Cdks抑制剂3’单肟靛玉红对Aβ神经毒性的保护作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer’s disease, AD)是一种进行性神经变性疾病,是老年期痴呆中最常见的类型。全世界约有2400万AD患者,其中我国约有400万左右。随着疾病进展,患者出现记忆、思维、行为等方面的症状,严重影响日常工作及社会生活,给家庭和社会带来沉重的负担,已经成为一个严重的社会和医疗问题。但到目前为止,AD的发病机制尚不完全清楚,临床缺乏理想的治疗药物。因此,研究AD的发病机制及研发有效的防治药物显得尤为重要。
     一些对AD患者脑内新病理现象的认识,为阐明AD的神经元死亡机制提供了新的线索,也为AD的治疗带来新的希望。越来越多的证据显示神经元凋亡的出现伴随细胞周期蛋白的激活。在各种神经应激情况下,完成有丝分裂的成熟神经元重新进入细胞周期,但是终极分化的神经元由于自身有丝分裂能力的限制,无法协调的经过细胞周期的各个阶段,最终导致凋亡性细胞死亡。因此异常出现的细胞周期依赖性蛋白激酶(cyclin-dependent kinases, Cdks)在AD的细胞死亡中起关键作用。据此推论,应用药物干预Cdks的活性,可能为AD的治疗提供新的有效的药物。但是Cdks抑制剂作为神经保护剂的研究刚刚起步,并且多在细胞水平和急性脑缺血模型中进行。
     靛玉红(indirubin)是中国医学科学院在传统中成药当归芦荟丸中发现的抗白血病有效成分。目前已经清楚它是一种选择性的Cdks抑制剂,可以在纳摩尔水平抑制Cdk1、Cdk2、Cdk5的活性,但其水溶性和脂溶性都很差,且有一定的肝毒性。3’单肟靛玉红(Indirubin-3’-monoxime, IMX),为其衍生物,不仅是强有力的Cdks抑制剂,而且毒性低、分子量小、有较好的膜通透性,IMX可以与
     ATP竞争Cdks激酶的催化位点。本文工作旨在研究Cdks抑制剂IMX对β淀粉样蛋白25-35(β-amyloid protein 25-35, Aβ25-35)所致SH-SY5Y细胞凋亡的保护作用,并在此基础上研究其对tau蛋白磷酸化的影响及其可能机制。本文包括以下两部分工作:
     第一部分IMX对Aβ25-35所致SH-SY5Y细胞毒性的保护作用
     目的:探讨Cdks抑制剂IMX对Aβ25-35所致SH-SY5Y细胞凋亡的保护作用。方法:采用细胞培养法,以神经母细胞瘤SH-SY5Y细胞系为材料制备Aβ25-35损伤的离体细胞模型。通过Cell Counting Kit 8(CCK-8)分析不同剂量IMX和(或)Aβ25-35在不同时间点对细胞存活率的影响;采用相差显微镜观察细胞形态并配以Hoechst染色检测细胞核固缩;用流式细胞仪检测细胞凋亡。结果:(1) IMX浓度高至3.0μM以上时可使细胞活性逐渐降低,与对照组相比差异有显著性意义(在3.0μM和6.0μM组,P<0.01;在12μM组,P<0.001);(2)10-50μM Aβ25-35可使细胞活性逐渐降低,与对照组相比差异有显著性意义(在10-30μM组,P < 0.01;在40-50μM组,P < 0.001);(3)同时给予0.25、0.5、1.0μM的IMX可使细胞活性明显升高,与损伤组相比差异有显著性意义(与损伤组比较,在0.25μM组,P<0.05;在0.5、1.0μM组,P<0.01);(4)Hoechst 33258染色结果显示,Aβ25-35处理组凋亡细胞明显增多,出现核固缩、凋亡小体,凋亡细胞升高至42.4±3.86% (P <0.001),而0.5和1.0μM IMX给药后凋亡细胞明显减少,阳性细胞分别减少至27.4±3.09%和19.2±2.02% (P< 0.001);(5)流式细胞仪实验证实,与正常对照组相比,20μM Aβ25-35处理组细胞凋亡率显著升高,可达20.33±2.02%(P<0.01),1.0μM IMX与Aβ25-35同时孵育后,细胞凋亡率降低至12.4±1.82% (与模型组比较,P<0.01 )。在40μM处理组,Aβ25-35处理组凋亡细胞百分率可从对照组的8.1±1.42%增加至50.2±4.77%,而0.5和1.0μM IMX给药后凋亡细胞百分率分别恢复至33.9±3.09%和24.5±3.47%(P<0.001)。结论:IMX能显著减少Aβ25-35所致的SH-SY5Y细胞凋亡,从而抑制其神经毒性作用。
     第二部分IMX减轻Aβ25-35所致SH-SY5Y细胞tau蛋白磷酸化的作用及其机制研究
     目的:探讨IMX减轻Aβ25-35诱导的SH-SY5Y细胞tau蛋白过度磷酸化的作用及其可能机制。方法:(1)SH-SY5Y细胞分别与0、0.5和1.0μM IMX预孵育24 hr后,加入40μM老化的Aβ25–35,继续孵育48 hr,应用caspase-3活性检测试剂盒观察各组细胞caspase-3活性变化(。2)用0.5μM和1.0μM IMX预处理SH-SY5Y细胞1 hr后,加入终浓度为20μM凝聚态Aβ25-35,再孵育6 hr,应用蛋白免疫印迹的方法,观察tau蛋白在pS396、pS199、pT205位点的磷酸化水平,并检测磷酸化糖原合酶激酶3beta(p-glycogen synthase kinase 3β, p-GSK3β)(Ser9)的表达;(3)同样的方法处理细胞后24 hr和2 hr,应用蛋白免疫印迹的方法,观察c-jun N末端激酶(c-jun N-terminal kinase, JNK)和细胞外信号调节激酶(extracellular signal regulated protein kinases, ERKs)的活化情况,以探讨这些蛋白在tau蛋白磷酸化中的作用。结果:(1)caspase-3蛋白激酶活性在Aβ25–35诱导的AD细胞模型中明显增高,IMX可以降低其激酶活性;(2)空白对照组tau蛋白在pS396、pS199、pT205位点的磷酸化水平较低,Aβ25–35损伤后tau蛋白磷酸化明显增加,IMX给药可以减少损伤组中tau蛋白磷酸化水平;(3)Aβ25–35损伤后p-GSK3β(Ser9)的表达较空白对照组减少,意味着GSK3β的磷酸化增加,而IMX给药可以增加损伤组中p-GSK3β(Ser9)的表达水平,从而抑制GSK3β的磷酸化;(4)空白对照组p-JNK和p-ERK的表达水平较低,Aβ25–35损伤后其表达明显增加,但IMX给药后蛋白表达无明显变化。结论:(1)IMX可通过抑制caspase-3活化,在一定程度减轻凝聚态的Aβ25-35所致的SH-SY5Y细胞凋亡;(2)IMX可以通过抑制tau蛋白在pS396、pS199、pT205位点的磷酸化水平,从而减轻Aβ25–35的细胞毒性;(3)GSK3β参与了Aβ25–35诱导细胞tau蛋白磷酸化的作用,IMX可通过诱导失活形式的p-GSK3β(Ser9)表达增加而抑制GSK3β的活性,进而抑制Aβ诱导的细胞tau蛋白磷酸化;(4)p-JNK和p-ERK没有参与IMX抑制Aβ诱导的细胞tau蛋白磷酸化的作用。
Alzheimer’s disease is a progressive neurodegenerative disease, which is the most common form of dementia. There are as many as 24 million patients in the world and about 4 million people living with Alzheimer’s disease in China. With the progress of the disease, it can cause problems with memory, thinking and behavior severe enough to affect work, daily or social life. AD has become a heaven burden for our society and many families. Up to now, the exact pathogenesis of AD is not clear. It is urgent to elucidate the mechanism of AD and search for new treatments for this debilitating disease.
     Some new recognitions of pathologic feature of AD patients have provided new important clues about the mechanisms of neuronal apoptosis which make us to see new desire of AD therapy. Accumulating data have shown that neuronal death is accompanied by the induction of cell cycle proteins in a variety of experimental neuronal models. It is indicated that post-mitotic neurons attempt to reenter the cell cycle in respond to various neuronal stressors. But due to their post-mitotic state, these neurons enter into an adverse condition which would create a conflict of signals and result in cell death by apoptosis.These results suggest that aberrant cell cycle reentry may be an important mechanism of neuron loss in neurological disorders. Not surprisingly, treatment with pharmacological inhibitors of Cdks may therefore potentiate the role for treatment of AD. However, the development of highly selective clinical therapies targeting Cdks activity is still in its infancy. Some relative reports used in vitro and acute cerebral ischemia models. At present, it is destitute to develop effective, hypotoxic, selective Cdks inhibitors which can pass the blood brain barrier. Indirubin was identified as the active component of Danggui Luhui Wan, a mixture pill of 11 herbal medicines traditionally utilized against certain types of leukemias by the Chinese Academy of Medicine. It is a selective Cdks inhibitor, which can efficiently inhibit the activities of Cdk1, Cdk2 and Cdk5. But the water-solubility and liposolubility are poor. Indirubin-3’-monoxime (IMX), a synthetic derivative of indirubin, is a potent inhibitor of Cdks with low molecular weight, with better solubility characteristics than indirubins. It has hypotoxicity and membrane permeability and acts by competition with ATP at the catalytic site of Cdks. The aim of the present study is to evaluate the neuroprotective effect of IMX against Aβ-induced apoptosis in cultured neuroblastoma SH-SY5Y cells. In addition, we have explored the effect on tau protein hyperphosphorylation and its possible mechanisms.The study included the following two parts:
     PartⅠThe neuroprotective effect of IMX against Aβ25-35-induced apoptosis in cultured neuroblastoma SH-SY5Y cells
     Aim: To investigate the neuroprotective effect of IMX against Aβ25-35-induced apoptosis in cultured neuroblastoma SH-SY5Y cells. Methods: Alzheimer’s disease cellular model was established by cultured neuroblastoma SH-SY5Y cells with Aβ25-35-treatment. Cell Counting Kit 8(CCK-8) assay was used to measure the cell viability of Aβ25-35 and(or) IMX at different time and concentrations.The morphology of SH-SY5Y cell apoptosis of different groups was observed by phase-contrast microscopy and Hoechst 33258 staining. In addition, neuronal apoptosis was measured by a flow cytometric assay. Results: (1) Treatment with a dose of more than 3.0μM IMX resulted in a significant reduction in cell viability, which is compared with the control group (P<0.01 at 3.0 and 6.0μM; P<0.001 at 12.0μM).
     (2)Treatment with a dose of 10-50μM of aged Aβ25–35 for 48 hr and 72 hr or 30-50μM Aβ25–35 for 24 hr resulted in a significant reduction in cell viability, which is compared with that in the control group (P<0.01 at 10-30μM; P<0.001 at 40-50μM).
     (3) Pretreatment with IMX (0.25–1.0μM) concentration-dependently reversed Aβ25–35-induced SH-SY5Y cell death (P<0.05 at 0.25μM; P<0.01 at 0.5 and 1.0μM).
     (4) Aβ25–35-treated cells exhibited highly condensed and fragmented nuclei morphology, which were the typical characteristics of apoptosis. After 48 hr exposure of 40μM of aged Aβ25–35, the number of apoptotic cells was markedly increased to 42.4±3.86% (P< 0.001), which, however, was prevented by the addition of 0.5 and 1.0μM IMX. The percentage of apoptotic cells was 27.4±3.09% and 19.2±2.02%, respectively (n=5, P<0.001). (5) Apoptotic cells of Aβ25–35-treated-alone group were markedly increased to 20.33±2.02% (P<0.01) with 20μM Aβ25-35 treatment. This increase, however, was prevented by the addition of 1.0μM IMX. The percentage of apoptotic cells was 12.4±1.82% (P<0.01). Basal apoptotic cell death was 8.1±1.42% and rose to 50.2±4.77% in cells treated for 48 hr with 40μM of aged Aβ25–35 (n=5, P <0.001). However, pretreatment with 0.5 and 1.0μM of IMX concentration-dependently suppressed the apoptosis induced by 40μM of aged Aβ25–35 for 48 hr, and the percentage of apoptotic cells was 33.9±3.09% and 24.5±3.47%, respectively (n=5, P<0.001). Conclusion: IMX markedly reversed Aβ25–35-induced neurotoxicity, indicating the neuroprotective activity of IMX.
     PartⅡThe effect and its possible mechanisms of IMX on Aβ25-35-induced tau phosphorylation in SH-SY5Y cells
     Aim: To investigate the effect and its possible mechanisms of IMX on Aβ25-35-induced tau phosphorylation in SH-SY5Y cells. Methods: (1) SH-SY5Y was incubated with 0, 0.5 and 1.0μM IMX. Following 24 hr treatment, 40μM of aged Aβ25–35 was added. 48 hr later, caspase-3 activity was measured with the caspase-3 assay kit. (2) 0.5μM and 1.0μM IMX were added in the serum-deprived media of SH-SY5Y cells for 1 hr prior to the 6 hr Aβ25-35 (20μM) exposure. Western blotting analysis was performed to detect tau phosphorylation at the site of pS396, pS199 and pT205 and p-GSK3β(Ser9)expression. (3) The cultures were treated as described above, 24 hr and 2 hr later, western blotting analysis was performed to detect p-JNK and p-ERK expression. Results: (1) Caspase-3 activity was significantly increased in the Aβ25-35 treated group when compared to the control group (P<0.01). These changes were partially prevented by pretreatment with IMX (P<0.05). (2)In the Aβ25-35-treated group, protein levels of phosphorylated tau at the site of pS396, pS199 and pT205 detected by western blotting were significantly increased when compared to the control group (P<0.05). However, these changes were partially or completely prevented by pretreatment with IMX (P<0.05). (3) After Aβ25–35 treatment, the expression of p-GSK3β(Ser9) was decreased, which meaned that GSK3βphosphorylation was increased. However, the expression of p-GSK3β(Ser9) was significantly increased when pretreatment with IMX (P<0.05). (4) The expression of p-JNK and p-ERK were significantly increased in the Aβ25-35-treated group compared to the control group (P<0.05). But there were no significant changes after IMX treatment. Conclusion: (1) IMX can inhibit caspase-3 activity efficiently to ameliorate Aβ25–35-induced neurotoxicity. (2) IMX attenuates Aβ25–35-induced neurotoxicity possibly by inhibiting tau phosphorylation at the site of pS396, pS199 and pT205. (3) IMX decreases tau phosphorylation by inhibiting GSK3βphosphorylation. (4) The expression of p-JNK and p-ERK were not involved the effect of IMX.
引文
1 Zhang ZX, Zahner GE, Roman GC, Liu J, Hong Z, Qu QM, Liu XH, Zhang XJ, Zhou B, Wu CB, Tang MN, Hong X, Li H. Dementia subtypes in china: Prevalence in Beijing, Xian, Shanghai, and Chengdu. Arch Neurol 2005; 62:447-453.
    2 Roberson ED, Mucke L. 100 years and counting: Prospects for defeating Alzheimer's disease. Science 2006; 314:781-784.
    3 Tremblay C, Pilote M, Phivilay A, Emond V, Bennett DA, Calon F. Biochemical characterization of abeta and tau pathologies in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis 2007; 12:377-390.
    4 Choi Y, Kim HS, Shin KY, Kim EM, Kim M, Park CH, Jeong YH, Yoo J, Lee JP, Chang KA, Kim S, Suh YH. Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer's disease models. Neuropsychopharmacology 2007; 32:2393-2404.
    5 Shen Y, He P, Zhong Z, McAllister C, Lindholm K. Distinct destructive signalpathways of neuronal death in Alzheimer's disease. Trends Mol Med 2006; 12:574-579.]
    6 Lim AC, Qi RZ. Cyclin-dependent kinases in neural development and degeneration. J Alzheimers Dis 2003; 5:329-335.
    7 Heintz N. Cell death and the cell cycle: A relationship between transformation and neurodegeneration? Trends Biochem Sci 1993; 18:157-159.
    8 Xu L, Di Q, Zhang Y. Cell cycle proteins preceded neuronal death after chronic cerebral hypoperfusion in rats. Neurol Res 2008; 30:932-939.
    9 Johnson K, Liu L, Majdzadeh N, Chavez C, Chin PC, Morrison B, Wang L, Park J, Chugh P, Chen HM, D'Mello SR. Inhibition of neuronal apoptosis by the cyclin-dependent kinase inhibitor GW8510: Identification of 3' substituted indolones as a scaffold for the development of neuroprotective drugs. J Neurochem 2005; 93:538-548.
    10 Zhang M, Li J, Chakrabarty P, Bu B, Vincent I. Cyclin-dependent kinase inhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in niemann-pick type C mice. Am J Pathol 2004; 165:843-853.
    11 Zheng YL, Kesavapany S, Gravell M, Hamilton RS, Schubert M, Amin N, Albers W, Grant P, Pant HC. A cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. EMBO J 2005; 24:209-220.
    12 Liao X, Zhang Y, Wang Y, Wang J. The effect of cdk5 overexpression on tau phosphorylation and spatial memory of rat. Sci China C Life Sci 2004; 47:251-257.
    13 Tsai LH, Lee MS, Cruz J. Cdk5, a therapeutic target for Alzheimer's disease? Biochim Biophys Acta 2004; 1697:137-142.
    14 Cheung ZH, Ip NY. Cdk5: Mediator of neuronal death and survival. Neurosci Lett 2004; 361:47-51.
    15 Angelo M, Plattner F, Irvine EE, Giese KP. Improved reversal learning and altered fear conditioning in transgenic mice with regionally restricted p25 expression. Eur J Neurosci 2003; 18:423-431.
    16 Camins A, Verdaguer E, Folch J, Canudas AM, Pallas M. The role of cdk5/p25 formation/inhibition in neurodegeneration. Drug News Perspect 2006; 19:453- 460.
    17 Hu J, Geng M, Li J, Xin X, Wang J, Tang M, Zhang J, Zhang X, Ding J. Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein. J Pharmacol Sci 2004; 95:248-255.
    18 Lafay-Chebassier C, Paccalin M, Page G, Barc-Pain S, Perault-Pochat MC, Gil R, Pradier L, Hugon J. Mtor/p70s6k signalling alteration by abeta exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer's disease. J Neurochem 2005; 94:215-225.
    19 Cedazo-Minguez A, Popescu BO, Blanco-Millan JM, Akterin S, Pei JJ, Winblad B, Cowburn RF. Apolipoprotein E and beta-amyloid (1-42) regulation of glycogen synthase kinase-3beta. J Neurochem 2003; 87:1152-1164.
    20 Ma QL, Lim GP, Harris-White ME, Yang F, Ambegaokar SS, Ubeda OJ, Glabe CG, Teter B, Frautschy SA, Cole GM. Antibodies against beta-amyloid reduce abeta oligomers, glycogen synthase kinase-3beta activation and tau phosphorylation in vivo and in vitro. J Neurosci Res 2006; 83:374-384.
    21 Esposito G, De Filippis D, Carnuccio R, Izzo AA, Iuvone T. The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through wnt/beta-catenin pathway rescue in PC12 cells. J Mol Med 2006; 84:253-258.
    22 Iuvone T, De Filippis D, Esposito G, D'Amico A, Izzo AA. The spice sage and itsinduced neurotoxicity. J Pharmacol Exp Ther 2006; 317:1143-1149.
    23 Datki Z, Papp R, Zadori D, Soos K, Fulop L, Juhasz A, Laskay G, Hetenyi C, Mihalik E, Zarandi M, Penke B. In vitro model of neurotoxicity of Abeta 1-42 and neuroprotection by a pentapeptide: irreversible events during the first hour. Neurobiol Dis 2004; 17:507-515.
    24 Avila J, Hernandez F. GSK-3 inhibitors for Alzheimer's disease. Expert Rev Neurother 2007; 7:1527-1533.
    25 Drewes G, Lichtenberg-Kraag B, Doring F, Mandelkow EM, Biernat J, Goris J, Doree M, Mandelkow E. Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer-like state. EMBO J 1992; 11:2131-2138.
    26 Hyman BT, Elvhage TE, Reiter J. Extracellular signal regulated kinases. Localization of protein and mRNA in the human hippocampal formation in Alzheimer's disease. Am J Pathol 1994; 144:565-572.
    27 Avila J, Lucas JJ, Perez M, Hernandez F. Role of tau protein in both physiological and pathological conditions. Physiol Rev 2004;84:361-384.
    28 Johnson GV, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 2004; 117:5721-5729.
    29 Savage MJ, Lin YG, Ciallella JR, Flood DG, Scott RW. Activation of c-jun N-terminal kinase and p38 in an Alzheimer's disease model is associated with amyloid deposition. J Neurosci 2002; 22:3376-3385.
    30 Verdaguer E, Jorda EG, Stranges A, Canudas AM, Jimenez A, Sureda FX, Pallas M, Camins A. Inhibition of cdks: A strategy for preventing kainic acid-induced apoptosis in neurons. Ann N Y Acad Sci 2003; 1010:671-674.
    31 Li G, Faibushevich A, Turunen BJ, Yoon SO, Georg G, Michaelis ML, Dobrowsky RT. Stabilization of the cyclin-dependent kinase 5 activator, p35, bypaclitaxel decreases beta-amyloid toxicity in cortical neurons. J Neurochem 2003; 84:347-362.
    32 Shelton SB, Krishnamurthy P, Johnson GV. Effects of cyclin-dependent kinase-5 activity on apoptosis and tau phosphorylation in immortalized mouse brain cortical cells. J Neurosci Res 2004; 76:110-120.
    33 Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL, Greengard P, Biernat J, Wu YZ, Mandelkow EM, Eisenbrand G, Meijer L. Indirubins inhibit glycogen synthase kinase-3 beta and cdk5/p25, two protein kinases involved in abnormal tau phosphorylation in alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem 2001; 276:251-260.
    1 Vila M, Przedborski S. Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 2003; 4:365-375.
    2 Choi Y, Kim HS, Shin KY, Kim EM, Kim M, Park CH, Jeong YH, Yoo J, Lee JP, Chang KA, Kim S, Suh YH.Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer's disease models. Neuropsychopharmacology 2007; 32:2393-2404.
    3 Shen Y, He P, Zhong Z, McAllister C, Lindholm K. Distinct destructive signal pathways of neuronal death in Alzheimer's disease. Trends Mol Med 2006; 12:574-579.
    4 Becker EB, Bonni A. Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 2004; 72:1-25.
    5 Johnson K, Liu L, Majdzadeh N, Chavez C, Chin PC, Morrison B, Wang L, Park J, Chugh P, Chen HM, D'Mello SR. Inhibition of neuronal apoptosis by the cyclin-dependent kinase inhibitor GW8510: identification of 3' substituted indolones as a scaffold for the development of neuroprotective drugs. J Neurochem 2005; 93:538-548.
    6 Zhang M, Li J, Chakrabarty P, Bu B, Vincent I. Cyclin-dependent kinase inhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in niemann-pick type C mice. Am J Pathol 2004; 165:843-853.
    7 Xiao Z, Hao Y, Liu B, Qian L. Indirubin and meisoindigo in the treatment of chronic myelogenous leukemia in china. Leuk Lymphoma 2002; 43:1763-1768.
    8 Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL, Greengard P, Biernat J, Wu YZ, Mandelkow EM, Eisenbrand G, Meijer L. Indirubins inhibit glycogen synthase kinase-3 beta and cdk5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem 2001; 276:251-260.
    9 Xie Y, Liu Y, Ma C, Yuan Z, Wang W, Zhu Z, Gao G, Liu X, Yuan H, Chen R, Huang S, Wang X, Zhu X, Mao Z, Li M. Indirubin-3'-oxime inhibits c-jun NH2-terminal kinase: Anti-apoptotic effect in cerebellar granule neurons. Neurosci Lett 2004; 367:355-359.
    10 Hardy JA, Higgins GA. Alzheimer's disease: The amyloid cascade hypothesis. Science 1992;256:184-185.
    11 Hu J, Geng M, Li J, Xin X, Wang J, Tang M, Zhang J, Zhang X, Ding J. Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein. J Pharmacol Sci 2004; 95:248-255.
    12 Nishida H, Kushida M, Nakajima Y, Ogawa Y, Tatewaki N, Sato S, Konishi T.Amyloid-beta-induced cytotoxicity of PC-12 cell was attenuated by shengmai-san through redox regulation and outgrowth induction. J Pharmacol Sci 2007; 104:73-81.
    13 Peng Y, Xing C, Lemere CA, Chen G, Wang L, Feng Y, Wang X. L-3-n-butylphthalide ameliorates beta-amyloid-induced neuronal toxicity in cultured neuronal cells. Neurosci Lett 2008; 434:224-229.
    14 Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW. Neurodegeneration induced by beta-amyloid peptides in vitro: The role of peptide assembly state. J Neurosci 1993; 13:1676-1687.
    15秦斌.β-淀粉样蛋白及tau蛋白和Alzheimer病关系的研究.国外医学.老年医学分册.1995;16(6):267-70.
    16 Monaco EA, 3rd, Vallano ML. Role of protein kinases in neurodegenerative disease: Cyclin-dependent kinases in Alzheimer's disease. Front Biosci 2005; 10:143-159.
    17 Wang W, Redecker C, Yu ZY, Xie MJ, Tian DS, Zhang L, Bu BT, Witte OW. Rat focal cerebral ischemia induced astrocyte proliferation and delayed neuronal death are attenuated by cyclin-dependent kinase inhibition. J Clin Neurosci 2008; 15:278-285.
    1 Hardy JA, Higgins GA. Alzheimer's disease: The amyloid cascade hypothesis. Science 1992;256:184-185.
    2 Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A. Tau is essential to beta -amyloid-induced neurotoxicity. Proc Natl Acad Sci U S A 2002; 99:6364-6369.
    3 D'Souza I, Poorkaj P, Hong M, Nochlin D, Lee VM, Bird TD, Schellenberg GD. Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc Natl Acad Sci U S A 1999; 96:5598-5603.
    4 Avila J, Lucas JJ, Perez M, Hernandez F. Role of tau protein in both physiological and pathological conditions. Physiol Rev 2004; 84:361-384.
    5 Drewes G, Lichtenberg-Kraag B, Doring F, Mandelkow EM, Biernat J, Goris J, Doree M, Mandelkow E. Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer-like state. EMBO J 1992; 11:2131-2138.
    6 Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL, Greengard P, Biernat J, Wu YZ, Mandelkow EM, Eisenbrand G, Meijer L. Indirubins inhibit glycogen synthase kinase-3 beta and cdk5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem 2001; 276:251-260.
    7 Xie Y, Liu Y, Ma C, Yuan Z, Wang W, Zhu Z, Gao G, Liu X, Yuan H, Chen R, Huang S, Wang X, Zhu X, Mao Z, Li M. Indirubin-3'-oxime inhibits c-junNH2-terminal kinase: Anti-apoptotic effect in cerebellar granule neurons. Neurosci Lett 2004; 367:355-359.
    8 Haque N, Tanaka T, Iqbal K, Grundke-Iqbal I. Regulation of expression, phosphorylation and biological activity of tau during differentiation in SY5Y cells. Brain Res 1999; 838:69-77.
    9 Zeng H, Chen Q, Zhao B. Genistein ameliorates beta-amyloid peptide (25-35)- induced hippocampal neuronal apoptosis. Free Radic Biol Med 2004; 36:180-188.
    10 Keane RW, Srinivasan A, Foster LM, Testa MP, Ord T, Nonner D, Wang HG, Reed JC, Bredesen DE, Kayalar C. Activation of CPP32 during apoptosis of neurons and astrocytes. J Neurosci Res 1997;48:168-180.
    11 Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 1996; 384:368-372.
    12 Giovanni A, Keramaris E, Morris EJ, Hou ST, O'Hare M, Dyson N, Robertson GS, Slack RS, Park DS. E2F1 mediates death ofβ-amyloid-treated cortical neurons in a manner independent of p53 and dependent on bax and caspase 3. J Biol Chem 2000; 275:11553-11560.
    13 Tomidokoro Y, Ishiguro K, Harigaya Y, Matsubara E, Ikeda M, Park JM, Yasutake K, Kawarabayashi T, Okamoto K, Shoji M. Abeta amyloidosis induces the initial stage of tau accumulation in APP(sw) mice. Neurosci Lett 2001; 299:169-172.
    14 Hu J, Geng M, Li J, Xin X, Wang J, Tang M, Zhang J, Zhang X, Ding J. Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein. J Pharmacol Sci 2004; 95:248-255.
    15 Lafay-Chebassier C, Paccalin M, Page G, Barc-Pain S, Perault-Pochat MC, Gil R,Pradier L, Hugon J. Mtor/p70s6k signalling alteration by abeta exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer's disease. J Neurochem 2005; 94:215-225.
    16 Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK3beta. FEBS Lett 2002; 530:209-214.
    17 Elyaman W, Yardin C, Hugon J. Involvement of glycogen synthase kinase3beta and tau phosphorylation in neuronal golgi disassembly. J Neurochem 2002; 81:870-880.
    18 Irving NG, Miller CC. Tau phosphorylation in cells transfected with wild-type or an Alzheimer's disease mutant presenilin 1. Neurosci Lett 1997; 222:71-74.
    19 Murai H, Okazaki M, Kikuchi A. Tyrosine dephosphorylation of glycogen synthase kinase-3 is involved in its extracellular signal-dependent inactivation. FEBS Lett 1996;392:153-160.
    20 Wang QM, Fiol CJ, DePaoli-Roach AA, Roach PJ. Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. J Biol Chem 1994; 269:14566-14574.
    21 Zheng-Fischhofer Q, Biernat J, Mandelkow EM, Illenberger S, Godemann R, Mandelkow E. Sequential phosphorylation of tau by glycogen synthase kinase-3beta and protein kinase A at thr212 and ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired-helical- filament-like conformation. Eur J Biochem 1998; 252:542-552.
    22 Bhat RV, Shanley J, Correll MP, Fieles WE, Keith RA, Scott CW, Lee CM. Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc Natl Acad Sci U S A 2000; 97:11074-11079.
    23 Stambolic V, Woodgett JR. Mitogen inactivation of glycogen synthase kinase-3beta in intact cells via serine 9 phosphorylation. Biochem J 1994; 303 ( Pt 3):701-704.
    24 Wei W, Wang X, Kusiak JW. Signaling events in amyloid beta-peptide-induced neuronal death and insulin-like growth factor 1 protection. J Biol Chem 2002;
    277:17649-17656.
    25 Reynolds CH, Nebreda AR, Gibb GM, Utton MA, Anderton BH. Reactivating kinase/p38 phosphorylates tau protein in vitro. J Neurochem 1997; 69:191-198.
    [1] Hu J, Geng M, Li J, et al. Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein[J]. J Pharmacol Sci, 2004, 95:248-255
    [2] Lafay-Chebassier C, Paccalin M, Page G, et al. mTOR/p70S6k signalling alteration by Abeta exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer's disease[J]. J Neurochem, 2005,94:215-225
    [3] Nishida H, Kushida M, Nakajima Y, et al. Amyloid-beta-induced cytotoxicity of PC-12 cell was attenuated by Shengmai-san through redox regulation and outgrowth induction[J]. J Pharmacol Sci, 2007,104:73-81
    [4] Yang SF, Wu ZJ, Yang ZQ, et al. Protective effect of ecdysterone on PC12 cells cytotoxicity induced by beta-amyloid25-35[J]. Chin J Integr Med, 2005,11:293-296
    [5] Kosuge Y, Koen Y, Ishige K, et al. S-allyl-L-cysteine selectively protects cultured rat hippocampal neurons from amyloid beta-protein and tunicamycin-induced neuronal death[J]. Neurosci, 2003,122:885-895
    [6] Ito Y, Kosuge Y, Sakikubo T, et al. Protective effect of S-allyl-L-cysteine, a garlic compound, on amyloid beta-protein-induced cell death in nerve growth factor-differentiated PC12 cells[J]. Neurosci Res, 2003,46:119-125
    [7] Feng Z, Zhang JT. Melatonin reduces amyloid beta-induced apoptosis in pheochromocytoma (PC12) cells[J]. J Pineal Res, 2004,37:257-266
    [8] Jang MH, Piao XL, Kim HY, et al. Resveratrol oligomers from Vitis amurensis attenuate beta-amyloid-induced oxidative stress in PC12 cells[J]. Biol Pharm Bull, 2007,30:1130-1134
    [9] Kim HJ, Lee KW, Lee HJ. Protective effects of piceatannol against beta-amyloid-induced neuronal cell death[J]. Ann N Y Acad Sci, 2007,1095:473-482
    [10] Bang OY, Hong HS, Kim DH, et al. Neuroprotective effect of genistein against beta amyloid-induced neurotoxicity[J]. Neurobiol Dis, 2004,16:21-28
    [11] Zeng H, Chen Q, Zhao B. Genistein ameliorates beta-amyloid peptide (25-35)-induced hippocampal neuronal apoptosis[J]. Free Radic Biol Med, 2004,36:180-188
    [12] Lee SY, Lee JW, Lee H, et al. Inhibitory effect of green tea extract on beta-amyloid-induced PC12 cell death by inhibition of the activation of NF-kappaB and ERK/p38 MAP kinase pathway through antioxidant mechanisms[J]. Brain Res Mol Brain Res,2005,140:45-54
    [13] Gao X, Tang XC. Huperzine A attenuates mitochondrial dysfunction in beta-amyloid-treated PC12 cells by reducing oxygen free radicals accumulation and improving mitochondrial energy metabolism[J]. J Neurosci Res, 2006,83:1048-1057
    [14] Qiao H, Koya RC, Nakagawa K, et al. Inhibition of Alzheimer's amyloid-beta peptide-induced reduction of mitochondrial membrane potential and neurotoxicity by gelsolin[J]. Neurobiol Aging, 2005,26:849-855
    [15] Chen CY, Jang JH, Park MH, Hwang SJ, Surh YJ, Park OJ. Attenuation of Abeta-induced apoptosis of plant extract (Saengshik) mediated by the inhibition of mitochondrial dysfunction and antioxidative effect[J]. Ann NY Acad Sci, 2007,1095:399-411
    [16] Valerio A, Boroni F, Benarese M, et al. NF-kappaB pathway: a target for preventing beta-amyloid (Abeta)-induced neuronal damage and Abeta42 production[J]. Eur J Neurosci, 2006,23:1711-1720
    [17] Song YS, Park HJ, Kim SY, et al. Protective role of Bcl-2 on beta-amyloid-induced cell death of differentiated PC12 cells: reduction of NF-kappaB and p38 MAP kinase activation[J]. Neurosci Res, 2004,49:69-80
    [18] Esposito G, De Filippis D, Maiuri MC, et al. Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement[J]. Neurosci Lett, 2006,399:91-95
    [19] Jang JH, Surh YJ. Beta-amyloid-induced apoptosis is associated with cyclooxygenase-2 up-regulation via the mitogen-activated protein kinase-NF-kappaB signaling pathway[J]. Free Radic Biol Med, 2005, 38:1604-1613
    [20] Chen J, Zhou Y, Mueller-Steiner S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling[J]. J Biol Chem, 2005, 280:40364-40374
    [21] Cedazo-Minguez A, Popescu BO, Blanco-Millan JM, et al. Apolipoprotein E and beta-amyloid (1-42) regulation of glycogen synthase kinase-3beta[J]. J Neurochem, 2003,87:1152-1164
    [22] Esposito G, De Filippis D, Carnuccio R, et al. The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through Wnt/beta-catenin pathway rescue in PC12 cells[J]. J Mol Med, 2006,84:253-258
    [23] Iuvone T, De Filippis D, Esposito G, et al. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity[J]. J Pharmacol Exp Ther, 2006,317:1143-1149
    [24] Datki Z, Papp R, Zadori D, et al. In vitro model of neurotoxicity of Abeta 1-42 and neuroprotection by a pentapeptide: irreversible events during the first hour[J]. Neurobiol Dis, 2004,17:507-515
    [25] Johnson K, Liu L, Majdzadeh N, et al. Inhibition of neuronal apoptosis by the cyclin-dependent kinase inhibitor GW8510: identification of 3' substitutedindolones as a scaffold for the development of neuroprotective drugs[J]. J Neurochem, 2005, 93:538-548
    [26] Ramalho RM, Ribeiro PS, Sola S, et al. Inhibition of the E2F-1/p53/Bax pathway by tauroursodeoxycholic acid in amyloid beta-peptide-induced apoptosis of PC12 cells[J]. J Neurochem, 2004,90:567-575
    [27] Li G, Faibushevich A, Turunen BJ, et al. Stabilization of the cyclin-dependent kinase 5 activator, p35, by paclitaxel decreases beta-amyloid toxicity in cortical neurons[J]. J Neurochem, 2003,84:347-362
    [28] Verdaguer E, Jorda EG, Stranges A, et al. Inhibition of CDKs: a strategy for preventing kainic acid-induced apoptosis in neurons[J]. Ann N Y Acad Sci, 2003, 1010:671-674
    [29] Wei W, Wang X, Kusiak JW. Signaling events in amyloid beta-peptide-induced neuronal death and insulin-like growth factor I protection[J]. J Biol Chem, 2002, 277:17649-17656
    [30] Magdesian MH, Nery AA, Martins AH, et al. Peptide blockers of the inhibition of neuronal nicotinic acetylcholine receptors by amyloid beta[J]. J Biol Chem, 2005,280:31085-31090
    [31] Qi XL, Nordberg A, Xiu J, et al. The consequences of reducing expression of the alpha7 nicotinic receptor by RNA interference and of stimulating its activity with an alpha7 agonist in SH-SY5Y cells indicate that this receptor plays a neuroprotective role in connection with the pathogenesis of Alzheimer's disease[J]. Neurochem Int, 2007,51:377-383
    [32] Li XD, Buccafusco JJ. Effect of beta-amyloid peptide 1-42 on the cytoprotective action mediated by alpha7 nicotinic acetylcholine receptors in growth factor-deprived differentiated PC-12 cells[J]. J Pharmacol Exp Ther, 2003,307:670-675
    [33] Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid[J]. Nat Rev Mol Cell Biol, 2003,4:397-407
    [34] Gomez-Brouchet A, Pchejetski D, Brizuela L, et al. Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to amyloid-beta peptide[J]. Mol Pharmacol, 2007, 72:341-349
    [35] Kadowaki H, Nishitoh H, Urano F, et al. Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation[J]. Cell Death Differ, 2005,12:19-24
    [36] Akterin S, Cowburn RF, Miranda-Vizuete A, et al. Involvement of glutaredoxin-1 and thioredoxin-1 in beta-amyloid toxicity and Alzheimer's disease[J]. Cell Death Differ, 2006, 13:1454-1465
    [1] Buee, L.; Bussiere, T.; Buee-Scherrer, V.; Delacourte, A.; Hof, P.R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev. 2000, 33, 95-130.
    [2] Binder, L. I.; Frankfurter, A.; Rebhun, L. I. The distribution of tau in the mammalian central nervous system. J. Cell Biol. 1985, 101, 1371-1378.
    [3] Weingarten, M. D.; Lockwood, A. H.; Hwo, S. Y.; Kirschner, M.W. Protein factor essential for microtubule assembly. Proc. Natl.Acad. Sci. USA 1975, 72, 1858-1862.
    [4] Khatoon, S.; Grundke-Iqbal, I.; Iqbal, K. Guanosine triphosphate binding to beta-subunit of tubulin in Alzheimer's disease brain: role of microtubule-associated protein tau. J. Neurochem. 1995,64, 777-787.
    [5] Harada, A.; Oguchi, K.; Okabe, S.; Kuno, J.; Terada, S.; Ohshima,T.;Sato-Yoshitake, R.; Takel, Y.; Noda, T.; Hirokawa, N. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature (London, United Kingdom) 1994, 369, 488-491.
    [6] Hwang, S. C.; Jhon, D. Y.; Bae, Y. S.; Kim, J. H.; Rhee, S. G.Activation of phospholipase C-gamma by the concerted action of tau proteins and arachidonic acid. J. Biol. Chem. 1996, 271, 18342-18349.
    [7] Stoothoff, W. H.; Johnson, G. V. W. Tau phosphorylation: physiological and pathological consequences. Biochim. Biophys. Acta 2005, 1739, 280-297.
    [8] Selkoe, D. J.; Podlisny, M. B. Deciphering the genetic basis of Alzheimer's disease. Ann. Rev. Genom. Hum. Genet. 2002, 3, 67-99.
    [9] Hardy, J. A.; Higgins, G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992, 256, 184-185.
    [10] Coria, F.; Castano, E. M.; Frangione, B. Brain amyloid in normal aging and cerebral amyloid angiopathy is antigenically related to Alzheimer's disease beta-protein. Am. J. Pathol. 1987, 129, 422-428.
    [11] D'Souza, I.; Poorkaj, P.; Hong, M.; Nochlin, D.; Lee, V. M. Y.;Bird, T. D.; Schellenberg, G. D. Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonismchromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc. Natl. Acad. Sci. USA 1999, 96,5598-5603.
    [12] Grossman, M.; Farmer, J.; Leight, S.; Work, M.; Moore, P.; Van, D. V; Pratico, D.; Clark, C. M.; Coslett, H. B.; Chatterjee, A.; Gee, J.; Trojanowski, J. Q.; Lee, V. M. Y. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer's disease. Ann. Neurol.2005, 57, 721-729.
    [13] Hampel, H.; Burger, K.; Pruessner, J. C.; Zinkowski, R.; DeBernardis, J.; Kerkman, D.; Leinsinger, G.; Evans, A. C.; Davies, P.; Moller, H.; Teipel, S. J. Correlation of cerebrospinal fluid levels of tau protein phosphorylated at threonine231 with rates of hippocampal atrophy in Alzheimer disease. Arch. Neurol. 2005, 62, 770-773.
    [14] Stokin, G. B.; Lillo, C.; Falzone, T. L.; Brusch, R. G.; Rockenstein, E.; Mount, S. L.; Raman, R.; Davies, P.; Masliah, E.; Williams, D. S.; Goldstein, L. S. B. Axonopathy and Transport Deficits Early in the Pathogenesis of Alzheimer's Disease. Science 2005, 307, 1282-1288.
    [15] SantaCruz, K.; Lewis, J.; Spires, T.; Paulson, J.; Kotilinek, L. Ingelsson, M.; Guimaraes, A.; DeTure, M.; Ramsden, M.; McGowen, E.; Forster, C.; Yue, M.; Orne, J.; Janus, C.; Mariash, A.; Kuskowski, M.; Hymen, B.; Hutton, M.; Ashe, K. H.; Tau suppression in a Neurodegenerative Mouse Model Improves Memory Function. Science 2005, 309, 476-481.
    [16] Feinstein, S. C.; Wilson, L. Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim. Biophys. Acta 2005, 1739, 268-279.
    [17] Higuchi, M.; Zhang, B.; Forman, M. S.; Yoshiyama, Y.; Trojanowski, J. Q.; Lee, V. M. Y. Axonal gegeneration induced by targeted expression of mutant human tau on oligodendrocytes of transgenic mice that model glial tauopathies. J. Neurosci. 2005, 25, 9434-9443.
    [18] Park, S. Y.; Ferreira, A. The generation of a 17 kDa neurotoxic fragment: An alternative mechanism by which tau mediates betaamyloid-induced neurodegeneration. J. Neurosci. 2005, 25, 5365-5375.
    [19] Morishima-Kawashima, M.; Hasegawa, M.; Takio, K.; Suzuki, M.;Yoshida, H.; Titani, K.; Ihara, Y. Proline-directed and non-prolinedirected phosphorylation of PHF-tau. J. Biol. Chem. 1995, 270,823-829.
    [20] Hanger, D. P.; Betts, J. C.; Loviny, T. L. F.; Blackstock, W. P.;Anderton, B. H. New phosphorylation sites identified in hyperphosphorylated tau (paired helical
    filament-tau) from Alzheimer's disease brain using nanoelectrospray mass spectrometry. J. Neurochem. 1998, 71, 2465-2476.
    [21] Ferrer, I.; Gomez-Isla, T.; Puig, B.; Freixes, M.; Ribe, E.; Dalfo, E.; Avila, J. Current advances on different kinases involved in Tau phosphorylation, and implications in Alzheimer's disease and tauopathies. Curr. Alzheimer Res. 2005, 2, 3-18.
    [22] Lee, K. Y.; Clark, A. W.; Rosales, J. L.; Chapman, K.; Fung, T.; Johnston, R. N. Elevated neuronal Cdc2-like kinase activity in the Alzheimer disease brain. Neurosci. Res. 1999, 34, 21-29.
    [23] Cruz, J. C.; Tsai, L. H. Cdk5 deregulation in the pathogenesis of Alzheimer's disease. Trends Mol. Med. 2004, 10, 452-458.
    [24] Tsai, L. H.; Lee, M. S.; Cruz, J. Cdk5, a therapeutic target for Alzheimer's disease? Biochim. Biophys. Acta 2004, 1697, 137-142.
    [25] Smith, D. S.; Tsai, L. H. Cdk5 behind the wheel: a role in trafficking and transport? Trends Cell Biol. 2002, 12, 28-36.
    [26] Lee, M. S.; Kwon, Y. T.; Li, M.; Peng, J.; Friedlander, R. M.; Tsai, L. H. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature (Lond) 2000, 405, 360-364.
    [27] Noble, W.; Olm, V.; Takata, K.; Casey, E.; O, M.; Meyerson, J.; Gaynor, K.; LaFrancois, J.; Wang, L.; Kondo, T.; Davies, P.;Burns, M.; Veeranna; Nixon, R.; Dickson, D.; Matsuoka, Y.; Ahlijanian, M.; Lau, L. F.; Duff, K. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 2003, 38, 555-565.
    [28] Cruz, J. C.; Tseng, H. C.; Goldman, J. A.; Shih, H.; Tsai, L. H. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 2003, 40, 471-483.
    [29] Zhang, M.; Li, J.; Chakrabarty, P.; Bu, B.; Vincent, I. Cyclindependent kinaseinhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in Niemann-Pick type C mice. Am. J. Pathol. 2004, 165, 843-853.
    [30] Tsai, Li Huei. Presented at "Alzheimer's Disease: From Molecular Mechanisms to Drug Discovery", Cancun 13 December 2004.
    [31] Tarricone, C.; Dhavan, R.; Peng, J.; Areces, L. B.; Tsai, L. H.; Musacchio, A. Structure and regulation of the CDK5-p25nck5a complex. Mol. Cell 2001, 8, 657-669.
    [32] Zheng, Y. L.; Kesavapany, S.; Gravell, M.; Hamilton, R. S.; Schubert, M.; Amin, N.; Albers, W.; Grant, P.; Pant, H. C. A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. EMBO J. 2005, 24, 209-220.
    [33] McInnes, C.; Andrews, M. J. I.; Zheleva, D. I.; Lane, D. P.;Fischer, P. M. Peptidomimetic design of CDK inhibitors targeting the recruitment site of the cyclin subunit. Curr. Med. Chem. Anti-Cancer Agents 2003, 3, 57-69.
    [34] Battaglia, F.; Trinchese, F.; Liu, S.; Walter, S.; Nixon, R. A.;Arancio, O. Calpain inhibitors, a treatment for Alzheimer's disease: Position paper. J. Mol. Neurosci. 2003, 20, 357-362.
    [35] Ray, S. K.; Banik, N. L. Calpain and its involvement in the pathophysiology of CNS injuries and diseases: Therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr. Drug Targets: CNS Neurol. Disord. 2003, 2, 173-189.
    [36] Liu, F.; Su, Y.; Li, B.; Zhou, Y.; Ryder, J.; Gonzalez-DeWhitt, P.; May, P. C.; Ni, B. Regulation of amyloid precursor protein (APP) phosphorylation and processing by p35/Cdk5 and p25/Cdk5. FEBS Lett. 2003, 547, 193-196.
    [37] Bhat, R. V.; Haeberlein, S. L. B.; Avila, J. Glycogen synthase kinase 3 : A drug target for CNS therapies. J. Neurochem. 2004, 89, 1313-1317.
    [38] Pei, J. J.; Tanaka, T.; Tung, Y. C.; Braak, E.; Iqbal, K.; Grundke-Iqbal, I. Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimerdisease brain. J. Neuropath. Exp. Neurology 1997, 56, 70-78.
    [39] Jackson, G. R.; Wiedau-Pazos, M.; Sang, T. K.; Wagle, N.; Brown, C. A.; Massachi, S.; Geschwind, D. H. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 2002, 34, 509-519.
    [40] Lucas, J. J.; Hernandez, F.; Gomez-Ramos, P.; Moran, M. A.; Hen, R.; Avila, J. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J. 2001, 20, 27-39.
    [41] Bhat, R. V.; Shanley, J.; Correll, M. P.; Fieles, W. E.; Keith, R. A.;Scott, C. W.; Lee, C. M. Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc. Natl. Acad. Sci. USA 2000, 97, 11074-11079.
    [42] Wagner, U.; Utton, M.; Gallo, J. M.; Miller, C. C. J. Cellular phosphorylation of tau by GSK-3beta influences tau binding to microtubules and microtubule organization. J. Cell Sci. 1996, 109,1537-1543.
    [43] Spittaels, K.; Van den Haute, C.; Van Dorpe, J.; Geerts, H.;Mercken, M.; Bruynseels, K.; Lasrado, R.; Vandezande, K.;Laenen, I.; Boon, T.; Van Lint, J.; Vandenheede, J.; Moechars, D.;Loos, R.; Van Leuven, F. Glycogen synthase kinase-3beta phosphorylates protein tau and rescues the axonopathy in the central nervous system of human four-repeat tau transgenic mice. J.Biol. Chem. 2000, 275, 41340-41349.
    [44] Cohen, P.; Goedert, M. GSK3 inhibitors: development and therapeutic potential. Nat. Rev. Drug Discov. 2004, 3, 479-487.
    [45] Phiel, C. J.; Klein, P. S. Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 789-813.
    [46] Bhat, R.; Xue, Y.; Berg, S.; Hellberg, S.; Ormo, M.; Nilsson, Y.;Radesater, A.;Jerning, E.; Markgren, P.; Borgegard, T.; Nylof, M.;Gimenez-Cassina, A.; Hernandez, F.; Lucas, J. J.; Diaz-Nido, J.;Avila, J. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J. Biol. Chem. 2003, 278, 45937-45945.
    [47] Noble, W.; Planel, E.; Zehr, C.; Olm, V.; Meyerson, J.; Suleman,F.; Gaynor, K.; Wang, L.; LaFrancois, J.; Feinstein, B.; Burns, M.; Krishnamurthy, P.; Wen, Y.; Bhat, R.; Lewis, J.; Dickson, D.;Duff, K. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc.Natl. Acad. Sci. USA 2005, 102, 6990-6995.
    [48] Phiel, C. J.; Wilson, C. A.; Lee, V. M. Y.; Klein, P. S. GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides.Nature 2003, 423, 435-439.
    [49] Su, Y.; Ryder, J.; Li, B.; Wu, X.; Fox, N.; Solenberg, P.; Brune, K.;Paul, S.; Zhou, Y.; Liu, F.; Ni, B. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. Biochemistry 2004, 43, 6899-6908.
    [50] Pei, J. J.; Braak, H.; An, W. L.; Winblad, B.; Cowburn, R. F.;Iqbal, K.; Grundke-Iqbal, I. Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer's disease. Mol. Brain Res. 2002, 109, 45-55.
    [51] Zhu, X.; Castellani, R. J.; Takeda, A.; Nunomura, A.; Atwood, C.S.; Perry, G.; Smith, M. A. Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the 'two hit' hypothesis. Mech. Ageing Develop. 2001, 123, 39-46.
    [52] Pei, J. J.; Gong, C. X.; An, W. L.; Winblad, B.; Cowburn, R. F.;Grundke-Iqbal, I.; Iqbal, K. Okadaic-acid-induced inhibition of protein phosphatase 2A produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6,similar to that in Alzheimer's disease. Am. J. Pathol. 2003, 163, 845-858.
    [53] Rapoport, M.; Ferreira, A. PD98059 prevents neurite degeneration induced by fibrillar beta-amyloid in mature hippocampal neurons.J. Neurochem. 2000, 74, 125-133.
    [54] Li, Y.; Liu, L.; Barger, S. W.; Griffin, W. S. T. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J. Neurosci. 2003, 23, 1605-1611.
    [55] Lambourne, S. L.; Sellers, L. A.; Bush, T. G.; Choudhury, S. K.;Emson, P. C.; Suh, Y. H.; Wilkinson, L. S. Increased tau phosphorylation on mitogen-activated protein kinase consensus sites and cognitive decline in transgenic models for Alzheimer's disease and FTDP-17: Evidence for distinct molecular processes underlying tau abnormalities. Mol. Cell. Biol. 2005, 25, 278-293.
    [56] Harris, F. M.; Brecht, W. J.; Xu, Q.; Mahley, R. W.; Huang, Y. Increased tau Phosphorylation in Apolipoprotein E4 Transgenic Mice Is Associated with Activation of Extracellular Signalregulated Kinase: Modulation by Zinc. J. Biol. Chem. 2004, 279, 44795-44801.
    [57] Yasojima, K.; Kuret, J.; DeMaggio, A. J.; McGeer, E.; McGeer, P. L. Casein kinase 1 delta mRNA is upregulated in Alzheimer disease brain. Brain Res. 2000, 865, 116-120.
    [58] Li, G.; Yin, H.; Kuret, J. Casein Kinase 1 Delta Phosphorylates Tau and Disrupts Its Binding to Microtubules. J. Biol. Chem. 2004, 279,15938-15945.
    [59] Litersky, J. M.; Johnson, G. V. W.; Jakes, R.; Goedert, M.; Lee, M.; Seubert, P. Tau protein is phosphorylated by cyclic AMPdependent protein kinase and calcium/calmodulin-dependent protein kinase II within its microtubule-binding domains at Ser-262 and Ser-356. Biochem. J. 1996, 316 (Pt 2), 655-660.
    [60] Sironi, J. J.; Yen, S. H.; Gondal, J. A.; Wu, Q.; Grundke-Iqbal, I.; Iqbal, K. Ser-262 in human recombinant tau protein is a markedly more favorable site for phosphorylation by CaMKII than PKA or PhK. FEBS Lett. 1998, 436, 471-475.
    [61] Yamamoto, H.; Hiragami, Y.; Murayama, M.; Ishizuka, K.; Kawahara, M.; Takashima, A. Phosphorylation of tau at serine 416 by Ca2+/calmodulin-dependent protein kinase II in neuronal soma in brain. J. Neurochem. 2005, 94, 1438-1447.
    [62] Rongo, C. A fresh look at the role of CaMKII in hippocampal synaptic plasticity and memory. BioEssays 2002, 24, 223-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700