急性眼高压后大鼠视网膜节细胞选择性死亡与视网膜局部血供的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:检测急性眼高压后视网膜中央部和周边部血液供应的改变是否有差异;如果这两个部位的血供改变有差异,进一步检测这种差异改变与节细胞选择性死亡的关系。
     方法:第一部分:90只成年健康SD大鼠(体重200~220g)分三步进行实验。首先,为了找到最优的灌注条件,我们在60只动物中测试了由四种明胶浓度和五种灌注压力组合而成的二十种灌注条件。基于这60只动物的结果,我们希望找到能充分显示视网膜中央部和周边部血管的最优明胶墨汁灌注方法。其次,进一步比较第一步实验得出的最优灌注方法与常用的vWf免疫荧光法在大鼠视网膜血管标记效果方面的异同。最后,观察了第一步实验得出的最优灌注方法对同一组织中神经元/胶质细胞标记的影响。
     第二部分:通过先前改良的明胶墨汁灌注和荧光微球注射方法从形态和功能两方面检测急性眼高压后大鼠视网膜中央、中间和周边部血液供应的时空变化。
     第三部分:通过荧光金逆行标记系统检测了急性眼高压后再灌过程中节细胞丢失的时空变化;在此基础上,结合第二部分的资料,进行节细胞的丢失率与局部血供增加率之间的线性相关分析和线性回归分析。
     结果:第一部分:先在140%大鼠平均动脉压(mean arterialpressure,MAP)下灌注含3%明胶的37℃墨汁20ml,再在180%MAP下灌注含5%明胶的37℃墨汁20 ml能充分显示大鼠视网膜血管。该明胶墨汁灌注方法对视网膜血管的显示效果在切片和铺片上均优于常用的von Willebrand factor(vWf)免疫组化方法,而且该方法不影响视网膜神经元和胶质细胞的免疫组化标记和视网膜节细胞的荧光金逆行标记。
     第二部分:急性眼高压后再灌过程中视网膜中央、中间和周边部血供都是先增加、再降低、然后逐渐恢复;而且整个再灌过程中视网膜中央部和中间部血供增加率都大于周边部。
     第三部分:急性眼高压后再灌对视网膜中央和中间部节细胞存活的影响相似;急性眼高压后再灌过程中,尤其是再灌1d内,视网膜周边部节细胞丢失率明显高于中央部和中间部。
     急性眼高压后视网膜中央、中间和周边部节细胞的丢失率与其局部血供的增加率显著相关,尤其在再灌1d内;急性眼高压后周边部节细胞的丢失率与局部血供增加率的相关程度明显高于中央部和中间部。
     结论:①改良的明胶墨汁灌注方法对大鼠视网膜血管的标记效果优于vWf标记方法,而且能在同一视网膜上与神经元/胶质细胞双标记;②急性眼高压后大鼠视网膜局部血供的改变和节细胞丢失都具有时空特性;③急性眼高压后大鼠视网膜节细胞的选择性死亡与视网膜局部血供的差异改变有关,而且这种相关关系具有时相特异性和区域特异性。
Purpose:To detect whether the changes of local blood supply in rat retinae following acute high intraocular pressure is differential from the central to the peripheral.And if yes,the relationship between the inhomogenous changes of local blood supply and the selective loss of retinal ganglion cells(RGCs) in rat retinae was further investigated.
     Methods:Part 1:90 adult Sprague-Dawley rats(200-250 g) were used in this study.Firstly,60 rats were subjected to 20 combinations(n=3 in each combination) of different gelatin concentrations(0%,1%,3%and 5%) and perfusion pressures(100%,120%,140%,160%and 180%MAP) during retinal perfusion.Based on the data from these 60 rats,the optimal perfusion condition of gelatin-ink,under which the central and peripheral retinal vessels were completely filled,was gotten.Secondly,12 rats were used for evaluation of the retinal vessel labeling outcome of the gelatin-ink perfusion method under the optimal condition(n=6) by using the vWf immunostaining(n=6) as control.Finally,we investigated whether this improved labeling technique affected the following labeling of neurons and glial cells in the same retinae
     Part 2:The temporal-spatial changes of blood supply in the central, middle and peripheral retinae following the acute introeular high pressure were detected by the above improved gelatin-ink perfusion method and fluorescent microsphere injection method.
     Part 3:The temporal-spatial changes of ganglion cell loss in the central,middle and peripheral retinae following the acute introcular high pressure were detected by fluorogold retrograde labelling.Based on these and the data of part two,linear correlation and linear regression between loss percentages of ganglion cells and increased ratios of local blood supply were made.
     Results:Part 1:Infusing rats first with 20 ml of 37℃ink plus 3% gelatin at 140%MAP,and subsequently with 20 ml of 37℃ink plus 5% gelatin at 180%rat MAP allowed the gelatin-ink to completely fill the rat retinal vessels.Rat retinal vessels labeled by the perfusion method were more in number than that by vWf immunostaining.Moreover,the improved gelatin-ink perfusion had no effect on and caused no contamination to the following fluorogold labeling or immunostaining of retinal neurons or glial cells in the same tissue.
     Part 2:During the reperfusion following acute high intraocular pressure,the blood supply in the central,middle and peripheral retina all first increased,and then decreased,and at last recovered.The increased percentages of local blood supply in the central and middle retina all were higher than that of the peripheral at each survival time points during the whole reperfusion.
     Part 3:The reperfusion of retina following acute high intraocular pressure has similar effects on the survival of ganglion cells in the central and middle retina.The loss percentages of ganglion cells in the peripheral retinae was significantly higher than that of the central and middle during the reperfusion,especially on the first day of reperfusion.
     There were significant correlation between the loss ratio of ganglion cells and the increased percentages of corresponding local blood supply during the reperfusion following the acute high intraocular pressure, especially on the first day of reperfusion.Moreover,the correlativity in the peripheral retina was significantly higher than that of the central and middle retina during the whole reperfusion.
     Conclusion:①Improved gelatin-ink perfusion is a method for accurate morphological characterization of rat retinal vessels,which is superior to vWf immunostaining.The gelatin-ink perfusion technique can double label with neurons/glial cells in the same retinae.②There were temporal-spatial changes in the rat retinal ganglion cell loss and local blood supply after the acute high intraocular pressure.③There is significant correlation between the seletive loss of retinal ganglion cells and inhomogenous changes of local blood supply during the reperfusion following the acute high intraocular pressure.And the correlation has special temporal-spatial features.
引文
[1]Krupin T.Special considerations in low-tension glaucoma.Can J Ophthalmol.2007 Jun;42(3):414-7.
    [2]Kerrigan-Baumrind LA,Quigley HA,Pease ME,et al.Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons.Invest Ophthalmol Vis Sci.2000 Mar;41(3):741-8.
    [3]Sommer A,Tielsch JM,Katz J,et al.Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans:the Baltimore Eye Survey.Arch Ophthalmol.1991 Aug;109(8):1090-5.
    [4]Tielsch JM,Sommer A,Katz J,et al.Racial variations in the prevalence of primary open-angle glaucoma:the Baltimore Eye Survey.JAMA.1991 Jul 17;266(3):369-74.
    [5]Sommer A,Tielsch JM,Katz J,et al.Racial differences in the cause-specific prevalence of blindness in east Baltimore.N Engl J Med.1991 Nov 14;325(20):1412-7.
    [6]Tielsch JM,Katz J,Sommer A,et al.Family history and risk of primary open angle glaucoma.The Baltimore Eye Survey.Arch Ophthalmol.1994 Jan;112(1):69-73.
    [7]Tielsch JM,Katz J,Quigley HA,et al.Diabetes,intraocular pressure,and primary open-angle glaucoma in the Baltimore Eye Survey.Ophthalmology.1995 Jan;102(1):48-53.
    [8]Tielsch JM,Katz J,Sommer A,et al.Hypertension,perfusion pressure,and primary open-angle glaucoma:a population-based assessment.Arch Ophthalmol.1995 Feb;113(2):216-21.
    [9]Stamper RL.The effect of glaucoma on central visual function.Trans Am Ophthalmol Soc.1984;82:792-826.
    [10]Laquis S,Chaudhary P,Sharma SC.The patterns of retinal ganglion cell death in hypertensive eyes.Brain Res.1998 Feb 16;784(1-2):100-4
    [11] Urcola JH, Hernandez M, Vecino E. Three experimental glaucoma models in rats: comparison of the effects of intraocular pressure elevation on retinal ganglion cell size and death. Exp Eye Res. 2006 Aug;83(2):429-37. Epub 2006 May 6.
    [12] Quigley HA. Ganglion cell death in glaucoma: pathology recapitulates ontogeny. Aust N Z J Ophthalmol. 1995 May; 23(2):85-91.
    [13] Quigley HA. Neuronal death in glaucoma. Prog Retin Eye Res. 1999 Jan; 18(1):39-57.
    [14] Glovinsky Y, Quigley HA, Pease ME. Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci. 1993 Feb; 34(2):395-400.
    [15] Weber AJ, Kaufman PL, Hubbard WC. Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci. 1998 Nov; 39(12):2304-20.
    [16] Kalloniatis M, Harwerth RS, Smith EL, et al. Colour vision anomalies following experimental glaucoma in monkeys. Ophthalmic Physiol Opt. 1993 Jan; 13(1):56-67.
    [17] Johnson CA. Selective versus nonselective losses in glaucoma. J Glaucoma (Suppl) 1994; 3:532-4.
    [18] Graham SL, Drance SM, Chauhan BC, et al. Comparison of psychophysical and electrophysiological testing in early glaucoma. Invest Ophthalmol Vis Sci. 1996 Dec;37(13):2651-62.
    [19] Morgan JE, Uchida H, Caprioli J. Retinal ganglion cell death in experimental glaucoma. Br J Ophthalmol. 2000 Mar;84(3):303-10.
    [20] Kuehn MH, Fingert JH, Kwon YH. Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. Ophthalmol Clin North Am. 2005 Sep;18(3):383-95
    [21] Quigley HA, McKinnon SJ, Zack DJ, et al. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci. 2000 Oct;41(11):3460-6.
    [22]Pease ME,McKinnon SJ,Quigley HA,et al.Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma.Invest Ophthalmol Vis Sci.2000 Mar;41(3):764-74.
    [23]Ko ML,Hu DN,Ritch R,et al.Patterns of retinal ganglion cell survival after brain-derived neurotrophic factor administration in hypertensive eyes of rats.Neurosci Lett.2001 Jun 8;305(2):139-42.
    [24]Martin KR,Quigley HA,Zack D J,et al.Gene therapy with brain-derived neurotrophic factor as a protection:retinal ganglion cells in a rat glaucoma model.Invest Ophthalmol Vis Sci.2003 Oct;44(10):4357-65.
    [25]Ji JZ,Elyaman W,Yip HK,et al.CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats:the possible involvement of STAT3 pathway.Eur J Neurosci.2004 Jan;19(2):265-72.
    [26]Van Adel BA,Kostic C,Deglon N,et al.Delivery of ciliary neurotrophic factor via lentiviral-mediated transfer protects axotomized retinal ganglion cells for an extended period of time.Hum Gene Ther.2003 Jan 20;14(2):103-15.
    [27]王慧,刘求理,罗学港等.脑源性神经营养因子对高眼压后视网膜节细胞的保护作用.解剖学研究,2002,24(2):119-122.
    [28]黄菊芳,蒋丽珠,童建斌等.脑源性神经营养因子预处理后急性高眼压下大鼠视网膜TrkB的表达变化.解剖学杂志.2006,29(6):734-737.
    [29]Cui Q,Tang LS,Hu B,et al.Expression oftrkA,trkB,and trkC in injured and regenerating retinal ganglion cells of adult rats.Invest Ophthalmol Vis Sci.2002 Jun;43(6):1954-64.
    [30]Rudzinski M,Wong TP,Saragovi HU.Changes in retinal expression of neurotrophins and neurotrophin receptors induced by ocular hypertension.J Neurobiol.2004 Feb 15;58(3):341-54.
    [31]Hof PR,Lee PY,Yeung G,et al.Glutamate receptor subunit GluR2 and NMDAR1 immunoreactivity in the retina of macaque monkeys with experimental glaucoma does not identify vulnerable neurons.Exp Neurol.1998Oct;153(2):234-41.
    [32]Dijk F,Kraal-Muller E,Kamphuis W.Ischemia-induced changes of AMPA-type glutamate receptor subunit expression pattern in the rat retina:a real-time quantitative PCR study.Invest Ophthalmol Vis Sci.2004Jan;45(1):330-41
    [33]Grieshaber MC,Flammer J.Blood flow in glaucoma.Curr Opin Ophthalmol.2005 Apr;16(2):79-83.
    [34]Gugleta K,Fuchsj(a|¨)ger-Mayrl G,Orgül S.Is neurovascular coupling of relevance in glaucoma? Surv Ophthalmol.2007 Nov;52 Suppl 2:S139-43
    [35]Grieshaber MC,Mozaffarieh M,Flammer J.What is the link between vascular dysregulation and glaucoma? Surv Ophthalmol.2007 Nov;52 Suppl 2:S144-54.
    [36]Flammer J,Orgul S,Costa VP,et al.The impact of ocular blood flow in glaucoma.Prog Retin Eye Res.2002 Jul;21(4):359-93.
    [37]Zheng L,Gong B,Hatala DA,et al.Retinal ischemia and reperfusion causes capillary degeneration:similarities to diabetes.Invest Ophthalmol Vis Sci.2007Jan;48(1):361-7.
    [38]Chauhan BC,LeVatte TL,Jollimore CA,et al.Model of endothelin-1-induced chronic optic neuropathy in rat.Invest Ophthalmol Vis Sci.2004Jan;45(1):144-52
    [39]Orgul S,Cioffi GA,Wilson DJ,et al.An endothelin-1 induced model of optic nerve ischemia in the rabbit.Invest Ophthalmol Vis Sci.1996 Aug;37(9):1860-9.
    [40]Orgul S,Cioffi GA,Bacon DR,et al.An endothelin-1-induced model of chronic optic nerve ischemia in rhesus monkeys.J Glaucoma.1996 Apr;5(2):135-8.
    [41]Goldblum D,Mittag T.Prospects for relevant glaucoma models with retinal ganglion cell damage in the rodent eye.Vision Res.2002 Feb;42(4):471-8.
    [42]楚亚平,刘忠浩,罗学港等.大鼠视网膜缺血/再灌流损伤的超微结构研究.湖南医科大学学报.1993;18(1):19-22.
    [43]熊鲲,黄菊芳,蒋丽珠等.脑源性神经营养因子对急性高眼压后大鼠视 网膜Müller细胞的影响.解剖学杂志,2006,29(1):14-17
    [44]熊鲲,黄菊芳,童建斌等.急性大鼠眼高压诱导的不同缺血/再灌内层视网膜的变化.解剖学杂志.2005;28(1):46-49.
    [45]黄菊芳,蒋丽珠,童建斌等.急性高眼压后大鼠视网膜BDNF和TrkB的表达变化.神经解剖学杂志,2007,23(4):405-409
    [46]黄菊芳,童建斌,刘求理等.急性高眼压后大鼠视网膜谷氨酰胺合成酶的表达变化.神经解剖学杂志.2004,20(6):548-552
    [47]童建斌,陈旦,蒋丽珠等.外源性BDNF对急性高眼压后大鼠视网膜GLT-1表达的影响.解剖学杂志,2008,31(1):71-73.
    [48]Bell MA,Scarrow WG.Staining for microvascular alkaline phosphatase in thick celloidin sections of nervous tissue:morphometric and pathological applications.Microvascular Res.1984;27(2):189-203.
    [49]Lee GD,Arena JH,Barrett PM,et al.Stereological analysis of mierovascular parameters in a double transgenic model of Alzheimer's disease.Brain Res Bull.2005;65(4):317-22.
    [50]Belford DA,Gole GA,Rush RA.Localization of laminin to retinal vessels of the rat and mouse using whole mounts.Invest Ophthalmol Vis Sci.1987;28(11):1761-6.
    [51]Gariano RF,Imela-Arispe ML,Sage EH,et al.Immunohistochemical characterization of developing and mature primate retinal blood vessels.Invest Ophthalmol Vis Sci.1996;37(1):93-103.
    [52]Lip GY,Blann A.Von Willebrand factor:a marker of endothelial dysfunction in vascular disorders? Cardiovasc Res.1997;34(2):255-65
    [53]Browning J,Wylie CK,and Gole G.Quantification of oxygen-induced retinopathy in the mouse.Invest Ophthalmol Vis Sci.1997;38(6):1168-74.
    [54]Barou O,Mekraldi S,Vico L,et al.Relationships between trabecular bone remodeling and bone vascularization:a quantitative study.Bone.2002;30(4):604-12.
    [55]刘昳,梁晓玲,许传超等.建立可定量的视网膜新生血管小鼠模型的探索.眼科学报.2006;22(2):103-6,124.
    [56]Strauss RW,Rombold F,Kampik A,et al.Fluorescein angiography compared to three-dimensional measurements by the retinal thickness analyzer in classic choroidal neovascularization.Ophthalmic Res.2007;39(2):98-102.
    [57]Klima KA.Focus on fluorescein angiography.Insight.2006;31(2):15-7.
    [58]Larrazabal LI,Penn JS.Fluorescein angiography of the newborn rat.Implications in oxygen-induced retinopathy.Invest Ophthalmol Vis Sci.1990;31(5):810-8.
    [59]Lawrence JM,Huang SK,Raisman G.Vascular and astrocytic reactions during establishment of hippocampal transplants in adult host brain.Neuroscience.1984;12(3):745-60.
    [60]Sirevaag AM,Black JE,Shafron D,et al.Direct evidence that complex experience increases capillary branching and surface area in visual cortex of young rats.Brain Res.1988;471(2):299-304.
    [61]Finger S,Dunnett BS.Nimodipine enhances growth and vascularization of neural grafts.Exp Neurol.1989;104(1):1-9.
    [62]Korol DL,Brunjes PC.Unilateral naris closure and vascular development in the rat olfactory bulb.Neuroscience.1992;46:631-41.
    [63]Miyoshi Y,Date I,Ohmoto T.Three-dimensional morphological study of microvascular regeneration in cavity wall of the rat cerebral cortex using the scanning electron microscope:implications for delayed neural grafting into brain cavities.Exp Neurol.1995;131(1):69-82.
    [64]徐洪斌,陈晓隆.吸氧对新生鼠视网膜的影响及其机制.中华眼底病杂志.2003:19(5):306-309.
    [65]彭晓燕,陈大年,严密等.可定量的氧致血管增生性视网膜病变小鼠模型.中华眼底病杂志.2000;16(4):260-263.
    [66]Tata DA,Anderson BJ.A new method for the investigation of capillary structure.Journal of neuroscience methods.2002;113(2):199-206.
    [67]Deng PY,Ye F,Zhu HQ,et al.An increase in the synthesis and release of caleitonin gene-related peptide in two-kidney,one-clip hypertensive rats.Regulatory peptides.2003;114(2-3):175-182.
    [68]Piri N,Song M,Kwong JMK,et al.Modulation of alpha and beta crystallin expression in rat retinas with ocular hypertension-induced ganglion cell degeneration.Brain Research.2007;1141:1-9
    [69]江冰,蒋幼芹.灯盏细辛对大鼠视神经压榨伤后视网膜神经节细胞的保护作用.中华眼科杂志.2003;39(8):481-484.
    [70]李朗,孙俊,李明等.加温灌注明胶墨汁制作动物脑血管模型的方法.中国临床解剖学杂志.2004,22(2):224.
    [71]Dijk F,Bergen A,Kamphuis W.GAP-43 expression is upregulated in retinal ganglion cells after ischemia/reperfusion-induced damage.Experimental Eye Research.2007;84(5):858-867.
    [72]Jin Y,Zhong YM,Yang XL.Natriuretic peptides are localized to mt retinal amacrine cells.Neurosci Lett.2007;421(2):106-9.
    [73]Xue LP,Lu J,Cao Q,et al.Müller glial cells express nestin coupled with glial fibrillary acidic protein in experimentally induced glaucoma in the rat retina.Neuroscience.2006;139(2):723-732
    [74]Boerma M,Kruse JJ,van Loenen M,et al.Increased deposition of von Willebrand factor in the rat heart after local ionizing irradiation.Strahlenther Onkol.2004 Feb;180(2):109-16.
    [75]Taguchi Y,Takashima S,Sasahara E,et al.Morphological changes in capillaries in the ischemic brain in Wistar rats.Arch Histol Cytol.2004;67(3):253-61.
    [76]Fontana L,Poinoosawmy D,Bunce CV,et al.Pulsatile ocular blood flow investigation in asymmetric normal tension glaucoma and normal subjects.Br J Ophthalmol.1998 Jul;82(7):731-6.
    [77]Findl O,Rainer G,Dallinger S,et al.Assessment of optic disk blood flow in patients with open-angle glaucoma.Am J Ophthalmol.2000Nov;130(5):589-96.
    [78]Kerr J,Nelson P,O'Brien C.A comparison of ocular blood flow in untreated primary open-angle glaucoma and ocular hypertension.Am J Ophthalmol.1998Jul;126(1):42-51.
    [79] Duijm HF, Berg TJ, Greve EL. Central and peripheral arteriovenous passage times of the retina in glaucoma. Exp Eye Res. 1999 Aug; 69(2): 145-53.
    [80] Sugiyama T, Schwartz B, Takamoto T, et al. Evaluation of the circulation in the retina, peripapillary choroid and optic disk in normal-tension glaucoma. Ophthalmic Res. 2000 Mar-Jun;32(2-3):79-86
    [81] Huber K, Plange N, Remky A, et al. Comparison of colour Doppler imaging and retinal scanning laser fluorescein angiography in healthy volunteers and normal pressure glaucoma patients. Acta Ophthalmol Scand. 2004 Aug; 82(4):426-31
    [82] Quigley HA, Hohman RM, Addicks EM, et al. Blood vessels of the glaucomatous optic disc in experimental primate and human eyes. Invest Ophthalmol Vis Sci. 1984 Aug;25(8):918-31.
    [83] Wang L, Fortune B, Cull G, et al. Microspheres method for ocular blood flow measurement in rats: size and dose optimization. Experimental Eye research. 2007; 84(1): 108-117.
    [84] Ahmed J, Pulfer MK, Linsenmeier RA. Measurement of blood flow through the retinal circulation of the cat during normoxia and hypoxemia using fluorescent microspheres. Microvasc Res. 2001 Sep;62(2):143-53.
    [85] Ben-nun J, Alder VA, Constable IJ. Retinal microvascular patency in the diabetic rat. Int Ophthalmol. 2004; 25(4): 187-92.
    [86] Nakazawa T, Takahashi H, Shimura M. Estrogen has a neuroprotective effect on axotomized RGCs through ERK signal transduction pathway. Brain Res. 2006 Jun 6;1093(1):141-9.
    [87] Shimada M, Akagi N, Goto H, et al. Microvessel and astroglial cell densities in the mouse hippocampus. J Anat. 1992 Feb; 180 (Pt 1):89-95.
    [88] Hughes S, Gardiner T, Hu P, et al. Altered pericyte-endothelial relations in the rat retina during aging: implications for vessel stability. Neurobiol Aging. 2006 Dec; 27(12): 1838-47.
    [89] Hirose F, Kiryu J, Miyamoto K, et al. In vivo evaluation of retinal injury after transient ischemia in hypertensive rats. Hypertension. 2004 May; 43(5):1098-102.
    [90]Tamaki Y,Araie M,Kawamoto E,et al.Noncontact,two-dimensional measurement of retinal microcirculation using laser speckle phenomenon.Invest Ophthalmol Vis Sci.,1994,35:3825-3834.
    [91]Coyne EF,Ngai AC,Meno JR,et al.Methods for isolation and characterization of intracerebral arterioles in the C57/BL6 wild-type mouse.J Neurosci Methods.2002 Oct 30;120(2):145-53
    [92]Holmgaard K,Aalkjaer C,Lambert JD,et al.ATP-induced relaxation of porcine retinal arterioles depends on the perivascular retinal tissue and acts via an adenosine receptor.Curr Eye Res.2007 Apr;32(4):353-9.
    [93]Aliev G,Obrenovich ME,Seyidova D,et al.Exploring ischemia -induced vascular lesions and potential pharmacological intervention strategies.Histol Histopathol.2005 Jan;20(1):261-73.
    [94]Ballabh P,Braun A,Nedergaard M.The blood-brain barrier:an overview:structure,regulation,and clinical implications.Neurobiol Dis.2004Jun;16(1):1-13
    [95]Wilson CA,Berkowitz BA,Funatsu H,et al.Blood-retinal barrier breakdown following experimental retinal ischemia and reperfusion.Exp Eye Res.1995Nov;61(5):547-57.
    [96]Delaey C,Boussery K,Van de Voorde J.A retinal-derived relaxing factor mediates the hypoxic vasodilation of retinal arteries.Invest Ophthalmol Vis Sci.2000;41(11):3555-60.
    [97]Maenhaut N,Boussery K,Delaey C,et al.Control of retinal arterial tone by a paracrine retinal relaxing factor.Microcirculation.2007;14(1):39-48.
    [98]Delaey C,Van de Voorde J.Retinal arterial tone is controlled by a retinal-derived relaxing factor.Circ Res.1998;83(7):714-20.
    [99]Gordon GR,Mulligan SJ,MacVicar BA.Astrocyte control of the cerebrovasculature.Glia.2007;55(12):1214-21.
    [100]Peppiatt CM,Howarth C,Mobbs P,et al.Bidirectional control of CNS capillary diameter by pericytes.Nature.2006;443(7112):700-4.
    [101]Li Q and Puro DG.Adenosine activates ATP-sensitive K+currents in pericytes of rat retinal microvessels:role of A1 and A2a receptors.Brain Res.2001;907:93-99.
    [102]Yamanishi S,Katsumura K,Kobayashi T,et al.Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature.Am J Physiol Heart Circ Physiol.2006;290(3):H925-34.
    [103]Distler C,Dreher Z.Glia cells of the monkey retina--Ⅱ.Müller cells.Vision Res.1996;36(16):2381-94.
    [104]Karschin A,W(a|¨)sle H,Schnitzer J.Shape and distribution of astrocytes in the cat retina.Invest Ophthalmol Vis Sci.1986;27(5):828-31.
    [105]江雪丰,周希瑗.Müller细胞在糖尿病视网膜病变中的研究进展.眼科新进展.2006;26(1 0):796-798.
    [106]Nickells RW.From ocular hypertension to ganglion cell death:a theoretical sequence of events leading to glaucoma.Can J Ophthalmol.2007Apr;42(2):278-87.
    [107]Reichstein D,Ren L,Filippopoulos T,et al.Apoptotic retinal ganglion cell death in the DBA/2 mouse model of glaucoma.Exp Eye Res.2007Jan;84(1):13-21.
    [108]Selles-Navarro I,Villegas-Perez MP,Salvador-Silva M,et al.Retinal ganglion cell death after different transient periods of pressure-induced ischemia and survival intervals:A quantitative in vivo study.Invest Ophthalmol Vis Sci.1996 Sep;37(10):2002-14.
    [109]Mittag TW,Danias J,Pohorenec G,et al.Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model.Invest Ophthalmol Vis Sci.2000 Oct;41(11):3451-9.
    [110]Hitchings RA,Lightman S.Glaucoma.Fundamentals of clinical ophthalmology.BMJ pulishing group,london,2000.
    [111]Chauhan BC,LeVatte TL,Jollimore CA,et al.Model of endothelin-1-induced chronic optic neuropathy in rat.Invest Ophthalmol Vis Sci.2004 Jan;45(1):144-52.
    [112]Zhang X,Zhang M,Avila MY,et al.Time course of age-dependent changes in intraocular pressure and retinal ganglion cell death in DBA/2J mouse.Yan Ke Xue Bao.2006 Sep;22(3):184-9,194
    [1]Krupin T.Special considerations in low-tension glaucoma.Can J Ophthalmol.2007 Jun;42(3):414-7.
    [2]Kerrigan-Baumrind LA,Quigley HA,Pease ME,Kerrigan DF,Mitchell RS.Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons.Invest Ophthalmol Vis Sci.2000Mar;41(3):741-8.
    [3]Quigley HA,Vitale S.Models of open-angle glaucoma prevalence and incidence in the United States.Invest Ophthalmol Vis Sci.1997 Jan;38(1):83-91.
    [4]Quigley HA,Broman AT.The number of people with glaucoma worldwide in 2010 and 2020.Br J Ophthalmol.2006 Mar;90(3):262-7.
    [5]Gupta N,Yucel YH.Glaucoma as a neurodegenerative disease.Curr Opin Ophthalmol.2007 Mar;18(2):110-4.
    [6]田莹,朱秀萍.原发性青光眼早期诊断方法的研究进展.中国实用眼科杂志.2002,20(1):3-7.
    [7]李凤鸣.中华眼科学(中册).北京:人民卫生出版社.2004.
    [8]Thylefors B,Negrel AD.The global impact of glaucoma.Bull World Health Organ.1994;72(3):323-6.
    [9]Quigley HA.Number of people with glaucoma worldwide.Br J Ophthalmol.1996 May;80(5):389-93.
    [10]Quigley HA.Neuronal death in glaucoma.Prog Retin Eye Res.1999 Jan;18(1):39-57.
    [11]Quigley HA.Open-angle glaucoma.N Engl J Med.1993 Apr 15;328(15):1097-106.
    [12]Congdon NG;Quigley HA,Hung PT,Wang TH,Ho TC,Glovinsky Y.Impact of age,various forms of cataract,and visual acuity on whole-field scotopic sensitivity screening for glaucoma in rural Taiwan.Arch Ophthalmol.1995Sep;113(9):1138-43.
    [13]Congdon N,Wang F,Tielsch JM.Issues in the epidemiology and population-based screening of primary angle-closure glaucoma.Surv Ophthalmol.1992 May-Jun;36(6):411-23.
    [14]Sommer A,Tielsch JM,Katz J,Quigley HA,Gottsch JD,Javitt J,Singh K.Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans.The Baltimore Eye Survey.Arch Ophthalmol.1991 Aug;109(8):1090-5.
    [15]Tielsch JM,Sommer A,Katz J,Royall RM,Quigley HA,Javitt J.Racial variations in the prevalence of primary open-angle glaucoma.The Baltimore Eye Survey.JAMA.1991 Jul 17;266(3):369-74.
    [16]Sommer A,Tielsch JM,Katz J,Quigley HA,Gottsch JD,Javitt JC,Martone JF,Royall RM,Witt KA,Ezrine S.Racial differences in the cause-specific prevalence of blindness in east Baltimore.N Engl J Med.1991 Nov 14;325(20):1412-7.
    [17]Tielsch JM,Katz J,Sommer A,Quigley HA,Javitt JC.Family history and risk of primary open angle glaucoma.The Baltimore Eye Survey.Arch Ophthalmol.1994 Jan;112(1):69-73.
    [18]Tielsch JM,Katz J,Quigley HA,Javitt JC,Sommer A.Diabetes,intraocular pressure,and primary open-angle glaucoma in the Baltimore Eye Survey.Ophthalmology.1995 Jan;102(1):48-53.
    [19]Tielsch JM,Katz J,Sommer A,Quigley HA,Javitt JC.Hypertension,perfusion pressure,and primary open-angle glaucoma.A population-based assessment.Arch Ophthalmol.1995 Feb;113(2):216-21.
    [20]Foster PJ,Johnson GJ.Glaucoma in China:how big is the problem? Br J Ophthalmol,2001,85:1277-1282.
    [21]Monemi S,Spaeth G,Da Silva A,et al.Identification of a novel adult-onset primary open- angle glaucoma gene on 5q22.1.Hum Mol Genet,2005,14:725-733.
    [22]Stone EM,Fingert JH,Alward WL,et al.Identification of a gene that causes primary open angle glaucoma.Science,1997,275:668-670.
    [23] Wyllie AH, Beattie GJ, Hargreaves AD. Chromatin changes in apoptosis. Histochem J. 1981 Jul;13(4):681-92.
    [24] Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995 Jan;146(1):3-15.
    [25] Kroemer G, Petit P, Zamzami N, Vayssiere JL, Mignotte B. The biochemistry of programmed cell death. FASEB J. 1995 Oct;9(13):1277-87.
    [26] Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251-306.
    [27] Raffray M, Cohen GM. Apoptosis and necrosis in toxicology: a continuum or distinct modes of cell death? Pharmacol Then 1997 Sep;75(3):153-77.
    [28] Kerrigan LA, Zack DJ, Quigley HA, Smith SD, Pease ME. TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol. 1997 Aug;115(8):1031-5.
    [29] Okisaka S, Murakami A, Mizukawa A, Ito J. Apoptosis in retinal ganglion cell decrease in human glaucomatous eyes. Jpn J Ophthalmol. 1997 Mar-Apr;41(2):84-8.
    [30] Neufeld AH, Hernandez MR, Gonzalez M, Geller A. Cyclooxygenase-1 and cyclooxygenase-2 in the human optic nerve head. Exp Eye Res. 1997 Dec;65(6):739-45.
    [31] Charriaut-Marlangue C, Ben-Ari Y. A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport. 1995 Dec 29;7(1):61-4
    [32] Cordeiro MF, Guo L, Luong V, Harding G, Wang W, Jones HE, Moss SE, Sillito AM, Fitzke FW. Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc Natl Acad Sci USA. 2004 Sep 7;101(36):13352-6.
    [33] Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 1995 Jul 17;184(1):39-51.
    [34] Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998 Aug 28; 281(5381):1309-12.
    [35] Nickells RW. From ocular hypertension to ganglion cell death: a theoretical sequence of events leading to glaucoma. Can J Ophthalmol. 2007 Apr;42(2):278-87.
    [36] Mosinger Ogilvie J, Deckwerth TL, Knudson CM, Korsmeyer SJ. Suppression of developmental retinal cell death but not of photoreceptor degeneration in Bax-deficient mice. Invest Ophthalmol Vis Sci. 1998 Aug;39(9):1713-20.
    [37] Li Y, Schlamp CL, Poulsen KP, Nickells RW. Bax-dependent and independent pathways of retinal ganglion cell death induced by different damaging stimuli. Exp Eye Res. 2000 Aug;71(2):209-13.
    [38] Libby RT, Li Y, Savinova OV, Barter J, Smith RS, Nickells RW, John SW. Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet. 2005 Jul;1(1):17-26.
    [39] Cenni MC, Bonfanti L, Martinou JC, Ratto GM, Strettoi E, Maffei L. Long-term survival of retinal ganglion cells following optic nerve section in adult bcl-2 transgenic mice. Eur J Neurosci. 1996 Aug;8(8): 1735-45.
    [40] Bonfanti L, Strettoi E, Chierzi S, Cenni MC, Liu XH, Martinou J-C, Maffei L, Rabacchi SA. Protection of retinal ganglion cells from natural and axotomy-induced cell death in neonatal transgenic mice overexpressing bcl-2. J Neurosci. 1996 Jul 1;16(13):4186-94.
    [41] Qin Q, Patil K, Sharma SC. The role of Bax-inhibiting peptide in retinal ganglion cell apoptosis after optic nerve transection. Neurosci Lett. 2004 Nov 30;372(1-2):17-21.
    [42] Isenmann S, Engel S, Gillardon F, Bahr M. Bax antisense oligonucleotides reduce axotomy-induced retinal ganglion cell death in vivo by reduction of Bax protein expression. Cell Death Differ. 1999 Jul;6(7):673-82.
    [43] Kuehn MH, Fingert JH, Kwon YH. Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. Ophthalmol Clin North Am. 2005 Sep;18(3):383-95.
    [44] Weinreb RN. Glaucoma neuroprotection: What is it? Why is it needed? Can J Ophthalmol. 2007 Jun;42(3):396-8.
    [45] Pearson HE, Stoffler DJ. Retinal ganglion cell degeneration following loss of postsynaptic target neurons in the dorsal lateral geniculate nucleus of the adult cat. Exp Neurol. 1992 May;116(2):163-71.
    [46] Schulz M, Raju T, Ralston G, Bennett MR. A retinal ganglion cell neurotrophic factor purified from the superior colliculus. J Neurochem. 1990 Sep;55(3):832-41.
    [47] Hayreh SS, March W, Anderson DR. Pathogenesis of block of rapid orthograde axonal transport by elevated intraocular pressure. Exp Eye Res. 1979 May; 28(5):515-23.
    [48] Gaasterland D, Tanishima T, Kuwabara T. Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping. Invest Ophthalmol Vis Sci. 1978 Sep; 17(9):838-46.
    [49] Anderson DR, Hendrickson A. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol. 1974 Oct; 13(10):771-83.
    [50] Quigley H, Anderson DR. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol. 1976 Aug;15(8):606-16.
    [51] Quigley HA, McKinnon SJ, Zack DJ, Pease ME, Kerrigan-Baumrind LA, Kerrigan DF, Mitchell RS. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci. 2000 Oct;41(11):3460-6.
    [52] Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci. 2000 Mar;41(3):764-74.
    [53] Ko ML, Hu DN, Ritch R, Sharma SC, Chen CF. Patterns of retinal ganglion cell survival after brain-derived neurotrophic factor administration in hypertensive eyes of rats.Neurosci Lett.2001 Jun 8;305(2):139-42.
    [54]Martin KR,Quigley HA,Zack DJ,Levkovitch-Verbin H,Kielczewski J,Valenta D,Baumrind L,Pease ME,Klein RL,Hauswirth WW.Gene therapy with brain-derived neurotrophic factor as a protection:retinal ganglion cells in a rat glaucoma model.Invest Ophthalmol Vis Sci.2003 Oct;44(10):4357-65.
    [55]Ji JZ,Elyaman W,Yip HK,Lee VW,Yick LW,Hugon J,So KF.CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats:the possible involvement of STAT3 pathway.Eur J Neurosci.2004 Jan;19(2):265-72.
    [56]Van Adel BA,Kostic C,Deglon N,Ball AK,Arsenijevic Y.Delivery of ciliary neurotrophic factor via lentiviral-mediated transfer protects axotomized retinal ganglion cells for an extended period of time.Hum Gene Ther.2003 Jan 20;14(2):103-15.
    [57]Johnson EC,Deppmeier LM,Wentzien SK,Hsu I,Morrison JC.Chronology of optic nerve head and retinal responses to elevated intraocular pressure.Invest Ophthalmol Vis Sci.2000 Feb;41(2):431-42.
    [58]Pournaras CJ,Rungger-Br(a|¨)ndle E,Riva CE,Hardarson SH,Stefansson E.Regulation of retinal blood flow in health and disease.Prog Retin Eye Res.2008 May;27(3):284-330.
    [59]Findl O,Rainer G,Dallinger S,Domer G,Polak K,Kiss B,Georgopoulos M,Vass C,Schmetterer L.Assessment of optic disk blood flow in patients with open-angle glaucoma.Am J Ophthalmol.2000 Nov;130(5):589-96.
    [60]Kerr J,Nelson P,O'Brien C.A comparison of ocular blood flow in untreated primary open-angle glaucoma and ocular hypertension.Am J Ophthalmol.1998Jul;126(1):42-51.
    [61]Nasemann JE,Carl T,Pamer S,Scheider A.Perfusion time of the central retinal artery in normal pressure glaucoma.Initial results.Ophthalmologe.1994Oct;91(5):595-601.
    [62]Duijm HF,Berg TJ,Greve EL.Central and peripheral arteriovenous passage times of the retina in glaucoma.Exp Eye Res.1999 Aug;69(2):145-53.
    [63] Sugiyama T, Schwartz B, Takamoto T, Azuma I. Evaluation of the circulation in the retina, peripapillary choroid and optic disk in normal-tension glaucoma. Ophthalmic Res. 2000 Mar-Jun;32 (2-3):79 - 86
    [64] Cheng CY, Liu CJ, Chiou HJ, Chou JC, Hsu WM, Liu JH. Color Doppler imaging study of retrobulbar hemodynamics in chronic angle-closure glaucoma. Ophthalmology. 2001 Aug; 108(8):1445-51.
    [65] Gherghel D, Orgul S, Gugleta K, Gekkieva M, Flammer J. Relationship between ocular perfusion pressure and retrobulbar blood flow in patients with glaucoma with progressive damage. Am J Ophthalmol. 2000 Nov;130(5):597-605.
    [66] Kaiser HJ, Schoetzau A, Stumpfig D, Flammer J. Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol. 1997 Mar;123(3):320-7.
    [67] Nicolela MT, Walman BE, Buckley AR, Drance SM. Ocular hypertension and primary open-angle glaucoma: a comparative study of their retrobulbar blood flow velocity. J Glaucoma. 1996 Oct;5(5):308-10.
    [68] Nicolela MT, Walman BE, Buckley AR, Drance SM. Various glaucomatous optic nerve appearances. A color Doppler imaging study of retrobulbar circulation. Ophthalmology. 1996 Oct; 103(10):1670-9.
    [69] Tezel G, Wax MB. Hypoxia-inducible factor 1 alpha in the glaucomatous retina and optic nerve head. Arch Ophthalmol. 2004 Sep; 122(9): 1348-56.
    [70] Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefansson E. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002 Jul;21(4):359-93.
    [71] McKinnon SJ, Goldberg LD, Peeples P, Walt JG, Bramley TJ. Current management of glaucoma and the need for complete therapy. Am J Manag Care. 2008 Feb;14(1 Suppl):S20-7.
    [72] Zheng L, Gong B, Hatala DA, Kern TS. Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes. Invest Ophthalmol Vis Sci.2007 Jan;48(1):361-7.
    [73]Gasser P,Flammer J.Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma.Am J Ophthalmol.1991 May 15;111(5):585-8.
    [74]Drance S,Anderson DR,Schulzer M;Collaborative Normal-Tension Glaucoma Study Group.Risk factors for progression of visual field abnormalities in normal-tension glaucoma.Am J Ophthalmol.2001Jun;131(6):699-708.
    [75]Healey PR,Mitchell P,Smith W,Wang JJ.Optic disc hemorrhages in a population with and without signs of glaucoma.Ophthalmology.1998Feb;105(2):216-23.
    [76]Chauhan BC,LeVatte TL,Jollimore CA,Yu PK,Reitsamer HA,Kelly ME,Yu DY,Tremblay F,Archibald ML.Model of endothelin-1-induced chronic optic neuropathy in rat.Invest Ophthalmol Vis Sci.2004 Jan;45(1):144-52
    [77]Orgul S,Cioffi GA,Wilson DJ,Bacon DR,Van Buskirk EM.An endothelin-1induced model of optic nerve ischemia in the rabbit.Invest Ophthalmol Vis Sci.1996 Aug;37(9):1860-9.
    [78]Orgul S,Cioffi GA,Bacon DR,Van Buskirk EM.An endothelin-1-induced model of chronic optic nerve ischemia in rhesus monkeys.J Glaucoma.1996Apr;5(2):135-8.
    [79]Ransom B,Behar T,Nedergaard M.New roles for astrocytes(stars at last).Trends Neurosci.2003 Oct;26(10):520-2.
    [80]Nickells RW.From ocular hypertension to ganglion cell death:a theoretical sequence of events leading to glaucoma.Can J Ophthalmol.2007Apr;42(2):278-87.
    [81]Wang X,Tay SS,Ng YK.An immunohistochemical study of neuronal and glial cell reactions in retinae of rats with experimental glaucoma.Exp Brain Res.2000 Jun;132(4):476-84.
    [82]Woldemussie E,Wijono M,Ruiz G.Muller cell response to laser-induced increase in intraocular pressure in rats.Glia.2004 Aug 1;47(2):109-19.
    [83]Tezel G,Wax MB.Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci. 2000 Dec 1;20(23):8693-700.
    [84] Tezel G, Li LY, Patil RV, Wax MB. TNF-alpha and TNF-alpha receptor-1 in the retina of normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2001 Jul;42(8): 1787-94.
    [85] Shareef S, Sawada A, Neufeld AH. Isoforms of nitric oxide synthase in the optic nerves of rat eyes with chronic moderately elevated intraocular pressure. Invest Ophthalmol Vis Sci. 1999 Nov;40(12):2884-91.
    [86] Siu AW, Leung MC, To CH, Siu FK, Ji JZ, So KF. Total retinal nitric oxide production is increased in intraocular pressure-elevated rats. Exp Eye Res. 2002 Oct;75(4):401-6.
    [87] Liu B, Neufeld AH. Expression of nitric oxide synthase-2 (NOS-2) in reactive astrocytes of the human glaucomatous optic nerve head. Glia. 2000 Apr;30(2): 178-86
    [88] Neufeld AH, Sawada A, Becker B. Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci USA. 1999 Aug 17;96(17):9944-8.
    [89] Neufeld AH, Das S, Vora S, Gachie E, Kawai S, Manning PT, Connor JR. A prodrug of a selective inhibitor of inducible nitric oxide synthase is neuroprotective in the rat model of glaucoma. J Glaucoma. 2002 Jun;11(3):221-5.
    [90] Neufeld AH, Hernandez MR, Gonzalez M. Nitric oxide synthase in the human glaucomatous optic nerve head. Arch Ophthalmol. 1997 Apr;115(4):497-503.
    [91] Morrison JC, Johnson EC, Cepurna W, Jia L. Understanding mechanisms of pressure-induced optic nerve damage. Prog Retin Eye Res. 2005 Mar; 24(2):217-40.
    [92] Pang IH, Johnson EC, Jia L, Cepurna WO, Shepard AR, Hellberg MR, Clark AF, Morrison JC. Evaluation of inducible nitric oxide synthase in glaucomatous optic neuropathy and pressure-induced optic nerve damage.Invest Ophthalmol Vis Sci.2005 Apr;46(4):1313-21
    [93]Caprioli J,Kitano S,Morgan JE.Hyperthermia and hypoxia increase tolerance of retinal ganglion cells to anoxia and excitotoxicity.Invest Ophthalmol Vis Sci.1996 Nov;37(12):2376-81.
    [94]Dreyer EB.A proposed role for excitotoxicity in glaucoma.J Glaucoma.1998Feb;7(1):62-7.
    [95]Honkanen RA,Baruah S,Zimmerman MB,Khanna CL,Weaver YK,Narkiewicz J,Waziri R,Gehrs KM,Weingeist TA,Boldt HC,Folk JC,Russell SR,Kwon YH.Vitreous amino acid concentrations in patients with glaucoma undergoing vitrectomy.Arch Ophthalmol.2003 Feb;121(2):183-8.
    [96]Levkovitch-Verbin H,Martin KR,Quigley HA,Baunarind LA,Pease ME,Valenta D.Measurement of amino acid levels in the vitreous humor of rats after chronic intraocular pressure elevation or optic nerve transection.J Glaucoma.2002 Oct;11(5):396-405.
    [97]Wamsley S,Gabelt BT,Dahl DB,Case GL,Sherwood RW,May CA,Hernandez MR,Kaufman PL.Vitreous glutamate concentration and axon loss in monkeys with experimental glaucoma.Arch Ophthalmol.2005Jan;123(1):64-70.
    [98]Carter-Dawson L,Crawford ML,Harwerth RS,Smith EL 3rd,Feldman R,Shen FF,Mitchell CK,Whitetree A.Vitreal glutamate concentration in monkeys with experimental glaucoma.Invest Ophthalmol Vis Sci.2002Aug;43(8):2633-7.
    [99]Ullian EM,Barkis WB,Chen S,Diamond JS,Barres BA.Invulnerability of retinal ganglion cells to NMDA excitotoxicity.Mol Cell Neurosci.2004Aug;26(4):544-57.
    [100]Lipton SA.Pathologically-activated therapeutics for neuroprotection:mechanism of NMDA receptor block by memantine and S-nitrosylation.Curr Drug Targets.2007 May;8(5):621-32.
    [101]Wax MB.Is there a role for the immune system in glaucomatous optic neuropathy? Curr Opin Ophthalmol. 2000 Apr;11(2):145-50.
    [102] Maruyama I, Nakazawa M, Ohguro H. Autoimmune mechanisms in molecular pathology of glaucomatous optic neuropathy. Nippon Ganka Gakkai Zasshi. 2001 Apr;105(4):205-12.
    [103] Yang J, Tezel G, Patil RV, Romano C, Wax MB. Serum autoantibody against glutathione S-transferase in patients with glaucoma. Invest Ophthalmol Vis Sci. 2001 May;42(6):1273-6
    [104] Wax MB, Yang J, Tezel G Serum autoantibodies in patients with glaucoma. J Glaucoma. 2001 Oct;10(5 Suppl 1):S22-4.
    [105] Grus FH, Joachim SC, Hoffmann EM, Pfeiffer N. Complex autoantibody repertoires in patients with glaucoma. Mol Vis. 2004 Feb 25; 10:132-7.
    [106] Tezel G, Edward DP, Wax MB. Serum autoantibodies to optic nerve head glycosaminoglycans in patients with glaucoma. Arch Ophthalmol. 1999 Jul;117(7):917-24.
    [107] Schori H, Kipnis J, Yoles E, WoldeMussie E, Ruiz G, Wheeler LA, Schwartz M. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci USA. 2001 Mar 13;98(6):3398-403.
    [108] Schori H, Yoles E, Wheeler LA, Raveh T, Kimchi A, Schwartz M. Immune-related mechanisms participating in resistance and susceptibility to glutamate toxicity. Eur J Neurosci. 2002 Aug; 16(4):557-64.
    [109] Kipnis J, Yoles E, Porat Z, Cohen A, Mor F, Sela M, Cohen IR, Schwartz M. T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci USA. 2000 Jun 20;97(13):7446-51.
    [110] Harwerth RS, Quigley HA. Visual field defects and retinal ganglion cell losses in patients with glaucoma. Arch Ophthalmol. 2006 Jun;124(6):853-9.
    [111] Quigley HA. Ganglion cell death in glaucoma: pathology recapitulates ontogeny. Aust N Z J Ophthalmol. 1995 May;23(2):85-91.
    [112] Quigley HA. Neuronal death in glaucoma. Prog Retin Eye Res. 1999 Jan; 18(1):39-57.
    [113]Glovinsky Y,Quigley HA,Pease ME.Foveal ganglion cell loss is size dependent in experimental glaucoma.Invest Ophthalmol Vis Sci.1993Feb;34(2):395-400.
    [114]Weber AJ,Kaufman PL,Hubbard WC.Morphology of single ganglion cells in the glaucomatous primate retina.Invest Ophthalmol Vis Sci.1998 Nov;39(12):2304-20.
    [115]Kalloniatis M,Harwerth RS,Smith EL 3rd,DeSantis L.Colour vision anomalies following experimental glaucoma in monkeys.Ophthalmic Physiol Opt.1993 Jan;13(1):56-67.
    [116]Johnson CA.Selective versus nonselective losses in glaucoma.J Glaucoma (Suppl) 1994;3:532-4.
    [117]Graham SL,Drance SM,Chatthan BC,Swindale NV,Hnik P,Mikelberg FS,Douglas GR.Comparison of psychophysical and electrophysiological testing in early glaucoma.Invest Ophthalmol Vis Sci.1996 Dec;37(13):2651-62.
    [118]Laquis S,Chaudhary P,Sharma SC.The patterns of retinal ganglion cell death in hypertensive eyes.Brain Res.1998 Feb 16;784(1-2):100-4.
    [119]王慧,刘求理,罗学港,等.脑源性神经营养因子对高眼压后视网膜节细胞的保护作用.解剖学研究.2002;24(2):119-122.
    [120]黄菊芳,蒋丽珠,童建斌,陈旦,熊鲲,曾乐平.脑源性神经营养因子预处理后急性高眼压下大鼠视网膜TrkB的表达变化.解剖学杂志.2006;29(6):734-737.
    [121]Cui Q,Tang LS,Hu B,So KF,Yip HK.Expression of trkA,trkB,and trkC in injured and regenerating retinal ganglion cells of adult rats.Invest Ophthalmol Vis Sci.2002 Jun;43(6):1954-64.
    [122]Rudzinski M,Wong TP,Saragovi HU.Changes in retinal expression of neurotrophins and neurotrophin receptors induced by ocular hypertension.J Neurobiol.2004 Feb 15;58(3):341-54.
    [123]Vecino E,Garcia-Grespo D,Garcia M,Martinez-Millan L,Sharma SC,Carrascal E.Rat retinal ganglion cells co-express brain derived neurotrophic factor(BDNF) and its receptor TrkB.Vision Res.2002 Jan;42(2):151-7.
    [124]Hof PR,Lee PY,Yeung G,Wang RF,Podos SM,Morrison JH.Glutamate receptor subunit GluR2 and NMDAR1 immunoreactivity in the retina of macaque monkeys with experimental glaucoma does not identify vulnerable neurons.Exp Neurol.1998 Oct;153(2):234-41.
    [125]Dijk F,Kamphuis W.Dijk F,Kamphuis W.Ischemia-induced alterations of AMPA-type glutamate receptor subunit.Expression patterns in the rat retina--an immunocytochemical study.Brain Res.2004 Feb 6;997(2):207-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700