Gadd45a在口腔鳞状细胞癌预后及治疗中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     口腔鳞状细胞癌(Oral Squamous Cell Carcinoma, OSCC)是头颈部最常见的恶性肿瘤之一。目前,口腔鳞状细胞癌的临床治疗方法仍然是以手术治疗为主,并辅以放射治疗和化学药物治疗。近年来,随着手术方式的不断改进以及辅助手段的加强,口腔鳞状细胞癌的治疗效果也逐步得以改善,但其五年生存率仍不足50%。随着分子生物学研究的不断深入,肿瘤的基因治疗已经成为恶性肿瘤治疗研究的新热点。由于基因治疗具有特异性强、损伤小、对原发灶及转移灶均有效的优点,已经成为继手术、放疗和化疗之后的新的有希望的治疗手段。因此,寻找可用于口腔鳞状细胞癌治疗的靶基因对于口腔鳞状细胞癌的治疗具有十分重要的意义
     生长抑制和DNA损伤基因(growth arrest- and DNA damage-inducible,Gadd)45基因家族由Gadd45α/Gadd45a, Gadd45β/Gadd45b/myd118及Gadd45γ/Gadd45g/cr6组成。其中,Gadd45a基因是DNA损伤后诱导表达的基因之一,也是抑癌基因p53和乳腺癌相关蛋白1(Breast Cancer Associated Protein 1,BRCA1)的下游靶基因。细胞DNA损伤后,Gadd45a基因可以通过p53依赖及非依赖两条途径被诱导表达升高,参与细胞周期监测点、细胞凋亡、DNA损伤修复及信号传导等重要细胞生命活动的调节,并由此介入了对肿瘤发生、发展的调控。已有研究发现,Gadd45a在乳腺癌、肺癌、前列腺癌等多种恶性肿瘤中均存在表达异常。但是,国内外关于Gadd45a与口腔鳞状细胞癌关系的研究尚未见报道。
     为了明确Gadd45a在人口腔鳞状细胞癌发生、发展中的作用,进一步以Gadd45a为靶点进行基因治疗提供实验依据,本论文从以下三个方面进行了研究:
     1. Gadd45a在口腔鳞状细胞癌组织中的表达及其临床意义
     2. Gadd45a基因沉默对舌鳞状细胞癌Tca8113细胞生物学性状的影响;
     3. Gadd45a基因沉默对舌鳞状细胞癌Tca8113细胞放疗敏感性的影响。
     实验方法
     1.探讨Gadd45a在口腔鳞状细胞癌中的表达及其临床意义
     1.1.病例的收集:收集山东大学齐鲁医院2003-2009年切除的原发性人口腔鳞状细胞癌手术标本106例,患者均行肿瘤局部扩大切除术及颈淋巴清扫术,术后病理明确诊断。患者的临床资料包括年龄、性别、肿瘤组织学分级、肿瘤临床分期及有无淋巴结转移等同时被收集整理。另外选取60例口腔鳞状细胞癌患者的癌旁组织作为对照。
     1.2.采用免疫组化方法检测Gadd45a在口腔鳞状细胞癌及癌旁组织中的表达及定位,并分析Gadd45a蛋白表达及定位与患者临床资料之间的关系。
     1.3. x2检验被用来分析Gadd45a在口腔鳞状细胞癌中的表达与患者年龄、性别、肿瘤组织学分级、临床分期及淋巴结转移之间的关系。
     2.观察Gadd45a基因沉默对Tca8113细胞生物学性状的影响
     2.1.采用免疫荧光技术观察Gadd45a蛋白在Tca8113细胞中的表达定位。
     2.2.采用RNA干扰技术沉默Tca8113细胞中Gadd45a基因的表达:设计并合成Gadd45a的特异性干扰序列及无意义对照序列,转染Tca8113细胞,分别于转染后48h及72h收集细胞,通过real time quantitive RT-PCR及Western Blot方法检测Gadd45a-siRNA的特异性及有效性。
     2.3.采用MTT法检测Gadd45a基因沉默对Tca8113细胞增殖能力的影响:将5×103个Tca8113细胞接种于96孔板,待细胞汇合度达40%时,将Gadd45a-siRNA及对照序列转染Tca8113细胞,并于转染后24h、48h及72h,用Biotek酶联免疫检测仪检测细胞在490nm的吸光度值。
     2.4.特异性靶向人Gadd45a的siRNA序列及无意义对照序列分别转染Tca8113细胞,并于转染后24小时收集细胞,利用流式细胞技术检测Gadd45a基因沉默对Tca8113细胞周期的影响。
     2.5.将转染Gadd45a-siRNA及无意义对照序列的Tca8113细胞以0.25%的胰酶消化、计数并接种于Transwell上层小室,置37℃培养箱培养16h,观察Gadd45a基因沉默对Tca8113细胞迁移能力的影响。
     3. Gadd45a基因沉默对Tca8113细胞放疗敏感性的影响
     3.1.单纯放射治疗对Tca8113细胞生物学性状的影响
     1)对数生长期的Tca8113细胞接种于6孔板,待细胞达到70%融和时,分别给予0Gy、4Gy、10Gy的射线照射,照射后将培养板放入37℃培养箱继续培养24h,通过倒置显微镜及细胞HE染色观察不同剂量射线照射对Tca8113细胞形态学的影响。
     2)对数生长期的Tca8113细胞接种于6孔板,待细胞达到70%融和时,分别给予0Gy、2Gy、4Gy、8Gy、10Gy的射线照射,照射后将培养板放入37℃培养箱继续培养24h,通过MTT实验观察不同剂量放射线对Tca8113细胞增殖的影响。
     3)对数生长期的Tca8113细胞接种于6孔板,待细胞达到70%融和时,分别给予0Gy、2Gy、4Gy、8Gy、10Gy的射线照射,照射后将培养板放入37℃培养箱继续培养24h,收集细胞,采用流式细胞技术检测放射线对Tca8113细胞凋亡的影响。
     4)对数生长期的Tca8113细胞接种于6孔板,待细胞达到70%融和时,分别给予0Gy、4Gy、10Gy的射线照射,照射后将培养板放入37℃培养箱继续培养24h,收集细胞,采用流式细胞技术分析放射线对Tca8113细胞周期的影响。
     3.2.放射治疗对Tca8113细胞Gadd45a基因表达的影响:将对数生长期的Tca8113细胞接种6孔板,待细胞达到70%融和时,分别给予OGy、4Gy、10Gy的射线照射,照射后将培养板放入37℃培养箱继续培养24h,通过免疫细胞化学、real time quantitive RT-PCR和Western Blot方法检测放射线对Tca8113细胞Gadd45a表达的影响。
     3.3.放射合并Gadd45a基因沉默对Tca8113细胞生物学性状的影响
     1)对数生长期的Tca8113细胞接种6孔板,待细胞达到40%融和时,将Gadd45a-siRNA及对照序列转染Tca8113细胞,并于转染后24h,分别给予0Gy、2Gy、4Gy、8Gy、10Gy的射线照射照射后将培养板放入37℃培养箱继续培养24h,利用MTT法观察Gadd45a-siRNA转染组与对照组经射线照射后细胞存活情况。
     2)对数生长期的Tca8113细胞接种6孔板,待细胞达到40%融和时,将Gadd45a-siRNA及对照序列转染Tca8113细胞,并于转染后24h,分别给予0Gy、4Gy、10Gy的射线照射,照射后将培养板放入37℃培养箱继续培养24h,流式细胞术分析Gadd45a-siRNA转染组与对照组经放射线照射后细胞凋亡情况。
     实验结果
     1. Gadd45a在口腔鳞状细胞癌中的表达及其临床意义口腔鳞状细胞癌及癌旁组织的免疫组化染色结果显示:口腔鳞状细胞癌及癌旁组织均高表达Gadd45a蛋白。并且,Gadd45a蛋白表达存在两种表达模式,一种是细胞浆和细胞核均着色,细胞核占优势,我们称之为细胞核模式;另一种是细胞浆着色明显,细胞核不着色或着色浅,我们称之为细胞浆模式。60例癌旁组织中,Gadd45a的表达均为细胞核表达模式。而在106例口腔鳞状细胞癌组织中,只有60例表现为细胞核模式,其余46例的阳性着色部位以细胞浆为主,细胞核着色浅或不着色,为细胞浆模式。近一步的统计分析表明,口腔鳞状细胞癌组织中Gadd45a表达模式的转换与患者的年龄、肿瘤的组织学分级、肿瘤临床分期及淋巴结转移之间存在密切的关系。年龄<60岁的肿瘤患者组织中,Gadd45a的表达以细胞浆模式为主,而年龄>60岁的肿瘤患者组织中,Gadd45a的表达以细胞核模式为主(p<0.05)。Gadd45a表达模式在不同组织学分级的口腔鳞状细胞癌之间存在显著的差异(p<0.05),高分化及中分化口腔鳞状细胞癌组织中Gadd45a的表达分布以细胞核模式为主,而在低分化口腔鳞状细胞癌组织中Gadd45a的表达分布以细胞浆模式为主。72.2%的Ⅰ、Ⅱ期肿瘤患者组织中Gadd45a的表达以细胞核模式为主,而在Ⅲ、Ⅳ期肿瘤患者中以细胞核模式表达Gadd45a的组织标本只占48.6%,二者间存在显著的差异(p<0.05)。在存在淋巴结转移的肿瘤患者组织标本中,以细胞浆模式表达Gadd45a的比例明显高于无淋巴结转移的患者(p<0.05)
     2. Gadd45a基因沉默对Tca8113细胞生物学性状的影响
     2.1. Gadd45a在Tca8113细胞中的表达:为了研究Gadd45a基因在口腔鳞状细胞癌发生、发展中的作用,我们选择高分化的舌鳞状细胞癌细胞系Tca8113作为研究对象。细胞免疫荧光染色结果显示,Gadd45a在Tca8113细胞中广泛表达,其着色部位主要在细胞核,与高分化口腔鳞状细胞癌组织标本中Gadd45a的表达模式基本一致。
     2.2. Gadd45a-siRNA干扰效率的检测:为了证明Gadd45a-siRNA的特异性及有效性,real time quantitive RT-PCR及Western Blot方法被用来检测Gadd45a-siRNA转染组和对照组Tca8113细胞中Gadd45a的表达,结果显示,靶向Gadd45a的siRNA有效抑制了Tca8113细胞中Gadd45a mRNA及蛋白水平的表达。
     2.3. Gadd45a基因沉默对Tca8113细胞增殖的影响:我们利用MTT法检测了Gadd45a-siRNA转染组与对照组Tca8113细胞的增殖能力,结果显示,转染Gadd45a-siRNA的Tca8113细胞在转染后48h及72h的增殖能力较对照组明显增强。
     2.4. Gadd45a基因沉默对Tca8113细胞周期的影响:利用siRNA技术将Tca8113细胞中的Gadd45a基因沉默以后24h,收集细胞通过流式细胞仪检测细胞周期的变化,结果显示,Gadd45a基因沉默导致Tca8113细胞G2/M期监测点异常,处于G2期的细胞比例明显减少,而S期细胞的比例显著增多(p<0.05)
     2.5. Gadd45a基因沉默对Tca8113细胞迁移能力的影响:Gadd45a-siRNA转染组及对照组Tca8113细胞接种于Transwell上层小室,37℃培养箱培养16h,计数迁移的细胞数,观察Gadd45a基因沉默对Tca8113细胞迁移能力的影响,结果显示,Gadd45a-siRNA转染组迁移的细胞数明显高于对照组(p<0.05),表明Gadd45a基因沉默增强了Tca8113细胞的迁移能力。
     3. Gadd45a基因沉默对Tca8113细胞放疗敏感性的影响
     3.1.单纯射线照射对Tca8113细胞生物学性状的影响
     1)我们通过倒置显微镜及HE染色技术观察了不同剂量射线照射对Tca8113细胞形态的影响,结果发现Tca8113细胞经10Gy射线照射后24h,细胞体积变大,细胞间隙变宽,凋亡及坏死漂浮的细胞增多,细胞密度明显低于未照射或低剂量照射组细胞。
     2) MTT实验被用来观察放射线对Tca8113细胞增殖的影响,结果显示,4-10Gy放射线有效抑制了Tca8113细胞的增殖,且呈剂量依赖性
     3) Annexin V-PI细胞凋亡双染试剂盒被用于检测放射线诱导的Tca8113细胞的凋亡,结果显示,4-10Gy射线照射明显诱导了Tca8113细胞的凋亡,且呈剂量依赖性。
     4)细胞周期PI染色显示,10Gy射线照射导致了Tca8113细胞G2/M期的阻滞,使处于G1及S期的细胞明显减少
     3.2.放射线照射诱导了Tca8113细胞Gadd45a基因的表达上调:为了研究Gadd45a在口腔鳞状细胞癌放疗中的作用,我们首先通过real time quantitive RT-PCR和Western Blot观察了Tca8113细胞在接受射线照射前后Gadd45a表达的变化情况,结果发现,Tca8113细胞在接受4Gy或10Gy射线照射后24小时,Gadd45a mRNA水平较照射前明显升高(0.000965±0.00005 vs 0.000387±0.00002;0.001644±0.000065 vs 0.000387±0.00002)。并且10Gy射线照射亦显著诱导了Tca8113细胞Gadd45a蛋白的表达上调(p=0.0028)。
     3.3. Gadd45a基因沉默合并射线照射对Tca8113细胞生物学性状的影响:为了检测Gadd45a基因沉默对Tca8113细胞放疗敏感性的影响,我们首先利用real time quantitive RT-PCR和Western Blot检测了Gadd45a-siRNA的有效性,结果显示Gadd45a-siRNA有效抑制了Tca8113细胞中Gadd45a基因及蛋白水平的表达(p<0.05)。随后我们采用MTT及流式细胞技术观察了siRNA实验组及对照组Tca8113细胞在接受不同剂量射线照射时细胞存活分数及凋亡情况的变化。MTT结果显示,Tca8113细胞在受到4Gy及以上剂量射线照射时,siRNA实验组细胞存活分数明显高于对照组(p<0.05)。流式细胞技术检测结果也显示Tca8113细胞在受到4Gy及10Gy射线照射时,Gadd45a基因沉默组细胞的凋亡受到明显抑制,细胞凋亡分数较对照组明显下降(p<0.05)
     结论
     1. Gadd45a在人口腔鳞状细胞癌中存在细胞浆-细胞核表达模式的转换,并且Gadd45a的表达模式与口腔鳞状细胞癌的组织学分级、TNM分期及淋巴结转移密切相关。
     2. Gadd45a在人舌鳞状细胞癌细胞中的表达缺失促进了癌细胞的生长和迁移,其机制可能是通过干扰细胞周期调控以及抑制细胞发生凋亡。
     3.放射诱导的人舌鳞状细胞癌细胞中Gadd45a基因表达升高促进了细胞凋亡,增强了人舌鳞状细胞癌细胞对放疗的敏感性。
     创新性和意义
     1.本研究的创新点是在国内外首次发现Gadd45a在人口腔鳞状细胞癌中的表达存在细胞浆-细胞核表达模式的转换,并且与患者的组织学分级及TNM分期有关。并通过体外实验进一步证实,Gadd45a基因表达缺失促进了舌鳞状细胞癌细胞的生长及迁移。为以Gadd45a为靶点进行基因治疗提供了理论依据。
     2.本研究首次采用RNA干扰技术揭示,放射诱导的舌鳞状细胞癌细胞中Gadd45a的表达升高增强了人舌鳞状细胞癌细胞对放疗的敏感性,为探索口腔鳞状细胞癌放疗增敏的靶基因提供了新的思路和方向。
Background and Objective
     Oral squamous cell carcinoma is the most common tumor that arises in the head and neck. To date, the major clinical therapy methods are still operation, supplemented with radiotherapy and chemotherapy. In recent decades, although the treatment technology is gradually improving, the patient's five-year survival rate is still less than 50%. With the deepening of molecular biology, cancer gene therapy research has become a new hot spot for cancer treatment. Therefore, studies of the molecular biology of the tumor are key issues to get insight into the mechanisms underlying the pathogenesis of oralsquamous cell carcinoma and, in turn, leading to more effective therapeutics finall y.
     The growth arrest-and DNA damage-indueible (gadd) 45 gene family, comprising Gadd45α/Gadd45a, Gadd45β/Gadd45b/myd118, and Gadd45γ/Gadd45g/cr6, is widely expressed in mammalian cells responding to stress stimuli.Gadd45a was the first stress-inducible gene found to be activated by the p53 tumour suppressor. Subsequently, Gadd45a was also shown to be a target of the BRCA1 (Breast Cancer Associated Protein 1). Gadd45a is a p53-regulated growth arrest and DN A-damage-inducible gene that is also regulated in a p53-independent manner. Gadd45a has been demonstrated to link to many important cellular processes such as DNA repair, chromatin accessibility, cell cycle checkpoints and genome stability. Whether Gadd45a plays a direct role in the progression and prognosis of oral squamous cell carcinoma remains unclear.
     In present study, we elucidate the significance of Gadd45a in the progression, treatment and prognosis of oral squamous cell carcinoma from three main points:
     1. The expression state and clinical significance of Gadd45a in human oral squamous cell carcinoma;
     2. To investigate the effect of Gadd45a-siRN A on cell growth and invasion of Tca8113 cells;
     3. To investigate the effect of Gadd45a-siRNA on radiosensitivity of Tca8113 cells.
     Materials and methods
     1. The expression status and clinical significance of Gadd45a in human oral squamous cell carcinoma
     1.1. The study included 106 patients with OSCC who underwent primary surgical resection at Qilu Hospital of Shandong University between 2003 and 2009. Sixty specimens of adjacent oral mucosa tissue were collected as control samples. The clini copathological information, including sex, age, tumor stage, and histological grade, was obtained from the clinical records.
     1.2. The Gadd45a protein expression in 106 cases of OSCC and 60 cases normal oral mucosa tissue were detected by immunohistochemistry.
     1.3. The relationship between the Gadd45a expression and the pathological characteristics was analyzed by SPSS statistical software. Chi-square test was used to analyse the data. Differences were considered significant at p< 0.05.
     2. The effect of Gadd45 a-siRN A on cell growth and invasion of Tca8113 cells
     2.1. The Gadd45a protein expression in Tca8113 cells was analyzed by immunofluorescence techniques.
     2.2. Examining the interference rate of siRNAs targeting Gadd45a: short interfering ribonucleic acid (siRNA) targeting Gadd45a or an irrelevant mRNA was chemically synthesized. Tca8113 cells were divided into three groups for transfection:lipofectamineTM 2000 only (mock), nonsense si-RNA and Gadd45a-siRNA. Mock and nonsense si-RNA were regarded as control groups. The constructed siRNAs were transfected into Tca8113 cells. Gadd45a expression was determined by real time quantitive RT-PCR and Western Blot techniques.
     2.3. The effect of Gadd45a gene silencing on proliferation of Tca8113 was tested by MTT after silencing gene of Gadd45a. The growth curve was draw to assess Tca8113 cell proliferation activity.
     2.4. The effect of Gadd45a gene silencing on cell cycle distribution of Tca8113 was analysed with flow cytometry at 24h after silencing Gadd45a gene.
     2.5. The migration ability of Tca8113 after silencing Gadd45a gene was tested by Transwell chamber assays.
     3. The effect of G add45a-siRN A on rad iosensitivity of Tca8113 cells
     3.1. Irradiated with 0,2Gy,4Gy,8Gy, 10Gy ionizing radiation (IR), the survival fraction of Tca8113 cells were ascertained by MTT assays. The apoptosis and cell cycle of Tca8113 cells were detected by flow cytometry.
     3.2. Tca8113 cells were cultured in six-well plates until 70% confluence and then exposed to OGy,4Gy, lOGy IR respectively. The effect of IR on Gadd45a expression in human Tca8113 cell lines was examined by real time quantitative RT-PCR and Western Blot analysis.
     3.3. Tca8113 cells transfected with the Gadd45a-siRNA and the control cells were irradiated in the dose range from 0 to 10 Gy. After 24 h exposed to IR, MTT colorimetric assay was used to analyse the viability of the cells and flow cytometry measurement was used to quantify the percentage of apoptotic cells in the total cell population.
     Results
     1. The expression status and clinical significance of Gadd45a in human oral squamous cell carcinoma
     The Immunohistochemistry results showed that Gadd45a was expressed with cytoplasm-dominant and nucleus-dominant patterns. All of 60 cases showed significant nucleus-dominant expression pattern in adjacent tissue. But in oral squamous cell carcinoma,60 out of 106 cases showed Gadd45a expression with nucleus-dominant patterns. The expression patterns of Gadd45a showed a significant difference in age, clinical stage, histological grade and lymph node metastasis (p<0.05).
     2. The effect of Gadd45a-siRNA on cell growth and invasion of Tca8113 cells
     2.1. Tca8113 cells are well-differentiated tongue squamous cell cancer cell lines and the expression of Gadd45a protein was found to mainly locate in nucleus of Tca8113 cells.
     2.2. Real time quantitive RT-PCR and Western Blot showed that Gadd45a expression was blocked efficiently by using siRNAs in Tca8113 cells.
     2.3. MTT assay showed that the proliferation of Tca8113 cells two days later after RNAi was significantly higher than that of the control (p<0.05).
     2.4. Flow cytometry detection confirmed that the percentage of G2/M phase cell in Gadd45a-siRNA group significantly decreased compared with the control groups (p<0.05).
     2.5. The migrating ability of Tca8113 cells in the group transfected with Gadd45a-siRNA increased dramatically in comparison to the other two groups(p<0.05).
     3. The effect of Gadd45a-siRNA on radiosensitivity of Tca8113 cells
     3.1. The effect of IR on biological behavior of Tca8113 cells. We observed the effect of IR on the morphology of Tca8113 cell by HE staining and inverted microscope. We found that Tca8113 cells irradiated with high doses of IR became larger and the space between cells became wider.
     3.2. Basal and IR-induced Gadd45a expression in Tca8113 cells. We initially examined the effect of IR on Gadd45a expression in human Tca8113 cell line by real-time quantitative RT-PCR and Western Blot analysis. Gadd45a induction was assessed by comparing the basal level to that present 24 h following treatment with 4Gy or 10Gy IR. We showed IR obviously induced Gadd45a mRNA expression compared with the basal level (0.000965±0.00005 vs 0.000387±0.00002 and 0.001644±0.000065 vs 0.000387±0.00002) in the dose range examined. Consistently, Gadd45a protein level detected by Western Blot was also induced by lOGy IR (P=0.0028) although Gadd45a protein level observed in Tca8113 cells treated with 4Gy IR had no statistical significance in comparison with the basal level (P=0.0566).
     3.3. The effect of Gadd45a gene silencing combining IR on the biological behavior of Tca8113 cells. To research the the influence of Gadd45a gene silencing on the radiotherapy sensitivity of Tca8113 cells, we firstly detected the effectiveness of Gadd45a-siRNA using real-time quantitative RT-PCR and Western Blot analysis. The results showed that Gadd45a siRNA could effectively inhibit the expression of Gadd45a at the mRNA and protein level in Tca8113 cells (p<0.05). Then using MTT and Flow Cytometry, we inspected the surviving fraction and apoptosis status of Tca8113 cells when receiving different dose of IR. The result showed that the surviving fraction of Gadd45a-siRNA group was obviously higher than the control group (p<0.05) when the Tca8113 cells receiving 4Gy or more dose of irradiation. The result indicated that Gadd45a-siRNA impeded the down of surviving fraction of Tca8113 cells induced by IR. The Flow Cytometry result showed that when receiving 4Gy and10Gy IR, the Gadd45a-siRNA group's apoptosis was inhibited and the apoptotic fraction was obviously descended (p< 0.05).
     Conclusion
     1. Gadd45a was expressed with cytoplasm-dominant and nucleus-dominant patterns in human oral squamous carcinoma, and the expression patterns of Gadd45a showed a significant difference in age, clinical stage, histological grade and lymph node metastasis.
     2. Gadd45a gene silencing could distinctly enhance the proliferation and migrating ability of Tca8113 cells. The mechanism might be the interference of cell cycle and inhibition of apoptosis.
     3. Gadd45a overexpression induced by IR could enhance the radiotherapy efficacy of human oral squamous cell carcinoma.
     Originality
     1. We demonstrate, for the first time, that Gadd45a was expressed with cytoplasm-dominant and nucleus-dominant patterns in human oral squamous carcinoma, and the expression patterns of Gadd45a showed significant difference in age, clinical stage, histological grade and lymph node metastasis. And we found that Gadd45a gene silencing could distinctly enhance the proliferation and migrating ability of Tca8113 cells.
     2. We demonstrate, for the first time, that Gadd45a overexpression induced by IR could enhance the radiotherapy efficacy of human oral squamous cell carcinoma.
引文
1. Parkin, D.M., P. Pisani, J. Ferlay. Global cancer statistics. CA Cancer J Clin,1999.49(1):p.33-64,1.
    2. Vokes, E.E., R.R. Weichselbaum, S.M. Lippman, W.K. Hong. Head and neck cancer. N Engl J Med,1993.328(3):p.184-94.
    3. Poulsen, T.T., N. Pedersen, H.S. Poulsen. Replacement and suicide gene therapy for targeted treatment of lung cancer. Clin Lung Cancer,2005.6(4):p.227-36.
    4. Lal, A.M. Gorospe. Egad, more forms of gene regulation:the gadd45a story. Cell Cycle,2006.5(13):p.1422-5.
    5. Fornace, A.J., Jr., I. Alamo, Jr., M.C. Hollander. DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci U S A,1988.85(23):p.8800-4.
    6. Papathanasiou, M.A., N.C. Kerr, J.H. Robbins, O.W. McBride, I. Alamo, Jr., S.F. Barrett, I.D. Hickson, A.J. Fornace, Jr. Induction by ionizing radiation of the Gadd45 gene in cultured human cells: lack of mediation by protein kinase C. Mol Cell Biol,1991.11(2): p.1009-16.
    7. Hollander, M.C, I. Alamo, J. Jackman, M.G. Wang, O.W. McBride, A.J. Fornace, Jr. Analysis of the mammalian gadd45 gene and its response to DNA damage. J Biol Chem,1993. 268(32):p.24385-93.
    8. Shain, S.A. Exogenous fibroblast growth factors maintain viability, promote proliferation, and suppress GADD45alpha and GAS6 transcript content of prostate cancer cells genetically modified to lack endogenous FGF-2. Mol Cancer Res,2004.2(11): p.653-61.
    9. Corn, P.G.W.S. El-Deiry. Microarray analysis of p53-dependent gene expression in response to hypoxia and DNA damage. Cancer Biol Ther,2007.6(12):p.1858-66.
    10. Rosemary Siafakas, A.D.R. Richardson. Growth arrest and DNA damage-45 alpha (GADD45alpha). Int J Biochem Cell Biol,2009. 41(5):p.986-9.
    11. Cabello, C.M., W.B. Bair,3rd, S. Ley, S.D. Lamore, S. Azimian, G.T. Wondrak. The experimental chemotherapeutic N6-furfuryladenosine (kinetin-riboside) induces rapid ATP depletion, genotoxic stress, and CDKN1A(p21) upregulation in human cancer cell lines. Biochem Pharmacol,2009.77(7):p. 1125-38.
    12. Perugini, M., C.H. Kok, A.L. Brown, C.R. Wilkinson, D.G. Salerno, S.M. Young, S.M. Diakiw, I.D. Lewis, T.J. Gonda, R.J. D'Andrea. Repression of Gadd45alpha by activated FLT3 and GM-CSF receptor mutants contributes to growth, survival and blocked differentiation. Leukemia,2009.23(4):p.729-38.
    13. Dong, M., Q. Dong, H. Zhang, J. Zhou, Y. Tian, Y. Dong. Expression of Gadd45a and p53 proteins in human pancreatic cancer:potential effects on clinical outcomes. J Surg Oncol,2007. 95(4):p.332-6.
    14. Tront, J.S., Y. Huang, A.A. Fornace, Jr., B. Hoffman, D.A. Liebermann. Gadd45a functions as a promoter or suppressor of breast cancer dependent on the oncogenic stress. Cancer Res. 70(23):p.9671-81.
    15. Na, Y.K., S.M. Lee, H.S. Hong, J.B. Kim, J.Y. Park, D.S. Kim. Hypermethylation of growth arrest DNA-damage-inducible gene 45 in non-small cell lung cancer and its relationship with clinicopathologic features. Mol Cells,2010.30(1):p.89-92.
    16. Ramachandran, K., G. Gopisetty, E. Gordian, L. Navarro, C. Hader, I.M. Reis, W.A. Schulz, R. Singal. Methylation-mediated repression of GADD45alpha in prostate cancer and its role as a potential therapeutic target. Cancer Res,2009.69(4):p.1527-35.
    17. Dronamraju, S.S., J.M. Coxhead, S.B. Kelly, J. Burn, J.C. Mathers. Cell kinetics and gene expression changes in colorectal cancer patients given resistant starch:a randomised controlled trial. Gut, 2009.58(3):p.413-20.
    18. Li, Y., H. Qian, X. Li, H. Wang, J. Yu, Y. Liu, X. Zhang, X. Liang, M. Fu, Q. Zhan, C. Lin. Adenoviral-mediated gene transfer of Gadd45a results in suppression by inducing apoptosis and cell cycle arrest in pancreatic cancer cell. J Gene Med,2009.11(1):p. 3-13.
    19. Santucci, M.A., E. Barbieri, G. Frezza, A. Perrone, E. Iacurti, A. Galuppi, F. Salvi, F. Bunkeila, S. Neri, C. Putti, L. Babini. Radiation-induced gadd45 expression correlates with clinical response to radiotherapy of cervical carcinoma. Int J Radiat Oncol Biol Phys,2000.46(2):p.411-6.
    20. Zhang, W., B. Hoffman, D.A. Liebermann. Ectopic expression of MyD118/Gadd45/CR6 (Gadd45beta/alpha/gamma) sensitizes neoplastic cells to genotoxic stress-induced apoptosis. Int J Oncol,2001.18(4):p.749-57.
    21. Lu, X., C. Yang, R. Hill, C. Yin, M.C. Hollander, A.J. Fornace, Jr. T. Van Dyke. Inactivation of gadd45a sensitizes epithelial cancer cells to ionizing radiation in vivo resulting in prolonged survival. Cancer Res,2008.68(10):p.3579-83.
    22. Parkin, D.M., P. Pisani, J. Ferlay. Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer,1993. 54(4):p.594-606.
    23. Fornace, A.J., Jr., J. Jackman, M.C. Hollander, B. Hoffman-Liebermann, D.A. Liebermann. Genotoxic-stress-response genes and growth-arrest genes.gadd, MyD, and other genes induced by treatments eliciting growth arrest. Ann N Y Acad Sci,1992.663:p.139-53.
    24. Zhan, Q., I.T. Chen, M.J. Antinore, A.J. Fornace, Jr. Tumor suppressor p53 can participate in transcriptional induction of the GADD45 promoter in the absence of direct DNA binding. Mol Cell Biol,1998.18(5):p.2768-78.
    25. Fan, W., S. Jin, T. Tong, H. Zhao, F. Fan, M.J. Antinore, B. Rajasekaran, M. Wu, Q. Zhan. BRCA1 regulates GADD45 through its interactions with the OCT-1 and CAAT motifs. J Biol Chem, 2002.277(10):p.8061-7.
    26. Wang, W., G. Huper, Y. Guo, S.K. Murphy, J.A. Olson, Jr., J.R. Marks. Analysis of methylation-sensitive transcriptome identifies GADD45a as a frequently methylated gene in breast cancer. Oncogene,2005.24(16):p.2705-14.
    27. Desjardins, S., G. Ouellette, Y. Labrie, J. Simard, F. Durocher. Analysis of GADD45A sequence variations in French Canadian families with high risk of breast cancer. J Hum Genet,2008. 53(6):p.490-8.
    28. Yamasawa, K., Y. Nio, M. Dong, K. Yamaguchi, M. Itakura. Clinicopathological significance of abnormalities in Gadd45 expression and its relationship to p53 in human pancreatic cancer. Clin Cancer Res,2002.8(8):p.2563-9.
    29. Thyss, R., V. Virolle, V. Imbert, J.F. Peyron, D. Aberdam, T. Virolle. NF-kappaB/Egr-1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death. EMBO J, 2005.24(1):p.128-37.
    30. Takekawa, M.H. Saito. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell,1998.95(4):p.521-30.
    31. Song, Y.M., T. Tong, M. Fu, L.J. Dong, S.Q. Jin, M. Wu, Q.M. Zhan. [Gadd45 mediated G2/M cell cycle arrest induced by BRCA1]. Ai Zheng,2004.23(5):p.517-21.
    32. Harkin, D.P., J.M. Bean, D. Miklos, Y.H. Song, V.B. Truong, C. Englert, F.C. Christians, L.W. Ellisen, S. Maheswaran, J.D. Oliner, D.A. Haber. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell,1999. 97(5):p.575-86.
    33. Singh, S., A.K. Upadhyay, A.K. Ajay, M.K. Bhat. Gadd45alpha does not modulate the carboplatin or 5-fluorouracil-induced apoptosis in human papillomavirus-positive cells. J Cell Biochem, 2007.100(5):p.1191-9.
    34. Bond, G.L., W. Hu, A.J. Levine. MDM2 is a central node in the p53 pathway:12 years and counting. Curr Cancer Drug Targets, 2005.5(1):p.3-8.
    35. Daino, K., S. Ichimura, M. Nenoi. Both the basal transcriptional activity of the GADD45A gene and its enhancement after ionizing irradiation are mediated by AP-1 element. Biochim Biophys Acta, 2006.1759(10):p.458-69.
    36. Zhao, H., S. Jin, F. Fan, W. Fan, T. Tong, Q. Zhan. Activation of the transcription factor Oct-1 in response to DNA damage. Cancer Res,2000.60(22):p.6276-80.
    37. Jin, S., F. Fan, W. Fan, H. Zhao, T. Tong, P. Blanck, I. Alomo, B. Rajasekaran, Q. Zhan. Transcription factors Oct-1 and NF-YA regulate the p53-independent induction of the GADD45 following DNA damage. Oncogene,2001.20(21):p.2683-90.
    38. Lal, A., K. Abdelmohsen, R. Pullmann, T. Kawai, S. Galban, X. Yang, G. Brewer, M. Gorospe. Posttranscriptional derepression of GADD45alpha by genotoxic stress. Mol Cell,2006.22(1):p. 117-28.
    39. Smith, M.L., J.M. Ford, M.C. Hollander, R.A. Bortnick, S.A. Amundson, Y.R. Seo, C.X. Deng, P.C. Hanawalt, A.J. Fornace, Jr. p53-mediated DNA repair responses to UV radiation:studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol, 2000.20(10):p.3705-14.
    40. Maeda, T., A.N. Hanna, A.B. Sim, P.P. Chua, M.T. Chong, V.A. Tron. GADD45 regulates G2/M arrest, DNA repair, and cell death in keratinocytes following ultraviolet exposure. J Invest Dermatol,2002.119(1):p.22-6.
    41. Hollander, M.C., O. Kovalsky, J.M. Salvador, K.E. Kim, A.D. Patterson, D.C. Haines, A.J. Fornace, Jr. Dimethylbenzanthracene carcinogenesis in Gadd45a-null mice is associated with decreased DNA repair and increased mutation frequency. Cancer Res,2001. 61(6):p.2487-91.
    42. Smith, M.L., I.T. Chen, Q. Zhan, I. Bae, C.Y. Chen, T.M. Gilmer, M.B. Kastan, P.M. O'Connor, A.J. Fornace, Jr. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science,1994.266(5189):p.1376-80.
    43. Kastan, M.B., Q. Zhan, W.S. el-Deiry, F. Carrier, T. Jacks, W.V. Walsh, B.S. Plunkett, B. Vogelstein, A.J. Fornace, Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell,1992.71(4):p. 587-97.
    44. Maeda, T., R.A. Espino, E.G. Chomey, L. Luong, A. Bano, D. Meakins, V.A. Tron. Loss of p21 WAF1/Cip1 in Gadd45-deficient keratinocytes restores DNA repair capacity. Carcinogenesis, 2005.26(10):p.1804-10.
    45. Hollander, M.C.A.J. Fornace, Jr. Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Oncogene, 2002.21(40):p.6228-33.
    46. Hollander, M.C., R.T. Philburn, A.D. Patterson, M.A. Wyatt, A.J. Fornace, Jr. Genomic instability in Gadd45a-/- cells is coupled with S-phase checkpoint defects. Cell Cycle,2005.4(5):p.704-9.
    47. Fry, A.M. The Nek2 protein kinase:a novel regulator of centrosome structure.Oncogene,2002.21(40):p.6184-94.
    48. Shao, S., Y. Wang, S. Jin, Y. Song, X. Wang, W. Fan, Z. Zhao, M. Fu, T. Tong, L. Dong, F. Fan, N. Xu, Q. Zhan. Gadd45a interacts with aurora-A and inhibits its kinase activity. J Biol Chem,2006. 281(39):p.28943-50.
    49. Hildesheim, J., G.I. Belova, S.D. Tyner, X. Zhou, L. Vardanian, A.J. Fornace, Jr. Gadd45a regulates matrix metalloproteinases by suppressing DeltaNp63alpha and beta-catenin via p38 MAP kinase and APC complex activation. Oncogene,2004.23(10):p.1829-37.
    50. Ji, J., R. Liu, T. Tong, Y. Song, S. Jin, M. Wu, Q. Zhan. Gadd45a regulates beta-catenin distribution and maintains cell-cell adhesion/contact. Oncogene,2007.26(44):p.6396-405.
    51. Sytnikova, Y.A., A.V. Kubarenko, A. Schafer, A.N. Weber, C. Niehrs. Gadd45a is an RNA binding protein and is localized in nuclear speckles. PLoS One.6(1):p. e14500.
    52. Hall, P.A., J.M. Kearsey, P.J. Coates, D.G. Norman, E. Warbrick, L.S. Cox. Characterisation of the interaction between PCNA and Gadd45. Oncogene,1995.10(12):p.2427-33.
    53. Kearsey, J.M., P.J. Coates, A.R. Prescott, E. Warbrick, P.A. Hall. Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene,1995.11(9):p.1675-83.
    54. Gao, H., S. Jin, Y. Song, M. Fu, M. Wang, Z. Liu, M. Wu, Q. Zhan. B23 regulates GADD45a nuclear translocation and contributes to GADD45a-induced cell cycle G2-M arrest. J Biol Chem,2005. 280(12):p.10988-96.
    55. Reddy, S.P., R. Britto, K. Vinnakota, H. Aparna, H.K. Sreepathi, B. Thota, A. Kumari, B.M. Shilpa, M. Vrinda, S. Umesh, C. Samuel, M. Shetty, A. Tandon, P. Pandey, S. Hegde, A.S. Hegde, A. Balasubramaniam, B.A. Chandramouli, V. Santosh, P. Kondaiah, K. Somasundaram, M.R. Rao. Novel glioblastoma markers with diagnostic and prognostic value identified through transcriptome analysis. Clin Cancer Res,2008.14(10):p. 2978-87.
    56. Soudry, E., M. Preis, R. Hod, Y. Hamzany, T. Hadar, G. Bahar, Y. Strenov, T. Shpitzer. Squamous cell carcinoma of the oral tongue in patients younger than 30 years:clinicopathologic features and outcome. Clin Otolaryngol,2010.35(4):p.307-12.
    57. Wang, X.W., Q. Zhan, J.D. Coursen, M.A. Khan, H.U. Kontny, L. Yu, M.C. Hollander, P.M. O'Connor, A.J. Fornace, Jr., C.C. Harris. GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci U S A,1999.96(7):p.3706-11.
    58. Hildesheim, J., D.V. Bulavin, M.R. Anver, W.G. Alvord, M.C. Hollander, L. Vardanian, A.J. Fornace, Jr. Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res, 2002.62(24):p.7305-15.
    59. Wilda, M., U. Fuchs, W. Wossmann, A. Borkhardt. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene,2002.21(37):p.5716-24.
    60. Elbashir, S.M., J. Harborth, K. Weber, T. Tuschl. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods,2002.26(2):p.199-213.
    61. Fire, A., S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver, C.C. Mello. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998. 391(6669):p.806-11.
    62. Lipardi, C., Q. Wei, B.M. Paterson. RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell,2001.107(3):p.297-307.
    63. Nagy, P., D.J. Arndt-Jovin, T.M. Jovin. Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbBl-overexpressing cells. Exp Cell Res,2003.285(1):p.39-49.
    64. Elbashir, S.M., J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, T. Tuschl. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature,2001.411(6836):p.494-8.
    65. Caplen, N.J., S. Parrish, F. Imani, A. Fire, R.A. Morgan. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A, 2001.98(17):p.9742-7.
    66. Liang, Z., Y. Yoon, J. Votaw, M.M. Goodman, L. Williams, H. Shim. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res,2005.65(3):p.967-71.
    67. Zhen, H.N., L.W. Li, W. Zhang, Z. Fei, C.H. Shi, T.T. Yang, W.T. Bai, X. Zhang. Short hairpin RNA targeting survivin inhibits growth and angiogenesis of glioma U251 cells. Int J Oncol,2007. 31(5):p.1111-7.
    68. Scherr, M., K. Battmer, T. Winkler, O. Heidenreich, A. Ganser, M. Eder. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood,2003.101(4):p.1566-9.
    69. Hollander, M.C., M.S. Sheikh, D.V. Bulavin, K. Lundgren, L Augeri-Henmueller, R. Shehee, T.A. Molinaro, K.E. Kim, E. Tolosa, J.D. Ashwell, M.P. Rosenberg, Q. Zhan, P.M. Fernandez-Salguero, W.F. Morgan, C.X. Deng, A.J. Fornace, Jr. Genomic instability in Gadd45a-deficient mice. Nat Genet,1999. 23(2):p.176-84.
    70. Zhan, Q., K.A. Lord, I. Alamo, Jr., M.C. Hollander, F. Carrier, D. Ron, K.W. Kohn, B. Hoffman, D.A. Liebermann, A.J. Fornace, Jr. The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol,1994.14(4):p.2361-71.
    71. Peschos, D., E. Tsanou, D. Stefanou, C. Damala, T. Vougiouklakis, A. Mitselou, N.J. Agnantis. Expression of cyclin-dependent kinases inhibitors p21 (WAF1) and p27(KIP 1) in benign, premalignant and malignant laryngeal lesions, correlation with cell cycle regulatory proteins. In Vivo,2004.18(6):p.719-24.
    72. Coats, S., W.M. Flanagan, J. Nourse, J.M. Roberts. Requirement of p27Kipl for restriction point control of the fibroblast cell cycle. Science,1996.272(5263):p.877-80.
    73.金成一,李学峰,郭春沅.细胞周期调控的分子机制.延边大学农学学报,2000.22(2):p.147-150.
    74. Zhan, Q., M.J. Antinore, X.W. Wang, F. Carrier, M.L. Smith, C.C Harris, A.J. Fornace, Jr. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene,1999.18(18):p.2892-900.
    75. Jin, S., T. Tong, W. Fan, F. Fan, M.J. Antinore, X. Zhu, L Mazzacurati, X. Li, K.L. Petrik, B. Rajasekaran, M. Wu, Q. Zhan. GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene,2002.21(57):p.8696-704.
    76. Jin, S., M.J. Antinore, F.D. Lung, X. Dong, H. Zhao, F. Fan, A.B. Colchagie, P. Blanck, P.P. Roller, A.J. Fornace, Jr., Q. Zhan. The GADD45 inhibition of Cdc2 kinase correlates with GADD45-mediated growth suppression. J Biol Chem,2000. 275(22):p.16602-8.
    77. Jin, S., L. Mazzacurati, X. Zhu, T. Tong, Y. Song, S. Shujuan, K.L Petrik, B. Rajasekaran, M. Wu, Q. Zhan. Gadd45a contributes to p53 stabilization in response to DNA damage. Oncogene,2003. 22(52):p.8536-40.
    78. Chiou, S.K., A. Hodges, N. Hoa. Suppression of growth arrest and DNA damage-inducible 45alpha expression confers resistance to sulindac and indomethacin-induced gastric mucosal injury. J Pharmacol Exp Ther,2010.334(3):p.693-702.
    79. Butterfield, L., B. Storey, L. Maas, L.E. Heasley. c-Jun NH2-terminal kinase regulation of the apoptotic response of small cell lung cancer cells to ultraviolet radiation. J Biol Chem,1997. 272(15):p.10110-6.
    80. Chen, Y.R., C.F. Meyer, T.H. Tan. Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation-induced apoptosis. J Biol Chem,1996.271(2):p.631-4.
    81. Chen, Y.R., X. Wang, D. Templeton, R.J. Davis, T.H. Tan. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem,1996. 271(50):p.31929-36.
    82. Moore, R.C.R.J. Cyr. Association between elongation factor-1 alpha and microtubules in vivo is domain dependent and conditional. Cell Motil Cytoskeleton,2000.45(4):p.279-92.
    83. Tong, T., J. Ji, S. Jin, X. Li, W. Fan, Y. Song, M. Wang, Z. Liu, M. Wu, Q. Zhan. Gadd45a expression induces Bim dissociation from the cytoskeleton and translocation to mitochondria. Mol Cell Biol, 2005.25(11):p.4488-500.
    84. Puthalakath, H., D.C. Huang, L.A. O'Reilly, S.M. King, A. Strasser. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell,1999.3(3):p.287-96.
    85. Kang, M.H.C.P. Reynolds. Bcl-2 inhibitors:targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res,2009.15(4):p.1126-32.
    86. Peifer, M.P. Polakis. Wnt signaling in oncogenesis and embryogenesis--a look outside the nucleus. Science,2000. 287(5458):p.1606-9.
    87. Ozawa, M., H. Baribault, R. Kemler. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. Embo J,1989.8(6):p.1711-7.
    88. Hirano, S., N. Kimoto, Y. Shimoyama, S. Hirohashi, M. Takeichi. Identification of a neural alpha-catenin as a key regulator of cadherin function and multicellular organization. Cell,1992. 70(2):p.293-301.
    89. Gumbiner, B.M. Regulation of cadherin adhesive activity. J Cell Biol,2000.148(3):p.399-404.
    90. Dietrich, C., J. Scherwat, D. Faust, F. Oesch. Subcellular localization of beta-catenin is regulated by cell density. Biochem Biophys Res Commun,2002.292(1):p.195-9.
    91. Kato, Y., T. Hirano, K. Yoshida, K. Yashima, S. Akimoto, K. Tsuji, T. Ohira, M. Tsuboi, N. Ikeda, Y. Ebihara, H. Kato. Frequent loss of E-cadherin and/or catenins in intrabronchial lesions during carcinogenesis of the bronchial epithelium. Lung Cancer,2005.48(3):p.323-30.
    92. Kudo, Y., S. Kitajima, I. Ogawa, M. Hiraoka, S. Sargolzaei, M.R. Keikhaee, S. Sato, M. Miyauchi, T. Takata. Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous beta-catenin. Clin Cancer Res, 2004.10(16):p.5455-63.
    93. van Es, J.H., N. Barker, H. Clevers. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev, 2003.13(1):p.28-33.
    94. Henderson, B.R.F. Fagotto. The ins and outs of APC and beta-catenin nuclear transport. EMBO Rep,2002.3(9):p.834-9.
    95. Giles, R.H., J.H. van Es, H. Clevers. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta,2003.1653(1):p. 1-24.
    96. Hildesheim, J., J.M. Salvador, M.C. Hollander, A.J. Fornace, Jr. Casein kinase 2-and protein kinase A-regulated adenomatous polyposis coli and beta-catenin cellular localization is dependent on p38 MAPK. J Biol Chem,2005.280(17):p.17221-6.
    97. Rodrigues, V.C., S.M. Moss, H. Tuomainen. Oral cancer in the UK:to screen or not to screen. Oral Oncol,1998.34(6):p. 454-65.
    98. Greenlee, R.T., M.B. Hill-Harmon, T. Murray, M. Thun. Cancer statistics,2001. CA Cancer J Clin,2001.51(1):p.15-36.
    99. Peters, L.J., H.R. Withers, H.D. Thames, Jr., G.H. Fletcher. Tumor radioresistance in clinical radiotherapy. Int J Radiat Oncol Biol Phys,1982.8(1):p.101-8.
    100. Deacon, J., M.J. Peckham, G.G. Steel. The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother Oncol,1984.2(4):p.317-23.
    101. Daino, K., S. Ichimura, M. Nenoi. Early induction of CDKN1A (p21) and GADD45 mRNA by a low dose of ionizing radiation is due to their dose-dependent post-transcriptional regulation. Radiat Res,2002.157(4):p.478-82.
    102.Mendenhall, W.M., C.G. Morris, R.J. Amdur, R.W. Hinerman, A.A. Mancuso. Parameters that predict local control after definitive radiotherapy for squamous cell carcinoma of the head and neck. Head Neck,2003.25(7):p.535-42.
    103. Griffin, R.J., C.M. Makepeace, W.J. Hur, C.W. Song. Radiosensitization of hypoxic tumor cells in vitro by nitric oxide. Int J Radiat Oncol Biol Phys,1996.36(2):p.377-83.
    104. Ward, J.F. DNA damage produced by ionizing radiation in mammalian cells:identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol,1988.35:p. 95-125.
    105. Hutchinson, F. Chemical changes induced in DNA by ionizing radiation. Prog Nucleic Acid Res Mol Biol,1985.32:p.115-54.
    106. Smith, G.C.S.P. Jackson. The DNA-dependent protein kinase. Genes Dev,1999.13(8):p.916-34.
    107. Rich, T., R.L. Allen, A.H. Wyllie. Defying death after DNA damage. Nature,2000.407(6805):p.777-83.
    108. Shinomiya, N. New concepts in radiation-induced apoptosis: 'premitotic apoptosis' and 'postmitotic apoptosis'. J Cell Mol Med, 2001.5(3):p.240-53.
    109. Coates, P.J., J.I. Robinson, S.A. Lorimore, E.G. Wright. Ongoing activation of p53 pathway responses is a long-term consequence of radiation exposure in vivo and associates with altered macrophage activities. J Pathol,2008.214(5):p.610-6.
    110. Fei, P.W.S. El-Deiry. P53 and radiation responses. Oncogene, 2003.22(37):p.5774-83.
    111. Mcllwrath, A.J., P.A. Vasey, G.M. Ross, R. Brown. Cell cycle arrests and radiosensitivity of human tumor cell lines:dependence on wild-type p53 for radiosensitivity. Cancer Res,1994.54(14):p. 3718-22.
    112. Yount, G.L., D.A. Haas-Kogan, C.A. Vidair, M. Haas, W.C. Dewey, M.A. Israel. Cell cycle synchrony unmasks the influence of p53 function on radiosensitivity of human glioblastoma cells. Cancer Res,1996.56(3):p.500-6.
    113. Bristow, R.G., A. Jang, J. Peacock, S. Chung, S. Benchimol, R.P. Hill. Mutant p53 increases radioresistance in rat embryo fibroblasts simultaneously transfected with HPV16-E7 and/or activated H-ras. Oncogene,1994.9(6):p.1527-36.
    114. Komarova, E.A., M.V. Chernov, R. Franks, K. Wang, G. Armin, C.R. Zelnick, D.M. Chin, S.S. Bacus, G.R. Stark, A.V. Gudkov. Transgenic mice with p53-responsive lacZ:p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. Embo J,1997.16(6):p.1391-400.
    115. Merritt, A.J., C.S. Potten, C.J. Kemp, J.A. Hickman, A. Balmain, D.P. Lane, P.A. Hall. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res,1994.54(3):p.614-7.
    116. Lowe, S.W., E.M. Schmitt, S.W. Smith, B.A. Osborne, T. Jacks. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature,1993.362(6423):p.847-9.
    117. Brown, K.D., T.A. Lataxes, S. Shangary, J.L. Mannino, J.F. Giardina, J. Chen, R. Baskaran. Ionizing radiation exposure results in up-regulation of Ku70 via a p53/ataxia-telangiectasia-mutated protein-dependent mechanism. J Biol Chem,2000.275(9):p.6651-6.
    118. Herzog, K.H., M.J. Chong, M. Kapsetaki, J.I. Morgan, P.J. McKinnon. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science,1998. 280(5366):p.1089-91.
    119. Fei, P., E.J. Bernhard, W.S. El-Deiry. Tissue-specific induction of p53 targets in vivo. Cancer Res,2002.62(24):p.7316-27.
    120. Lakhani, S.A., A. Masud, K. Kuida, G.A. Porter, Jr., C.J. Booth, W.Z. Mehal, I. Inayat, R.A. Flavell. Caspases 3 and 7:key mediators of mitochondrial events of apoptosis. Science,2006. 311(5762):p.847-51.
    121. Desai, A.A., E.T. Latta, A. Spaulding, J.D. Rich, T.P. Flanigan. The importance of routine HIV testing in the incarcerated population:the Rhode Island experience. AIDS Educ Prev,2002. 14(5 Suppl B):p.45-52.
    122. Reis, T.B.A. Edgar. Negative regulation of dE2F1 by cyclin-dependent kinases controls cell cycle timing. Cell,2004. 117(2):p.253-64.
    123. Samuel, T., H.O. Weber, J.O. Funk. Linking DNA damage to cell cycle checkpoints. Cell Cycle,2002.1(3):p.162-8.
    124. Banin, S., L. Moyal, S. Shieh, Y. Taya, C.W. Anderson, L. Chessa, N.I. Smorodinsky, C. Prives, Y. Reiss, Y. Shiloh, Y. Ziv. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science,1998.281(5383):p.1674-7.
    125. Bakkenist, C.J.M.B. Kastan. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature,2003.421(6922):p.499-506.
    126. Canman, C.E., D.S. Lim, K.A. Cimprich, Y. Taya, K. Tamai, K. Sakaguchi, E. Appella, M.B. Kastan, J.D. Siliciano. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science,1998.281(5383):p.1677-9.
    127. Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell,1997.88(3):p.323-31.
    128. Matsuoka, S., M. Huang, S.J. Elledge. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science,1998. 282(5395):p.1893-7.
    129. Herzinger, T., J.O. Funk, K. Hillmer, D. Eick, D.A. Wolf, P. Kind. Ultraviolet B irradiation-induced G2 cell cycle arrest in human keratinocytes by inhibitory phosphorylation of the cdc2 cell cycle kinase. Oncogene,1995.11(10):p.2151-6.
    130. Cortez, D., Y. Wang, J. Qin, S.J. Elledge. Requirement of ATM-dependent phosphorylation of brcal in the DNA damage response to double-strand breaks. Science,1999.286(5442):p. 1162-6.
    131. Ouchi, T., A.N. Monteiro, A. August, S.A. Aaronson, H. Hanafusa. BRCA1 regulates p53-dependent gene expression. Proc Natl Acad Sci U S A,1998.95(5):p.2302-6.
    132. Hermeking, H., C. Lengauer, K. Polyak, T.C. He, L. Zhang, S. Thiagalingam, K.W. Kinzler, B. Vogelstein.14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell,1997. 1(1):p.3-11.
    133. Fasullo, M., T. Bennett, P. AhChing, J. Koudelik. The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocations. Mol Cell Biol,1998.18(3):p.1190-200.
    134. Hartwell, L.H.M.B. Kastan. Cell cycle control and cancer. Science,1994.266(5192):p.1821-8.
    135. Kaufmann, W.K.R.S. Paules. DNA damage and cell cycle checkpoints. Faseb J,1996.10(2):p.238-47.
    136. Xu, B., S.T. Kim, D.S. Lim, M.B. Kastan. Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol,2002.22(4):p.1049-59.
    137. Sinclair, W.K.R.A. Morton. Variations in X-Ray Response During the Division Cycle of Partially Synchronized Chinese Hamster Cells in Culture. Nature,1963.199:p.1158-60.
    138. Sinclair, W.K.R.A. Morton. X-Ray and Ultraviolet Sensitivity of Synchronized Chinese Hamster Cells at Various Stages of the Cell Cycle. Biophys J,1965.5:p.1-25.
    139. Terasima, T.L.J. Tolmach. Variations in several responses of HeLa cells to x-irradiation during the division cycle. Biophys J, 1963.3:p.11-33.
    140.Durante, M., G. Gialanella, G.F. Grossi, M. Nappo, M. Pugliese, D. Bettega, P. Calzolari, G.N. Chiorda, A. Ottolenghi, L Tallone-Lombardi. Radiation-induced chromosomal aberrations in mouse 10T1/2 cells:dependence on the cell-cycle stage at the time of irradiation. Int J Radiat Biol,1994.65(4):p.437-47.
    141. Humar, B., H. Muller, R.J. Scott. Cell cycle dependent DNA break increase in ataxia telangiectasia lymphoblasts after radiation exposure. Mol Pathol,2001.54(5):p.347-50.
    142. Iliakis, G.E.R. Okayasu. Radiosensitivity throughout the cell cycle and repair of potentially lethal damage and DNA double-strand breaks in an X-ray-sensitive CHO mutant. Int J Radiat Biol,1990. 57(6):p.1195-211.
    143.Ishigami, T., K. Uzawa, M. Higo, H. Nomura, K. Saito, Y. Kato, D. Nakashima, M. Shiiba, H. Bukawa, H. Yokoe, T. Kawata, H. Ito, H. Tanzawa. Genes and molecular pathways related to radioresistance of oral squamous cell carcinoma cells. Int J Cancer,2007.120(10):p.2262-70.
    144. Nakajima, T., M. Yageta, K. Shiotsu, K. Morita, M. Suzuki, Y. Tomooka, K. Oda. Suppression of adenovirus E1A-induced apoptosis by mutated p53 is overcome by coexpression with Id proteins. Proc Natl Acad Sci U S A,1998.95(18):p.10590-5.
    145. Ishigami, T., K. Uzawa, K. Fushimi, K. Saito, Y. Kato, D. Nakashima, M. Higo, Y. Kouzu, H. Bukawa, T. Kawata, H. Ito, H. Tanzawa. Inhibition of ICAM2 induces radiosensitization in oral squamous cell carcinoma cells. Br J Cancer,2008.98(8):p. 1357-65.
    146. Barreto, G., A. Schafer, J. Marhold, D. Stach, S.K. Swaminathan, V. Handa, G. Doderlein, N. Maltry, W. Wu, F. Lyko, C. Niehrs. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature,2007.445(7128):p.671-5.
    147. Hur, J.M., H.J. Yun, S.H. Yang, W.Y. Lee, M.H. Joe, D. Kim. Gliotoxin enhances radiotherapy via inhibition of radiation-induced GADD45a, p38, and NFkappaB activation. J Cell Biochem,2008.104(6):p.2174-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700