schwarz H, Lotz M. Differentiation-dependent and stimulus-specific expression of ILA, the human 4-1BB-homologue, in cells of mesenchymal origin. Osteoarthritis Cartilage. 1997 Nov; 5(6): 394-406.
    [112] Broll K, Richter G, Pauly S, et al. CD137 expression in tumor vessel walls. High correlation with malignant tumors. Am J Clin Pathol. 2001 Apr; 115(4): 543-9.
    [113] Lisignoli G, Toneguzzi S, Cattini L, et al. Different expression pattern of cytokine receptors by human osteosarcoma cell lines. Int J Oncol. 1998 Apr; 12(4): 899-903.
    [114] Salih HR, Kosowski SG, Haluska VF, et al. Constitutive expression of functional 4-1BB (CD137) ligand on carcinoma cells. J Immunol. 2000 Sep 1; 165(5): 2903-10.
    [115] Bansal-Pakala P, Croft M. Defective T cell priming associated with aging can be rescued by signaling through 4-1BB (CD137). J Immunol. 2002 Nov 1; 169(9): 5005-9.
    [116] Kwon BS, Hurtado JC, Lee ZH, et al. Immune responses in 4-1BB (CD137)-deficient mice. J Immunol. 2002 Jun 1; 168(11): 5483-90.
    [117] Guinn BA, Bertram EM, DeBenedette MA, et al. 4-1BBL enhances anti-tumor responses in the presence or absence of CD28 but CD28 is required for protective immunity against parental tumors. Cell Immunol. 2001 May 25; 210(1): 56-65.
    [118] Kim YJ, Kim SH, Mantel P, et al. Human 4-1BB regulates CD28 co-stimulation to
    
    promote Th1 cell responses. Eur J Immunol. 1998 Mar; 28(3): 881-90.
    [119] Bukczynski J, Wen T, Watts TH. Costimulation of human CD28- T cells by 4-1BB ligand. Eur J Immunol. 2003 Feb; 33(2): 446-54.
    [120] Saoulli K, Lee SY, Cannons JL, ct al. CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. J Exp Med. 1998 Jun 1;187(11):1849-62.
    [121] Bertram EM, Lau P, Watts TH. Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J Immunol. 2002 Apr 15; 168(8): 3777-85.
    [122] Cannons JL, Hoeflich KP, Woodgett JR, et al. Role of the stress kinase pathway in signaling via the T cell costimulatory receptor 4-1BB.J Immunol. 1999 Sep 15; 163(6): 2990-8.
    [123] Shuford WW, Klussman K, Tritchler DD, et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med. 1997 Jul 7; 186(1): 47-55.
    [124] Tan JT, Whitmire JK, Ahmed R, et al. 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8 T cell responses. J Immunol. 1999 Nov 1; 163(9): 4859-68.
    [125] Takahashi C, Mittler RS, Vella AT. Cutting edge: 4-1BB is a bona fide CD8 T cell survival signal. J Immunol. 1999 May 1; 162(9): 5037-40.
    [126] Maus MV, Thomas AK, Leonard DG, et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB.Nat Biotechnol. 2002 Feb; 20(2): 143-8.
    [127] Lee HW, Park SJ, Choi BK, et al. 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1.J Immunol. 2002 Nov 1; 169(9): 4882-8.
    [128] Cooper D, BansaI-Pakala P, Croft M. 4-1BB (CD137) controls the clonal expansion and survival of CD8 T cells in vivo but does not contribute to the development of cytotoxicity. Eur J Immunol. 2002 Feb; 32(2):521-9.
    [129] Cannons JL, Lau P, Ghumman B, et al. 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J Immunol. 2001 Aug 1; 167(3): 1313-24.
    [130] Kim JA, Averbook BJ, Chambers K, et al. Divergent effects of 4-1BB antibodies on antitumor immunity and on tumor-reactive T-cell generation. Cancer Res. 2001 Mar 1; 61(5): 2031-7.
    [131] Blazar BR, Kwon BS, Panoskaltsis-Mortari A, et al. Ligation of 4-1BB (CDw137) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in
    
    allogeneic bone marrow transplant recipients. J Immunol. 2001 Mar 1; 166(5): 3174-83.
    [132] Wen T, Bukczynski J, Watts TH. 4-1BB ligand-mediated costimulation of human T cells induces CD4 and CD8 T cell expansion, cytokine production, and the development of cytolytic effector function. J Immunol, 2002 May 15; 168(10): 4897-906.
    [133] Mittler RS, Bailey TS, Klussman K, et al. Anti-4-1BB monoclonal antibodies abrogate T cell-dependent humoral immune responses in vivo through the induction of helper T cell anergy. J Exp Med. 1999 Nov 15; 190(10): 1535-40.
    [134] Seko Y, Takahashi N, Oshima H, et al. Expression of tumour necrosis factor (TNF) ligand superfamily co-stimulatory molecules CD30L, CD27L, OX40L, and 4-1BBL in murine hearts with acute myocarditis caused by Coxsackievirus B3. J Pathol. 2001 Dec; 195(5): 593-603.
    [135] Sun Y, Chen HM, Subudhi SK, et al. Costimulatory molecule-targeted antibody therapy of a spontaneous autoimmune disease. Nat Med. 2002 Dec; 8(12): 1405-13.
    [136] Ye Z, Hellstrom I, Hayden-Ledbetter M, et al. Gene therapy for cancer using single-chain Fv fragments specific for 4-1BB.Nat Med. 2002 Apr;8(4): 343-8.
    [137] Gramaglia I, Cooper D, Miner KT, et al. Co-stimulation of antigen-specific CD4 T cells by 4-1BB ligand. Eur J Immunol. 2000 Feb; 30(2): 392-402.
    [138] Sun Y, Lin X, Chen HM, Wu Q, et al. Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of experimental autoimmune encephalomyelitis. J Immunol. 2002 Feb 1; 168(3): 1457-65.
    [139] Schwarz H, Valbracht J, Tuckwell J, et al. ILA, the human 4-1BB homologue, is inducible in lymphoid and other cell lineages. Blood. 1995 Feb 15; 85(4): 1043-52.
    [140] Lindstedt M, Johansson-Lindbom B, Borrebaeck CA. Expression of CD137 (4-1BB) on Human Follicular Dendritic Cells. Scand J Immunol. 2003 Apr; 57(4): 305-10.
    [141] Melero I, Johnston JV, Shufford WW, et al. NK1.1 cells express 4-1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies. Cell Immunol. 1998 Dec 15; 190(2): 167-72.
    [142] Martinet O, Ermekova V, Qiao JQ, et al. Immunomodulatory gene therapy with interleukin 12 and 4-1BB ligand: long- term remission of liver metastases in a mouse modeI.J Natl Cancer Inst. 2000 Jun 7;92(11):931-6.
    [143] Wilcox RA, Tamada K, Strome SE, et al. Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J Immunol. 2002 Oct 15; 169(8): 4230-6.
    [144] Kienzle G, yon Kempis J. CD137 (ILA/4-1BB), expressed by primary human monocytes, induces monocyte activation and apoptosis of B lymphocytes, Int Immunol. 2000 Jan; 12(1): 73-82.
    
    
    [145] Langstein J, Schwarz H. Identification of CD137 as a potent monocyte survival factor. J Leukoc Biol. 1999 Jun; 65(6): 829-33.
    [146] Langstein J, Michel J, Fritsche J, et al. CD137 (ILA/4-1BB), a member of the TNF receptor family, induces monocyte activation via bidirectional signaling. J Immunol. 1998 Mar 1; 160(5): 2488-94.
    [147] Langstein J, Michel J, Schwarz H. CD137 induces proliferation and endomitosis in monocytes. Blood. 1999 Nov 1; 94(9): 3161-8.
    [148] Melero I, Shuford WW, Newby SA, et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med. 1997 Jun; 3(6): 682-5.
    [149] Ye Z, Hellstrom I, Hayden-Ledbetter M, et al. Gene therapy for cancer using single-chain Fv fragments specific for 4-1BB.Nat Med. 2002 Apr;8(4): 343-8.
    [150] Yoshida H, Katayose Y, Unno M, et al. A novel adenovirus expressing human 4-1BB ligand enhances antitumor immunity. Cancer Immunol Immunother. 2003 Feb; 52(2): 97-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700