大鼠视网膜Muller细胞的神经干细胞特性及其Wnt和Notch信号通路调控机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1.对视网膜Muller细胞的原代培养方法加以改良,建立简单快捷的分离培养Muller细胞的方法。
     2.通过体外去分化诱导,探讨大鼠视网膜Muller细胞干细胞潜能的激活条件及调控机制。
     3.研究Wnt和Notch信号通路在Muller细胞去分化的调控作用。
     方法
     1.取新生5-7天SD大鼠,显微镜下分离视网膜,直接吹打成微小组织悬液后置于含10%胎牛血清(fetal bovine serum, FBS)的DMEM/F12(1:1)培养基中培养,8-10天后行第一次换液,之后2-3天换液一次至细胞完全融合后进行传代。免疫荧光组织化学检测Muller细胞标志物谷氨酰胺合成酶(glutamine synthetase,GS)和波形蛋白(Vimentin)的表达进行细胞鉴定,使用FACS对所得细胞进行纯度检测。
     2.取第3代视网膜Muller细胞,更换含DMEM/F 12(1:1),1*N2 supplement, 2*B27 supplement,20 ng/ml表皮生长因子(epidermal growth factor, EGF),10 ng/ml碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF)的无血清去分化培养基培养3-5天。倒置相差显微镜下观察去分化后细胞的形态特征,免疫荧光组织化学,Real time RT-PCR以及Western blotting检测神经干细胞标志物Nestin, Musashi-1以及视网膜干细胞标志物Pax6的表达情况。CCK-8法检测去分化后细胞的增殖能力。更换含1*N2 supplement,2*B27 supplement,10%FBS的DMEM/F 12培养基对去分化后的细胞进行再分化诱导,免疫荧光组织化学检测胶质纤维酸性蛋白(glial fibrillary acidic protein, GFAP)的表达情况。
     3. Real time RT-PCR检测Wnt和Notch信号通路的相关分子Fzdl,Fzd2,Lefl, Notchl, Delta 1和Hesl在Muller细胞去分化培养前后的mRNA水平,并于去分化培养的第0,1,2,3,4,5天分别收集细胞行Western blotting检测Wnt2,β-catenin, Notch 1, Pax6和Nestin的蛋白水平。
     4.使用通路激动剂(Wnt-3a, Notch 1)和抑制剂(Dkk-1, DAPT)对Muller去分化培养过程中的Wnt和Notch信号通路进行干预,观察Muller细胞去分化的情况,FACS检测各组去分化前后视网膜干细胞标志物Pax6阳性细胞的百分率。CCK-8检测各组中,神经球细胞的自我增殖能力。
     结果
     1.原代培养的Muller细胞胞体狭长,胞浆丰富,免疫荧光检测结果显示,97.2±1.43%的细胞GS染色阳性,90.3±2.17%的细胞Vimentin染色阳性。流式细胞检测显示传3代后的细胞99.7% GS表达阳性。
     2.去分化培养3-5天后,大部分Muller细胞克隆生长成神经球状,免疫荧光组织化学检测显示,细胞球Nestin, Musashi-1及Pax6染色阳性。Real time RT-PCR的结果显示,细胞球中Pax6的mRNA水平较Muller细胞增加了-5.57倍,Nestin的mRNA水平增加了-3.98倍,差异有统计学意义(p<0.05)。Western blotting结果显示,神经球细胞中的Pax6和Nestin的蛋白表达水平较Muller细胞有明显升高。FACS结果显示,去分化前的Muller细胞中Pax6和Nestin的阳性率分别为7.8%和7.3%,去分化后的细胞为80.2%和60.4%。CCK-8检测显示,神经球细胞可以自我增殖,同时经再分化诱导培养后表达胶质细胞标志物GFAP。
     3. Real time RT-PCR结果显示,神经球细胞中Wnt和Notch通路相关基因的mRNA水平较Muller细胞明显升高,其中Fzd1为-2.44倍,Fzd2为-2.82倍,Lef1为-4.62倍,Notch 1为-3.24倍,Delta1为-2.64倍,Hes1为-5.71倍,差异具有统计学意义(p<0.05)。Western blotting结果显示,从d0到d5,Wnt2,β-catenin, Notch 1, Pax6和Nestin蛋白的表达逐渐增强,通路相关蛋白Wnt2,P-catenin及Notch 1与干细胞标志物Pax6及Nestin的表达存在时间的一致性。
     4.在添加Wnt-3a和Notch 1组中,神经球的数量明显增加,体积增大,添加Dkk-1和DAPT组中,神经球数量较少,细胞增殖缓慢。FACS结果显示,在Wnt-3a+Notchl组中,Pax6阳性的细胞为94.1%,Wnt-3a组中为87.1%, Notchl组中为76.2%,均较对照组的63.7%有所升高,在Dkk-1组中Pax6阳性细胞为38.4%, DAPT组中为31.7%,均较对照组明显下降。CCK-8检测结果显示,在Wnt-3a+Notchl组,Wnt-3a组和Notchl组中,细胞增殖速度均较对照组快,在Dkk-1组和DAPT组中,细胞增殖速度较对照组下降。
     结论
     1.改良后的培养方法可以简单快捷的分离纯化视网膜Muller细胞。
     2.生长因子的刺激可以在体外激活视网膜Miiller细胞的干细胞特性,Muller细胞很可能成为视网膜干细胞的一种潜在来源。
     3. Muller细胞去分化后形成神经球样结构,表达神经干细胞的标志物,并具备自我增殖和再分化的能力。
     4. Wnt和Notch言号的上调可以促进Muller细胞向神经干细胞去分化,同时促进神经干细胞球的自我增殖。Wnt和Notch信号通路在Muller细胞去分化的过程中存在协同调控作用。
Objectives
     1. To simplify the procedure of primary cultivation and purification of retinal Muller cells in vitro.
     2. To study the mechanism and regulation underlying the activation of the latent neural stem cell properties of Muller cells.
     3. To study the roles of Wnt and Notch signaling in the activation of neural stem cell properties in Muller glia.
     Methods
     1. Eyeballs were enucleated from newborn rats and retinas were mechanically dissociated into small aggregates and cultured in DMEM/F12 (Dulbecco's Modified Eagle's Medium/Nutrient Mixture F12 Ham's) medium containing 10%FBS (fetal bovine serum) for 8-10 days. After that, the floating reinal aggregates and debris were removed and the medium was changed every 2-3 days to get more putified cell population. The cells were passaged when they were confluent. Immunofluorescence assay was performed to identify the cultured Muller cells, and FACS(Fluorescence activated cell sorting) was carried out to determine the purity.
     2. Muller cells were dissociated using 0.25%Trypsin-0.05%EDTA and cultured in Serum Free Medium (DMEM/F12 containing lx N2 supplement,2x B27 supplement,2 mM L-glutamine,100 U/ml penicillin and 100μg/ml streptomycin) supplemented with 10 ng/ml bFGF(basic fibroblast growth factor) and 20 ng/ml EGF (epidermal growth factor) at a density of about 1 x 105 cells/cm2 for 3-5 days to generate neurospheres, refreshed the medium and grow factors every 2 days. Immunofluorescence assay, Real time RT-PCR and Western blotting were performed to test the expression of stem cell markers such as Nestin, Musashi-1 and Pax6 in the neurospheres, CCK-8 assay was to test the proliferation of the neurospheres. To examine the differentiation potential ability, neurospheres were shifted into the differentiation medium (DMEM/F12 containing 10%FBS, lx N2 supplement,2x B27 supplement,2mM L-glutamine,100 U/ml penicillin and 100μg/ml streptomycin) with the absence of EGF and bFGF, culture was continued for 5-7 days, immunofluorescence assay was to test the expression of GFAP in the redifferentiated cells.
     3. The mRNA levels of the components in Wnt and Notch pathway such as Fzdl, Fzd2, Lefl, Notch 1, Delta 1 and Hesl in the neurospheres were quantified by Real time RT-PCR analysis compared to which in the primary cultured Muller cells. During the dedifferentiation assay in Muller cells, Western blotting was performed to test the protein levels of Wnt2,β-catenin, Notch I, Pax6 and Nestin in d0, d1, d2, d3, d4 and d5.
     4. Pathway agonist (Wnt-3a, Notch1) and antagonist (Dkk-1, DAPT) were to be added to perturbed the Wnt and Notch signaling for studing their regulation effects in activating the neural stem cell properties in Muller glia. FACS was performed to test the Pax6 positive cells in the neurospheres. CCK-8 assay was to reveal the proliferating ability of the neurospheres by interfering the Wnt and Notch signaling.
     Results
     1. Cultured Muller cell had large cell bodies and relatively richer cytoplasma. About 97.2±1.43%of the cells were glutamine synthetase (GS) positive, and about 90.3±2.17%of the cells were Vimentin positive. FACS analysis showed that 99.7% of the cultured cells were GS positive after 3 passages.
     2. After 3-5 days cultured in the serum free medium, most of the Muller cells proliferated and formed neurospheres with an average size of 1OOμm in diameter. Immunofluorescence analysis show that, most of the neurospheres express the stem cell markers such as Nestin, Musashi-1 and Pax6. The rusults of Real time RT-PCR showed that, Pax6 and Nestin mRNA levels in neurospheres was about 5.57-and 3.98-fold compared to the Muller glia (p<0.05). Western blotting analysis showed that the protein levels of Pax6 and Nestin were also increased in the neurospheres. In the FACS assay, the positive cells of Pax6 and Nestin in the neurospheres were 80.2%and 60.4%versus 7.8%and 7.3%in the Muller glia. CCK-8 assay revealed that the neurospheres have self-renewing ability and can redifferentiate in vitro cultrue expressing GFAP.
     3. Real time RT-PCR analysis showed that, the mRNA levels of the components in the Wnt and Notch pathways were increased, Fzdl, Fzd2, Lefl, Notchl, Deltal and Hesl was 2.44-,2.82-,4.62-,3.24-,2.64-and 5.71-fold compared to the Muller glia (p<0.05). Western blotting analysis showed that, the protein levels of Wnt2, β-catenin, Notch 1, Pax6 and Nestin was increased accordingly from d0 to d5.
     4. In the Wnt-3a+Notch1 group, there were significant more and larger neurospheres, while there were less and smaller in the Dkk-1+DAPT group. FACS analysis showed that, the Pax6 positive cells in the Wnt-3a+Notch 1 group was 94.1%, the Wnt-3a group was 87.1%and the Notch1 group was 76.2%, which were higher than the conrol (63.7%), while the Dkk-1 group(38.4%) and the DAPT group (31.7%) were lower. CCK-8 assay showed that, the neurospheres proliferate more quickly in the Wnt-3a+Notch 1, besides, Wnt-3a and Notch 1 group were still both higher than the cells in control group, while in the Dkk-1 and the DAPT group, they proliferated more slowly compared to the control group.
     Conclusions
     1. The modified procedure intoduced in our experiment is a simple and practical method for culturing retinal Muller cells.
     2. Retinal Muller cells are potential stem cell source in the adlut retina. New born SD rats Muller cells can generate clonal stem cell neruospheres with the sitimulation of growth factors in vitro and display cardinal features of neural stem cells.
     3. The neurospheres derived from retinal Muller cells exhibite the neural stem cell characteristics and have the ability of self-renewing and redifferentiation.
     4. The Wnt signaling plays an important roles in the activation of the stem cell properties in Muller cells in concert with Notch.. Up regulation of both the signaling can facilitate the dedifferentiation process of dedifferentiation and also can promote the proliferation of the neurospheres derived from Muller glia.
引文
[1]Ballios B G, van der Kooy D. Biology and therapeutic potential of adult retinal stem cells[J]. Can J Ophthalmol,2010,45(4):342-351.
    [2]Dahlmann-Noor A, Vijay S, Jayaram H, et al. Current approaches and future prospects for stem cell rescue and regeneration of the retina and optic nerve[J]. Can J Ophthalmol,2010,45(4):333-341.
    [3]Vugler A A. Progress toward the maintenance and repair of degenerating retinal circuitry [J]. Retina,2010,30(7):983-1001.
    [4]Djojosubroto M W, Arsenijevic Y. Retinal stem cells:promising candidates for retina transplantation.[J]. Cell Tissue Res,2008,331(1):347-357.
    [5]Locker M, Borday C, Perron M. Sternness or not sternness? Current status and perspectives of adult retinal stem cells.[J]. Curr Stem Cell Res Ther,2009,4(2):118-130.
    [6]Ballios B G, van der Kooy D. Biology and therapeutic potential of adult retinal stem cells[J]. Can J Ophthalmol,2010,45(4):342-351.
    [7]Baker P S, Brown G C. Stem-cell therapy in retinal disease.[J]. Curr Opin Ophthalmol,2009,20(3):175-181.
    [8]Alvarez-Buylla A, Garcia-Verdugo J M, Tramontin A D. A unified hypothesis on the lineage of neural stem cells[J]. Nat Rev Neurosci,2001,2(4):287-293.
    [9]Alvarez-Buylla A, Lim D A. For the long run:maintaining germinal niches in the adult brain[J]. Neuron,2004,41(5):683-686.
    [10]Gage F H. Mammalian neural stem cells[J]. Science,2000,287(5457):1433-1438.
    [11]Zhao C, Deng W, Gage F H. Mechanisms and functional implications of adult neurogenesis[J]. Cell,2008,132(4):645-660.
    [12]van Praag H, Schinder A F, Christie B R, et al. Functional neurogenesis in the adult hippocampus[J].Nature,2002,415(6875):1030-1034.
    [13]Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus[J]. Nature,2004,429(6988):184-187.
    [14]Doetsch F. The glial identity of neural stem cells[J]. Nat Neurosci,2003,6(11):1127-1134.
    [15]Malatesta P, Hack M A, Hartfuss E, et al. Neuronal or glial progeny:regional differences in radial glia fate[J]. Neuron,2003,37(5):751-764.
    [16]Noctor S C, Flint A C, Weissman T A, et al. Neurons derived from radial glial cells establish radial units in neocortex[J]. Nature,2001,409(6821):714-720.
    [17]Merkle F T, Tramontin A D, Garcia-Verdugo J M, et al. Radial glia give rise to adult neural stem cells in the subventricular zone[J]. Proc Natl Acad Sci U S A,2004,101(50):17528-17532.
    [18]Doetsch F, Caille I, Lim D A, et al. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain[J]. Cell,1999,97(6):703-716.
    [19]Bringmann A, Pannicke T, Grosche J, et al. Miiller cells in the healthy and diseased retina.[J]. Prog Retin Eye Res,2006,25(4):397-424.
    [20]Jadhav A P, Roesch K, Cepko C L. Development and neurogenic potential of Muller glial cells in the vertebrate retina.[J]. Prog Retin Eye Res,2009,28(4):249-262.
    [21]Nickerson P E, Da S N, Myers T, et al. Neural progenitor potential in cultured Miiller glia:effects of passaging and exogenous growth factor exposure.[J]. Brain Res,2008,1230:1-12.
    [22]Bernardos R L, Barthel L K, Meyers J R, et al. Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells.[J]. J Neurosci,2007,27(26):7028-7040.
    [23]Otteson D C, Phillips M J. A conditional immortalized mouse Muller glial cell line expressing glial and retinal stem-cell genes[J]. Invest Ophthalmol Vis Sci,2010.
    [24]Hitchcock P, Ochocinska M, Sieh A, et al. Persistent and injury-induced neurogenesis in the vertebrate retina.[J]. Prog Retin Eye Res,2004,23(2):183-194.
    [25]Ooto S, Akagi T, Kageyama R, et al. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina.[J]. Proc Natl Acad Sci U S A,2004,101 (37):13654-13659.
    [26]Karl M O, Reh T A. Regenerative medicine for retinal diseases:activating endogenous repair mechanisms[J]. Trends Mol Med,2010,16(4):193-202.
    [27]Raymond P A, Hitchcock P F. How the neural retina regenerates[J]. Results Probl Cell Differ,2000,31:197-218.
    [28]Cepko C L, Austin C P, Yang X, et al. Cell fate determination in the vertebrate retina.[J]. Proc Natl Acad Sci U S A,1996,93(2):589-595.
    [29]Poggi L, Zolessi F R, Harris W A. Time-lapse analysis of retinal differentiation[J]. Curr Opin Cell Bio!,2005,17(6):676-681.
    [30]Rapaport D H, Wong L L, Wood E D, et al. Timing and topography of cell genesis in the rat retina.[J]. J Comp Neurol,2004,474(2):304-324.
    [31]Inoue T, Kagawa T, Fukushima M, et al. Activation of canonical Wnt pathway promotes proliferation of retinal stem cells derived from adult mouse ciliary margin[J]. Stem Cells,2006,24(1):95-104.
    [32]Das A V, Zhao X, James J, et al. Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling.[J]. Biochem Biophys Res Commun,2006,339(2):708-716.
    [33]Bhattacharya S, Das A, Mallya K, et al. Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling.[J]. J Cell Sci,2007,120(Pt 15):2652-2662.
    [34]Wan J, Zheng H, Xiao H L, et al. Sonic hedgehog promotes stem-cell potential of Muller glia in the mammalian retina[J]. Biochem Biophys Res Commun,2007,363(2):347-354.
    [35]Fan W, Cooper N G. Glutamate-induced NFkappaB activation in the retina.[J]. Invest Ophthalmol Vis Sci,2009,50(2):917-925.
    [36]Cadigan K M, Peifer M. Wnt signaling from development to disease:insights from model systems[J]. Cold Spring Harb Perspect Biol,2009,1(2):a2881.
    [37]Lyuksyutova A I, Lu C C, Milanesio N, et al. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling[J]. Science,2003,302(5652):1984-1988.
    [38]Lie D C, Colamarino S A, Song H J, et al. Wnt signalling regulates adult hippocampal neurogenesis.[J]. Nature,2005,437(7063):1370-1375.
    [39]Bilic J, Huang Y L, Davidson G, et al. Wnt induces LRP6 signaiosomes and promotes dishevelled-dependent LRP6 phosphorylation[J]. Science,2007,316(5831): 1619-1622.
    [40]Dravid G, Ye Z, Hammond H, et al. Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells[J]. Stem Cells,2005,23(10):1489-1501.
    [41]Nusse R, Varmus H E. Wntgenes[J]. Cell,1992,69(7):1073-1087.
    [42]Cadigan K M, Nusse R. Wnt signaling:a common theme in animal development.[J]. Genes Dev,1997,11(24):3286-3305.
    [43]Liu H, Mohamed O, Dufort D, et al. Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina.[J]. Dev Dyn,2003,227(3):323-334.
    [44]Van Raay T J, Moore K B, Iordanova I, et al. Frizzled 5 signaling governs the neural potential of progenitors in the developing Xenopus retina.[J]. Neuron,2005,46(1):23-36.
    [45]Fokina V M, Frolova E I. Expression patterns of Wnt genes during development of an anterior part of the chicken eye.[J]. Dev Dyn,2006,235(2):496-505.
    [46]Van Raay T J, Vetter M L. Wnt/frizzled signaling during vertebrate retinal development.[J]. Dev Neurosci,2004,26(5-6):352-358.
    [47]Osakada F, Ooto S, Akagi T, et al. Wnt signaling promotes regeneration in the retina of adult mammals.[J]. J Neurosci,2007,27(15):4210-4219.
    [48]Del B F, Wehman A M, Link B A, et al. Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient.[J]. Cell,2008,134 (6): 1055-1065.
    [49]Buchman J J, Tsai L H. Putting a notch in our understanding of nuclear migration.[J]. Cell,2008,134(6):912-914.
    [50]Jadhav A P, Cho S H, Cepko C L. Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property.[J]. Proc Natl Acad Sci U S A,2006,103(50):18998-19003.
    [51]Jadhav A P, Mason H A, Cepko C L. Notch 1 inhibits photoreceptor production in the developing mammalian retina.[J]. Development,2006,133(5):913-923.
    [52]Yaron O, Farhy C, Marquardt T, et al. Notchl functions to suppress cone-photoreceptor fate specification in the developing mouse retina.[J]. Development, 2006,133(7):1367-1378.
    [53]Das A V, Mallya K B, Zhao X, et al. Neural stem cell properties of Muller glia in the mammalian retina:regulation by Notch and Wnt signaling.[J]. Dev Biol,2006,299(1):283-302.
    [54]Das A V, Bhattacharya S, Zhao X, et al. The canonical Wnt pathway regulates retinal stem cells/progenitors in concert with Notch signaling.[J]. Dev Neurosci,2008,30(6):389-409.
    [55]Del D C, Balasubramanian S, Parameswaran S, et al. Notch and Wnt signaling mediated rod photoreceptor regeneration by Muller cells in adult mammalian retina.[J]. PLoS One,2010,5(8):el2425.
    [56]Hicks D, Courtois Y. The growth and behaviour of rat retinal Muller cells in vitro.1. An improved method for isolation and culture.[J]. Exp Eye Res,1990,51 (2):119-129.
    [57]陈永东,许迅,顾青,等.SD大鼠Muller细胞的原代培养[J].国际眼科杂志,2008,8(7):1341-1342.
    [58]李树宁,王竫华,白海青,等.改进的酶消化法培养新生大鼠Muller细胞[J].眼科研究,2005,23(2):155-157.
    [59]苟琳,张作明,许汉鹏,等.恒温摇动法纯化培养大鼠视网膜Muller细胞的技术研究[J].眼科研究,2002,20(5):411-413.
    [60]Roesch K, Jadhav A P, Trimarchi J M, et al. The transcriptome of retinal Muller glial cells[J]. J CompNeurol,2008,509(2):225-238.
    [61]Baba H, Nakahira K, Morita N, et al. GFAP gene expression during development of astrocyte[J].DevNeurosci,1997,19(1):49-57.
    [62]Gotz M, Barde Y A. Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons[J]. Neuron,2005,46(3):369-372.
    [63]de Melo R R, Ventura A L, Schitine C S, et al. Muller glia as an active compartment modulating nervous activity in the vertebrate retina:neurotransmitters and trophic factors.[J]. Neurochem Res,2008,33(8):1466-1474.
    [64]Fischer A J, Reh T A. Muller glia are a potential source of neural regeneration in the postnatal chicken retina.[J]. Nat Neurosci,2001,4(3):247-252.
    [65]Fischer A J, Reh T A. Potential of Muller glia to become neurogenic retinal progenitor cells.[J]. Glia,2003,43(1):70-76.
    [66]Monnin J, Morand-Villeneuve N, Michel G, et al. Production of neurospheres from mammalian Muller cells in culture.[J]. Neurosci Lett,2007,421(1):22-26.
    [67]Fischer A J, Reh T A. Growth factors induce neurogenesis in the ciliary body.[J]. Dev Biol,2003,259(2):225-240.
    [68]Anchan R M, Reh T A, Angello J, et al. EGF and TGF-alpha stimulate retinal neuroepithelial cell proliferation in vitro.[J]. Neuron,1991,6(6):923-936.
    [69]Angenieux B, Schorderet D F, Arsenijevic Y. Epidermal growth factor is a neuronal differentiation factor for retinal stem cells in vitro.[J]. Stem Cells,2006,24(3):696-706.
    [70]Fischer A J, Mcguire C R, Dierks B D, et al. Insulin and fibroblast growth factor 2 activate a neurogenic program in Muller glia of the chicken retina.[J]. J Neurosci,2002,22(21):9387-9398.
    [71]Karl M O, Hayes S, Nelson B R, et al. Stimulation of neural regeneration in the mouse retina[J]. ProcNatl Acad Sci U S A,2008,105(49):19508-19513.
    [72]Mayer E J, Hughes E H, Carter D A, et al. Nestin positive cells in adult human retina and in epiretinal membranes.[J]. Br J Ophthalmol,2003,87(9):1154-1158.
    [73]Zhang X, Huang C T, Chen J, et al. Pax6 is a human neuroectoderm cell fate determinant[J]. Cell Stem Cell,2010,7(1):90-100.
    [74]Xu S, Sunderland M E, Coles B L, et al. The proliferation and expansion of retinal stem cells require functional Pax6.[J]. Dev Biol,2007,304(2):713-721.
    [75]Marquardt T, Ashery-Padan R, Andrejewski N, et al. Pax6 is required for the multipotent state of retinal progenitor cells.[J]. Cell,2001,105(1):43-55.
    [76]Gotz M, Stoykova A, Gruss P. Pax6 controls radial glia differentiation in the cerebral cortex.[J]. Neuron,1998,21 (5):1031-1044.
    [77]Jiang W, Zhang Y, Xiao L, et al. Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic-and antidepressant-like effects[J]. J Clin Invest,2005,115(11):3104-3116.
    [78]Wang Y Y, Zhou G B, Yin T, et al. AML1-ETO and C-KIT mutation/over-expression in t (8;21) leukemia:implication in stepwise Ieukemogenesis and response to Gleevec[J]. Proc Natl Acad Sci U S A,2005,102(4):1104-1109.
    [79]Hamamoto R, Furukawa Y, Morita M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells[J]. Nat Cell Biol,2004,6(8):731-740.
    [80]Alexson T O, Hitoshi S, Coles B L, et al. Notch signaling is required to maintain all neural stem cell populations--irrespective of spatial or temporal niche.[J]. Dev Neurosci,2006,28(1-2):34-48.
    [81]Tamai K, Semenov M, Kato Y, et al. LDL-receptor-related proteins in Wnt signal transduction[J].Nature,2000,407(6803):530-535.
    [82]Cadigan K M. Wnt-beta-catenin signaling[J]. Curr Biol,2008,18(20):R943-R947.
    [83]Cadigan K M, Liu Y I. Wnt signaling:complexity at the surface[J]. J Cell Sci,2006,119(Pt3):395-402.
    [84]Artavanis-Tsakonas S, Matsuno K, Fortini M E. Notch signaling.[J]. Science,1995,268(5208):225-232.
    [85]Mumm J S, Kopan R. Notch signaling:from the outside in.[J]. Dev Biol,2000,228(2):151-165.
    [86]Kan T, Tominari Y, Rikimaru K, et al. Parallel synthesis of DAPT derivatives and their gamma-secretase-inhibitory activity[J]. Bioorg Med Chem Lett,2004, 14(8):1983-1985.
    [87]Katoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis[J]. Stem Cell Rev,2007,3(1):30-38.
    [88]Katoh M, Katoh M. Transcriptional regulation of WNT2B based on the balance of Hedgehog, Notch, BMP and WNT signals[J]. Int J Oncol,2009,34(5):1411-1415.
    [1]Djojosubroto M W, Arsenijevic Y. Retinal stem cells:promising candidates for retina transplantation.[J]. Cell Tissue Res,2008,331(1):347-357.
    [2]Locker M, Borday C, Perron M. Sternness or not sternness? Current status and perspectives of adult retinal stem cells.[J]. Curr Stem Cell Res Ther,2009,4(2):118-130.
    [3]Karl M O, Reh T A. Regenerative medicine for retinal diseases:activating endogenous repair mechanisms[J]. Trends Mol Med,2010,16(4):193-202.
    [4]Ballios B G, van der Kooy D. Biology and therapeutic potential of adult retinal stem cells[J]. Can J Ophthalmol,2010,45(4):342-351.
    [5]Perron M, Kanekar S, Vetter M L, et al. The genetic sequence of retinal development in the ciliary margin of the Xenopus eye.[J]. Dev Biol,1998,199 (2):185-200.
    [6]Otteson D C, Hitchcock P F. Stem cells in the teleost retina:persistent neurogenesis and injury-induced regeneration.[J]. Vision Res,2003,43(8):927-936.
    [7]Perron M, Harris W A. Retinal stem cells in vertebrates.[J]. Bioessays,2000,22 (8):685-688.
    [8]Fischer A J, Reh T A. Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens.[J]. Dev Biol,2000,220(2):197-210.
    [9]Moshiri A, Mcguire C R, Reh T A. Sonic hedgehog regulates proliferation of the retinal ciliary marginal zone in posthatch chicks.[J]. Dev Dyn,2005,233(1):66-75.
    [10]Coles B L, Angenieux B, Inoue T, et al. Facile isolation and the characterization of human retinal stem cells.[J]. ProcNatl Acad Sci U S A,2004,101(44):15772-15777.
    [11]Macneil A, Pearson R A, Maclaren R E, et al. Comparative analysis of progenitor cells isolated from the iris, pars plana, and ciliary body of the adult porcine eye.[J]. Stem Cells,2007,25(10):2430-2438.
    [12]Gu P, Harwood L J, Zhang X, et al. Isolation of retinal progenitor and stem cells from the porcine eye.[J]. Mol Vis,2007,13:1045-1057.
    [13]Tropepe V, Coles B L, Chiasson B J, et al. Retinal stem cells in the adult mammalian eye.[J]. Science,2000,287(5460):2032-2036.
    [14]Ahmad I, Tang L, Pham H. Identification of neural progenitors in the adult mammalian eye.[J]. Biochem Biophys Res Commun,2000,270(2):517-521.
    [15]Xu H, Sta I D, Kielczewski J L, et al. Characteristics of progenitor cells derived from adult ciliary body in mouse, rat, and human eyes[J]. Invest Ophthalmol Vis Sci,2007,48(4):1674-1682.
    [16]Mayer E J, Hughes E H, Carter D A, et al. Nestin positive cells in adult human retina and in epiretinal membranes.[J]. Br J Ophthalmol,2003,87(9):1154-1158.
    [17]Xu S, Sunderland M E, Coles B L, et al. The proliferation and expansion of retinal stem cells require functional Pax6.[J]. Dev Biol,2007,304(2):713-721.
    [18]Cicero S A, Johnson D, Reyntjens S, et al. Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells.[J]. Proc Natl Acad Sci U S A,2009,106(16):6685-6690.
    [19]Okada T S. Cellular metaplasia or transdifferentiation as a model for retinal cell differentiation[J]. Curr Top Dev Biol,1980,16:349-380.
    [20]Moshiri A, Close J, Reh T A. Retinal stem cells and regeneration.[J]. Int J Dev Biol,2004,48(8-9):1003-1014.
    [21]Lamba D, Karl M, Reh T. Neural regeneration and cell replacement:a view from the eye.[J]. Cell Stem Cell,2008,2(6):538-549.
    [22]Araki M. Regeneration of the amphibian retina:role of tissue interaction and related signaling molecules on RPE transdifferentiation[J]. Dev Growth Differ,2007,49(2):109-120.
    [23]Spence J R, Madhavan M, Aycinena J C, et al. Retina regeneration in the chick embryo is not induced by spontaneous Mitf downregulation but requires FGF/FGFR/MEK/Erk dependent upregulation of Pax6.[J]. Mol Vis,2007,13:57-65.
    [24]Sakami S, Etter P, Reh T A. Activin signaling limits the competence for retinal regeneration from the pigmented epithelium.[J]. Mech Dev,2008,125(l-2):106-116.
    [25]Azuma N, Tadokoro K, Asaka A, et al. Transdifferentiation of the retinal pigment epithelia to the neural retina by transfer of the Pax6 transcriptional factor.[J]. Hum Mol Genet,2005,14(8):1059-1068.
    [26]Asami M, Sun G, Yamaguchi M, et al. Multipotent cells from mammalian iris pigment epithelium.[J]. Dev Biol,2007,304(1):433-446.
    [27]Bringmann A, Pannicke T, Grosche J, et al. Muller cells in the healthy and diseased retina.[J]. Prog Retin Eye Res,2006,25(4):397-424.
    [28]Berninger B. Making neurons from mature glia:a far-fetched dream?[J]. Neuropharmacology,2010,58(6):894-902.
    [29]Otteson D C, Phillips M J. A conditional immortalized mouse Muller glial cell line expressing glial and retinal stem-cell genes[J]. Invest Ophthalmol Vis Sci,2010.
    [30]Raymond P A, Hitchcock P F. How the neural retina regenerates[J]. Results Probl Cell Differ,2000,31:197-218.
    [31]Hitchcock P, Ochocinska M, Sieh A, et al. Persistent and injury-induced neurogenesis in the vertebrate retina.[J]. Prog Retin Eye Res,2004,23(2):183-194.
    [32]Bernardos R L, Barthel L K, Meyers J R, et al. Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells.[J]. J Neurosci,2007,27(26):7028-7040.
    [33]Fimbel S M, Montgomery J E, Burket C T, et al. Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish.[J]. J Neurosci,2007,27 (7):1712-1724.
    [34]Morris A C, Scholz T L, Brockerhoff S E, et al. Genetic dissection reveals two separate pathways for rod and cone regeneration in the teleost retina[J]. Dev Neurobiol,2008,68(5):605-619.
    [35]Thummel R, Kassen S C, Enright J M, et al. Characterization of Muller glia and neuronal progenitors during adult zebrafish retinal regeneration.[J]. Exp Eye Res,2008,87(5):433-444.
    [36]Fischer A J, Reh T A. Muller glia are a potential source of neural regeneration in the postnatal chicken retina.[J]. Nat Neurosci,2001,4(3):247-252.
    [37]Fischer A J, Mcguire C R, Dierks B D, et al. Insulin and fibroblast growth factor 2 activate a neurogenic program in Muller glia of the chicken retina.[J]. J Neurosci,2002,22(21):9387-9398.
    [38]Fischer A J, Reh T A. Potential of Muller glia to become neurogenic retinal progenitor cells.[J]. Glia,2003,43(1):70-76.
    [39]Hayes S, Nelson B R, Buckingham B, et al. Notch signaling regulates regeneration in the avian retina.[J]. Dev Biol,2007,312(1):300-311.
    [40]Ooto S, Akagi T, Kageyama R, et al. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina.[J]. Proc Natl Acad Sci U S A,2004,101(37):13654-13659.
    [41]Wan J, Zheng H, Chen Z L, et al. Preferential regeneration of photoreceptor from Muller glia after retinal degeneration in adult rat.[J]. Vision Res,2008,48(2):223-234.
    [42]Close J L, Liu J, Gumuscu B, et al. Epidermal growth factor receptor expression regulates proliferation in the postnatal rat retina.[J]. Glia,2006,54(2):94-104.
    [43]Karl M O, Hayes S, Nelson B R, et al. Stimulation of neural regeneration in the mouse retina[J]. Proc Natl Acad Sci U S A,2008,105(49):19508-19513.
    [44]Osakada F, Ooto S, Akagi T, et al. Wnt signaling promotes regeneration in the retina of adult mammals.[J]. J Neurosci,2007,27(15):4210-4219.
    [45]Wan J, Zheng H, Xiao H L, et al. Sonic hedgehog promotes stem-cell potential of Muller glia in the mammalian retina[J]. Biochem Biophys Res Commun,2007, 363(2):347-354.
    [46]Das A V, Mallya K B, Zhao X, et al. Neural stem cell properties of Muller glia in the mammalian retina:regulation by Notch and Wnt signaling.[J]. Dev Biol,2006,299(1):283-302.
    [47]Maclaren R E, Pearson R A, Macneil A, et al. Retinal repair by transplantation of photoreceptor precursors.[J]. Nature,2006,444(7116):203-207.
    [48]Lamba D A, Gust J, Reh T A. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice.[J]. Cell Stem Cell,2009,4(1):73-79.
    [49]Klassen H, Kiilgaard J F, Zahir T, et al. Progenitor cells from the porcine neural retina express photoreceptor markers after transplantation to the subretinal space of allorecipients.[J]. Stem Cells,2007,25(5):1222-1230.
    [50]Lamba D A, Karl M O, Ware C B, et al. Efficient generation of retinal progenitor cells from human embryonic stem cells.[J]. Proc Natl Acad Sci U S A,2006,103(34):12769-12774.
    [51]Torrente Y, Polli E. Mesenchymal stem cell transplantation for neurodegenerative diseases.[J]. Cell Transplant,2008,17(10-11):1103-1113.
    [52]Sensebe L, Bourin P. Mesenchymal stem cells for therapeutic purposes.[J]. Transplantation,2009,87(9Suppl):S49-S53.
    [53]Meirelles L S, Nardi N B. Methodology, biology and clinical applications of mesenchymal stem cells.[J]. Front Biosci,2009,14:4281-4298.
    [54]Woodbury D, Schwarz E J, Prockop D J, et al. Adult rat and human bone marrow stromal cells differentiate into neurons.[J]. J Neurosci Res,2000,61(4):364-370.
    [55]Otani A, Dorrell M I, Kinder K, et al. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells.[J]. J Clin Invest,2004,114(6):765-774.
    [56]Kicic A, Shen W Y, Wilson A S, et al. Differentiation of marrow stromal cells into photoreceptors in the rat eye.[J]. J Neurosci,2003,23(21):7742-7749.
    [57]Tomita M, Adachi Y, Yamada H, et al. Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina.[J]. Stem Cells,2002,20(4):279-283.
    [58]Tomita M, Mori T, Maruyama K, et al. A comparison of neural differentiation and retinal transplantation with bone marrow-derived cells and retinal progenitor cells.[J]. StemCells,2006,24(10):2270-2278.
    [59]Weiss M L, Medicetty S, Bledsoe A R, et al. Human umbilical cord matrix stem cells:preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease[J]. Stem Cells,2006,24(3):781-792.
    [60]Weiss M L, Troyer D L. Stem cells in the umbilical cord[J]. Stem Cell Rev,2006,2(2):155-162.
    [61]Lund R D, Wang S, Lu B, et al. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease[J]. Stem Cells,2007,25(3):602-611.
    [62]Zavan B, Michelotto L, Lancerotto L, et al. Neural potential of a stem cell population in the adipose and cutaneous tissues[J]. Neurol Res,2010,32(1):47-54.
    [63]Xu Y, Liu Z, Liu L, et al. Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro.[J]. BMC Neurosci,2008,9:21.
    [64]Vindigni V, Michelotto L, Lancerotto L, et al. Isolation method for a stem cell population with neural potential from skin and adipose tissue.[J]. Neurol Res,2009.
    [65]Tat P A, Sumer H, Jones K L, et al. The efficient generation of induced pluripotent stem (iPS) cells from adult mouse adipose tissue-derived and neural stem cells.[J]. Cell Transplant,2010,19(5):525-536.
    [66]Aoki T, Ohnishi H, Oda Y, et al. Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC[J]. Tissue Eng Part A,2010,16(7):2197-2206.
    [67]Takahashi M, Palmer T D, Takahashi J, et al. Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina.[J]. Mol Cell Neurosci,1998,12(6):340-348.
    [68]Young M J, Ray J, Whiteley S J, et al. Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats.[J]. Mol Cell Neurosci,2000,16(3):197-205.
    [69]Gamm D M, Wang S, Lu B, et al. Protection of visual functions by human neural progenitors in a rat model of retinal disease[J]. PLoS One,2007,2(3):e338.
    [70]Wang S, Girman S, Lu B, et al. Long-term vision rescue by human neural progenitors in a rat model of photoreceptor degeneration[J]. Invest Ophthalmol Vis Sci,2008,49(7):3201-3206.
    [71]Francis P J, Wang S, Zhang Y, et al. Subretinal transplantation of forebrain progenitor cells in nonhuman primates:survival and intact retinal function[J]. Invest Ophthalmol Vis Sci,2009,50(7):3425-3431.
    [72]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.[J]. Cell,2006,126(4):663-676.
    [73]Yu J, Vodyanik M A, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells.[J]. Science,2007,318(5858):1917-1920.
    [74]Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts.[J]. Nat B iotechnol,2008,26(1):101-106.
    [75]Zhao Y, Yin X, Qin H, et al. Two supporting factors greatly improve the efficiency of human iPSC generation.[J]. Cell Stem Cell,2008,3(5):475-479.
    [76]Comyn O, Lee E, Maclaren R E. Induced pluripotent stem cell therapies for retinal disease[J]. Curr Opin Neurol,2010,23(1):4-9.
    [77]Osakada F, Jin Z B, Hirami Y, et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction.[J]. J Cell Sci,2009,122(Pt 17):3169-3179.
    [78]Lamba D A, Mcusic A, Hirata R K, et al. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells.[J]. PLoSOne,2010,5(1):e8763.
    [79]Buchholz D E, Hikita S T, Rowland T J, et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells.[J]. Stem Cells,2009,27(10):2427-2434.
    [80]Carr A J, Vugler A A, Hikita S T, et al. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat[J]. PLoS One,2009,4(12):e8152.
    [81]Parameswaran S, Balasubramanian S, Babai N, et al. Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors:therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration[J]. Stem Cells,2010,28(4):695-703.
    [82]Jin Z B, Okamoto S, Mandai M, et al. Induced pluripotent stem cells for retinal degenerative diseases:a new perspective on the challenges.[J]. J Genet,2009,88(4):417-424.
    [83]Arnhold S, Klein H, Semkova I, et al. Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space.[J]. Invest Ophthalmol Vis Sci,2004,45(12):4251-4255.
    [84]Shiras A, Chettiar S T, Shepal V, et al. Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma.[J]. Stem Cells,2007,25(6):1478-1489.
    [1]Alvarez-Buylla A, Garcia-Verdugo J M, Tramontin A D. A unified hypothesis on the lineage of neural stem cells[J]. Nat Rev Neurosci,2001,2(4):287-293.
    [2]Alvarez-Buylla A, Lim D A. For the long run:maintaining germinal niches in the adult brain[J]. Neuron,2004,41(5):683-686.
    [3]Gage F H. Mammalian neural stem cells[J]. Science,2000,287(5457):1433-1438.
    [4]Zhao C, Deng W, Gage F H. Mechanisms and functional implications of adult neurogenesis[J]. Cell,2008,132(4):645-660.
    [5]van Praag H, Schinder A F, Christie B R, et al. Functional neurogenesis in the adult hippocampus[J]. Nature,2002,415(6875):1030-1034.
    [6]Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus[J]. Nature,2004,429(6988):184-187.
    [7]Doetsch F. The glial identity of neural stem cells[J]. Nat Neurosci,2003, 6(11):1127-1134.
    [8]Gotz M, Barde Y A. Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons[J]. Neuron,2005,46(3):369-372.
    [9]Malatesta P, Hack M A, Hartfuss E, et al. Neuronal or glial progeny:regional differences in radial glia fate[J]. Neuron,2003,37(5):751-764.
    [10]Noctor S C, Flint A C, Weissman T A, et al. Neurons derived from radial glial cells establish radial units in neocortex[J]. Nature,2001,409(6821):714-720.
    [11]Del D C, Balasubramanian S, Parameswaran S, et al. Notch and Wnt signaling mediated rod photoreceptor regeneration by Muller cells in adult mammalian retina.[J]. PLoS One,2010,5(8):e 12425.
    [12]Chow R L, Lang R A. Early eye development in vertebrates.[J]. Annu Rev Cell Dev Biol,2001,17:255-296.
    [13]Djojosubroto M W, Arsenijevic Y. Retinal stem cells:promising candidates for retina transplantation.[J]. Cell Tissue Res,2008,331(1):347-357.
    [14]Locker M, Borday C, Perron M. Sternness or not sternness? Current status and perspectives of adult retinal stem cells.[J]. Curr Stem Cell Res Ther,2009,4(2):118-130.
    [15]Karl M O, Reh T A. Regenerative medicine for retinal diseases:activating endogenous repair mechanisms[J]. Trends Mol Med,2010,16(4):193-202.
    [16]Ballios B G, van der Kooy D. Biology and therapeutic potential of adult retinal stem cells[J]. Can J Ophthalmol,2010,45(4):342-351.
    [17]Cepko C L, Austin C P, Yang X, et al. Cell fate determination in the vertebrate retina.[J]. Proc Natl Acad Sci U S A,1996,93(2):589-595.
    [18]Poggi L, Zolessi F R, Harris W A. Time-lapse analysis of retinal differentiation[J]. CurrOpinCellBiol,2005,17(6):676-681.
    [19]Rapaport D H, Wong L L, Wood E D, et al. Timing and topography of cell genesis in the rat retina.[J]. J Comp Neurol,2004,474(2):304-324.
    [20]Alexson T O, Hitoshi S, Coles B L, et al. Notch signaling is required to maintain all neural stem cell populations--irrespective of spatial or temporal niche.[J]. Dev Neurosci,2006,28(1-2):34-48.
    [21]Inoue T, Kagawa T, Fukushima M, et al. Activation of canonical Wnt pathway promotes proliferation of retinal stem cells derived from adult mouse ciliary marginfJ]. Stem Cells,2006,24(1):95-104.
    [22]Das A V, Zhao X, James J, et al. Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling.[J]. Biochem Biophys Res Commun,2006,339(2):708-716.
    [23]Bhattacharya S, Das A, Mallya K, et al. Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling.[J]. J Cell Sci,2007,120(Pt 15):2652-2662.
    [24]Nusse R, Varmus H E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome[J]. Cell,1982,31(1):99-109.
    [25]Cadigan K M, Peifer M. Wnt signaling from development to disease:insights from model systems[J]. Cold Spring Harb Perspect Biol,2009,1(2):a2881.
    [26]Lyuksyutova A I, Lu C C, Milanesio N, et al. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling[J]. Science,2003,302(5652):1984-1988.
    [27]Lie D C, Colamarino S A, Song H J, et al. Wnt signalling regulates adult hippocampal neurogenesis.[J]. Nature,2005,437(7063):1370-1375.
    [28]Bilic J, Huang Y L, Davidson G, et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation[J]. Science,2007,316(5831): 1619-1622.
    [29]Dravid G, Ye Z, Hammond H, et al. Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells[J]. Stem Cells,2005,23(10):1489-1501.
    [30]Nusse R, Varmus H E. Wnt genes[J]. Cell,1992,69(7):1073-1087.
    [31]Cadigan K M, Nusse R. Wnt signaling:a common theme in animal development.[J]. Genes Dev,1997,11(24):3286-3305.
    [32]Tamai K, Semenov M, Kato Y, et al. LDL-receptor-related proteins in Wnt signal transduction[J].Nature,2000,407(6803):530-535.
    [33]Cadigan K M. Wnt-beta-catenin signaling[J]. Curr Biol,2008,18(20):R943-R947.
    [34]Cadigan K M, Liu Y I. Wnt signaling:complexity at the surface[J]. J Cell Sci,2006,119(Pt3):395-402.
    [35]Wodarz A, Nusse R. Mechanisms of Wnt signaling in development.[J]. Annu Rev Cell Dev Biol,1998,14:59-88.
    [36]Domingos P M, Itasaki N, Jones C M, et al. The Wnt/beta-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling[J]. Dev Biol,2001,239(1):148-160.
    [37]Logan C Y, Nusse R. The Wnt signaling pathway in development and disease.[J]. Annu Rev Cell Dev Biol,2004,20:781-810.
    [38]Kiecker C, Niehrs C. A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus[J]. Development,2001,128(21): 4189-4201.
    [39]Korinek V, Barker N, Willert K, et al. Two members of the Tcf family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse[J]. Mol Cell Biol,1998,18(3):1248-1256.
    [40]Reya T. Regulation of hematopoietic stem cell self-renewal.[J]. Recent Prog Horm Res,2003,58:283-295.
    [41]Reya T, Duncan A W, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells[J].Nature,2003,423(6938):409-414.
    [42]van Genderen C, Okamura R M, Farinas I, et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice[J]. Genes Dev,1994,8(22):2691-2703.
    [43]Hall A C, Lucas F R, Salinas P C. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling[J]. Cell,2000,100(5):525-535.
    [44]Liu H, Mohamed O, Dufort D, et al. Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina.[J]. Dev Dyn,2003,227(3):323-334.
    [45]Van Raay T J, Moore K B, Iordanova I, et al. Frizzled 5 signaling governs the neural potential of progenitors in the developing Xenopus retina.[J]. Neuron,2005,46(1):23-36.
    [46]Fokina V M, Frolova E I. Expression patterns of Wnt genes during development of an anterior part of the chicken eye.[J]. Dev Dyn,2006,235(2):496-505.
    [47]Van Raay T J, Vetter M L. Wnt/frizzled signaling during vertebrate retinal development.[J]. Dev Neurosci,2004,26(5-6):352-358.
    [48]Osakada F, Ooto S, Akagi T, et al. Wnt signaling promotes regeneration in the retina of adult mammals.[J]. J Neurosci,2007,27(15):4210-4219.
    [49]Kameya S, Hawes N L, Chang B, et al. Mfrp, a gene encoding a frizzled related protein, is mutated in the mouse retinal degeneration 6[J]. Hum Mol Genet,2002,11 (16):1879-1886.
    [50]Denayer T, Locker M, Borday C, et al. Canonical Wnt signaling controls proliferation of retinal stem/progenitor cells in postembryonic Xenopus eyes.[J]. Stem Cells,2008,26(8):2063-2074.
    [51]Kubo F, Takeichi M, Nakagawa S. Wnt2b controls retinal cell differentiation at the ciliary marginal zone.[J]. Development,2003,130(3):587-598.
    [52]Artavanis-Tsakonas S, Rand M D, Lake R J. Notch signaling:cell fate control and signal integration in development[J]. Science,1999,284(5415):770-776.
    [53]Lai E C. Notch signaling:control of cell communication and cell fate[J]. Development,2004,131 (5):965-973.
    [54]Artavanis-Tsakonas S, Matsuno K, Fortini M E. Notch signaling.[J]. Science,1995, 268 (5208):225-232.
    [55]Mumm J S, Kopan R. Notch signaling:from the outside in.[J]. Dev Biol,2000,228(2):151-165.
    [56]Kan T, Tominari Y, Rikimaru K, et al. Parallel synthesis of DAPT derivatives and their gamma-secretase-inhibitory activity [J]. Bioorg Med Chem Lett,2004,14 (8):1983-1985.
    [57]Del B F, Wehman A M, Link B A, et al. Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient.[J]. Cell,2008,134 (6): 1055-1065.
    [58]Buchman J J, Tsai L H. Putting a notch in our understanding of nuclear migration.[J]. Cell,2008,134(6):912-914.
    [59]贾延劫,孙吉平,朱晓峰,等Notch-1在骨髓间质干细胞分化为神经细胞中的作用[J].中华医学杂志,2006(41):2916-2921.
    [60]肖迎,王琪,唐仕波,等Notch 1蛋白在胚胎干细胞向神经细胞诱导分化过程中的表达(英文)[J].中国组织工程研究与临床康复,2008(25).
    [61]Jadhav A P, Cho S H, Cepko C L. Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property.[J]. Proc Natl Acad Sci U S A,2006,103(50):18998-19003.
    [62]Jadhav A P, Mason H A, Cepko C L. Notch 1 inhibits photoreceptor production in the developing mammalian retina.[J]. Development,2006,133(5):913-923.
    [63]Yaron O, Farhy C, Marquardt T, et al. Notchl functions to suppress cone-photoreceptor fate specification in the developing mouse retina.[J]. Development, 2006,133(7):1367-1378.
    [64]Dorsky R I, Chang W S, Rapaport D H, et al. Regulation of neuronal diversity in the Xenopus retina by Delta signalling.[J]. Nature,1997,385(6611):67-70.
    [65]Perron M, Harris W A. Determination of vertebrate retinal progenitor cell fate by the Notch pathway and basic helix-loop-helix transcription factors.[J]. Cell Mol Life Sci,2000,57(2):215-223.
    [66]Cepko C L. The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates.[J]. Curr Opin NeurobioI,1999,9(1):37-46.
    [67]Livesey F J, Cepko C L. Vertebrate neural cell-fate determination:lessons from the retina.[J]. Nat Rev Neurosci,2001,2(2):109-118.
    [68]Bunting K D. ABC transporters as phenotypic markers and functional regulators of stem cells.[J]. Stem Cells,2002,20(1):11-20.
    [69]Duncan A W, Rattis F M, Dimascio L N, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance.[J]. Nat Immunol,2005,6(3):314-322.
    [70]Katoh M, Katoh M. WNT antagonist, DKK2, is a Notch signaling target in intestinal stem cells:augmentation of a negative regulation system for canonical WNT signaling pathway by the Notch-DKK2 signaling loop in primates[J]. Int J Mol Med,2007,19(1):197-201.
    [71]Wang X Y, Yin Y, Yuan H, et al. Musashil modulates mammary progenitor cell expansion through proliferin-mediated activation of the Wnt and Notch pathways[J]. Mol Cell Biol,2008,28(11):3589-3599.
    [72]Ross D A, Kadesch T. The notch intracellular domain can function as a coactivator for LEF-1[J]. Mol Cell Biol,2001,21(22):7537-7544.
    [73]Das A V, Mallya K B, Zhao X, et al. Neural stem cell properties of Muller glia in the mammalian retina:regulation by Notch and Wnt signaling.[J]. Dev Biol,2006,299(1):283-302.
    [74]Das A V, Bhattacharya S, Zhao X, et al. The canonical Wnt pathway regulates retinal stem cells/progenitors in concert with Notch signaling.[J]. Dev Neurosci,2008,30(6):389-409.
    [75]Espinosa L, Ingles-Esteve J, Aguilera C, et al. Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways[J]. J Biol Chem,2003,278(34):32227-32235.
    [76]Shin M, Nagai H, Sheng G. Notch mediates Wnt and BMP signals in the early separation of smooth muscle progenitors and blood/endothelial common progenitors[J]. Development,2009,136(4):595-603.
    [77]Katoh M, Katoh M. Transcriptional regulation of WNT2B based on the balance of Hedgehog, Notch, BMP and WNT signals[J]. Int J Oncol,2009,34(5):1411-1415.
    [78]Lee D, Park C, Lee H, et al. ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification[J]. Cell Stem Cell,2008,2 (5):497-507.
    [79]Katoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis[J]. Stem Cell Rev,2007,3(1):30-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700