8-羟基喹啉金属配合物功能化聚合物的RAFT法合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过可逆加成断裂链转移(Reversible Additional-Fragmentation Chain Transfer, RAFT)聚合法,合成了三种不同类型的聚合物,利用聚合物侧链或者端基含有的8-羟基喹啉可配位基团与铝离子进行配位,分别制备了三种高分子化的8-羟基喹啉铝(Alq3)金属配合物。同时对三种不同的Alq3功能化聚合物进行了紫外和荧光性能的考察。
     本论文的主要研究内容如下:
     (1)合成了含有8-羟基喹啉基团的烯类单体2-((8-hydroxyquinoline-5-yl)methoxy)ethyl methacrylate (HQHEMA),分别和苯乙烯(styrene, St)以及甲基丙烯酸甲酯(methyl methacrylate, MMA)进行了共聚。共聚反应采用二硫代萘甲酸异丁腈酯(2-cyanoprop-2-yl dithionaphthalenoate, CPDN)为RAFT试剂,偶氮二异丁腈(2,2’-Azobisisobutyronitrile, AIBN)为引发剂。聚合过程呈现“活性”/可控特征。利用聚合物侧链带有的8-羟基喹啉基团,和异丙醇铝以及醋酸锌进行了配位反应,制备了高分子化的含8-羟基喹啉铝/锌基团的聚合物。得到的聚合物在一般有机溶剂里具有较好的溶解性。通过GPC, 1H NMR, UV-vis和荧光光谱对得到的聚合物进行了表征。
     (2)合成了甲基丙烯酸酯类的偶氮单体,甲基丙烯酸-6-(4′-甲氧基-4″-氧-偶氮苯)己酯(6-[4-(4-methoxyphenylazo)phenoxy]hexylmethactylate, MMAZO)。以CPDN作为RAFT试剂,AIBN作为引发剂的条件下进行了MMAZO和HQHEMA的共聚合,得到了含有不同比例偶氮苯基团的共聚物。通过配位化学反应合成了侧链既含有偶氮苯基团,同时又含有8-羟基喹啉铝基团的聚合物。紫外吸收标准曲线法和电感耦合等离子体原子发射光谱法(ICP-ACS)表征了配位后聚合物中金属铝离子的含量。利用偶氮苯基团在紫外光照条件下的顺-反异构化的特性,考察了配位后的聚合物在不同紫外光照时间条件下的紫外和荧光性能。
     (3)合成带有8-羟基喹啉基团的黄原酸酯(O-ethyl S-(8-hydroxyquinolin-5-yl)methyl carbonodithioate,HQ-MADIX),并以HQ-MADIX为RAFT试剂调控了醋酸乙烯酯(vinyl acetate, VAc)的聚合。聚合过程呈现“活性”/可控的特征。利用聚合物端基8-羟基喹啉基团的可配位性,制备合成了末端含有8-羟基喹啉铝基团的聚醋酸乙烯酯。考察了配位后的聚合物在溶液状态和膜状态下的紫外和荧光性能。
In this thesis, three different Alq3-Functionalized polymers were synthesized via RAFT (co)polymerization technique. The optical properties were also investigated.
     The main work in this thesis is summarized as following:
     (1) (2-((8-hydroxyquinoline-5-yl) methoxy) ethyl methacrylate, HQHEMA) was successfully synthesized. The copolymerizations of HQHEMA with styrene (St) or methyl methacrylate (MMA) were carried out in the presence of 2-cyanoprop-2-yl dithionaphthalenoate (CPDN), respectively. The polymerization behaviors showed the typical‘living’natures by the first-order polymerization kinetics, the linear dependence of molecular weights of the polymers on the monomer conversions with the relatively narrow molecular weight distributions (PDI), and the successful chain extension experiments. The soluble polymers having tris(8-hydroxyquinoline)aluminum (Alq3) and bis(8-hydroxyquinoline) znic(II) (Znq2) units were obtained via complexation reaction between the polymers and aluminium isopropoxide or zinc acetate in the presence of monomeric 8-hydroxyquinoline, respectively, which had strong fluorescent emission at 520 nm. The obtained polymers were characterized by GPC, 1H NMR, UV-vis and fluorescent spectra.
     (2) Monomer containing azobenzene unit, (6-[4-(4-methoxyphenylazo) phenoxy] hexylmethacrylate (MMAZO), was synthesized and copolymerized with HQHEMA using CPDN as the RAFT agent and AIBN as the initiator. The obtained polymers were coordinated with aluminium isopropoxide in the presence of monomeric 8-hydroxyquinoline and the Alq3-functionalized polymers were obtained. The concentration of the Al3+ was tested by UV-vis standard curve and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The fluorescent intensity of the polymer increased with UV-vis irradiation time.
     (3) A novel RAFT agent containing 8-hydroxyquinoline unit, O-ethyl S-(8-hydroxyquinolin-5-yl)methyl carbonodithioate (HQ-MADIX), was successfully synthesized and employed to mediate the polymerization of vinyl acetate (VAc). The polymerization behaviors showed the typical‘living’natures. The 8-hydroxyquinoline unit was successfully introduced into the end of the polymer chain. The end-capped Alq3-functionalized polymer was synthesized via coordination reaction with aluminium isopropoxide in the presence of monomeric 8-hydroxyquinoline in THF. The UV-vis and fluorescent spectra indicated that the polymer showed the similar optical properties of Alq3 both in the solution and thin film state.
引文
(1) Li J, Sano T, Hirayama Y, et al. Multilayer green polymer light emitting diodes with improved efficiency and lifetime. J Appl Phys, 2006, 100, 034506.
    (2) Grozea D, Turak A, Yuan Y, et al. Enhanced thermal stability in organic light-emitting diodes through nanocomposite buffer layers at the anode/ organic interface. J Appl Phys, 2007, 101, 033522.
    (3) Jiang Y, Wang J, Yu J, et al. High-efficiency white organic light-emitting devices based on phosphorescent iridium complex and NPB emitters. Jpn J Appl Phys, 2007, 46, 523 - 525
    (4) Tao Y, Donal-Bouillud A, Lam J, et al. Organic light emitting di-odes based on end-substituted oligo(phenylenevinylene)s. Thin Solid Films, 2000, 363, 298 - 301.
    (5) Kim S -H, Cui J -Z, Park J -Y, et al. Synthesis and light emitting prop-erties of polymeric metal complexes dyes based on hyrdroxyquinoline moiety. Dyes and Pigments, 2003, 59, 245 - 250
    (6) Martin R E, Genester F, Holmes A B. Synthesis of conjugated polymers for application in light-emitting diodes. J Physical Chemistry, 2000, 5, 447 - 470.
    (7) Wu Q, Esteghamatian M, Hu N -X, et al. Isomerism and blue elec-troluminescence of a novel organoboron compound: B-2(Ⅲ)(O) (7-azain)(2)Ph-2. Angew Chem, Int Ed., 1999, 38, 985 - 988
    (8) Tang C. W, Vanslyke S. A. Organic electroluminescent diodes. Appl Phys Lett, 1987, 51, 913 - 915.
    (9) Hopkins T A,Meerholz K,Shaheen S,et a1.Substituted Alminum and Zinc Quinolates with Blue-shifted Absorbance / Luminescence Bands:Synthesis and Spectroscopic, Photoluminescence, and Electroluminescence Characterization.Chem. Mater, 1996, 8, 344 - 351.
    (10) Hamada Y,Sano T,Shibata K,et a1.Influence of the emission site on the running durability of organic electroluminescent devices.App1. Phys, 1995,34, 1824 - 1826
    (11) Prat M D,Compano R,Beltran J L,Condony R.[J].J Fluorescence,1994,14, 4.
    (12) Fujii Akihiko, Ohmori Yutaka , Morishima Chikayoshi Yoshino Katsumi . Efficient energy transler in organic muhilayer strncture utilizing 8-hydroxyquinoline aluminum and aromalic dismine[J].J pn J Appl Phys,1994,33(3A), 348.
    (13) HAMADA Y,SANO T,et a1.Organic electroluminescent devices with 8-hydroxyquinoline derivative-metal complexes as an emitter. Jpn. J. Appl. Phys. 1993, 32, L514-L515.
    (14) B. J. Chena) and X. W. Sunb Influences of central metal ions on the electroluminescene and transport properties of tris-.8-hydroxyquinoline metal chelates. Appl. Phys. Lett., 2003, 82, 3017 - 3019.
    (15) Yin S, Hua Y, Chen X, et al. Improved efficiency of molecular organic EL devices based on super molecular structure. Synth Met, 2000, 111-112, 109 - 112
    (16) Jang H, Do L M, Kim Y, et al. Synthesis and luminescence behaviors of aluminum complex with mixed ligands. Synth Met, 2001, 121, 1669 - 1670.
    (17) Ghedini M, Deda M L, Aiello I, et al. Synthesis and photophysical characterization of soluble photoluminescent metal complexes with substituted 8-hydroxyquinolines. Synth Met., 2003, 138, 189 - 192.
    (18)黄剑,曹镛.有机电致发光材料研究进展。化工新型材料, 2001, 29, 10 - 15.
    (19) Friend R H, Gymer R W, Holmes A B, et al. Nature, 1999, 397, 121.
    (20) Sung H K, Jian Z C, Jin Y P, et al. Synthesis and light emitting properties of polymeric metal complex dyes based on hydroxyquinoline moiety. Dyes and Pigments, 2002, 55, 91
    (21) Yu J, Chen Z, Miyata S. Organic electroluminescent device fabricated with chemical vapor deposited bis(8-hydroxy-5-quinolyl)-methane aluminum chelate polymer film. Synth Met., 2001, 123, 239 - 243.
    (22) ThomsenⅢD L, Phely-Bobin T, Papadimitrakopoulos F. [J]. J Am Chem Soc, 1998, 120, 6177.
    (23) Lu J P, Hlil A R, Meng Y Z et al. Synthesis and characterization of a novel AlQ3-containing polymer. J Polymer Science: Part A, 2000, 38, 2887.
    (24) Meyers A, Weck M. Design and Synthesis of Alq3-Functionalized Polymers. Macromolecules, 2003, 36, 1766.
    (25) Q. B. Mei, N. Y .Du, M .G. Lu. Synthesis, characterization and thermal properties of metaloquinolate-containing polymers. European Polymer Journal, 2007, 43, 2380 - 2386
    (26) C. M. Liu, F. Hu. End-capped polystyrene with 8-hydroxyquinoline group by ATRP method. Polymer, 2006, 47, 2962 - 2969.
    (27) X. W. Xia, et al. Zn(II) based mixed complex with 8-hydroxyquinoline end group functionalized PSt and the study of fluorescent properties. Optical Materials , 2005, 27, 1350 - 1357
    (28) Angiolini, I.; Bozio, R.; Giorgini, L.; Pedron, D.; Turco, G.; Dauru, A. Photomodulation of the Chiroptical Properties of New Chiral Methacrylic polymers with Chain Azobenzene Moieties. Chem Eur, 2002, 8, 4241 - 4247
    (29) Hore, D.K.; Natansohn A.L.; Rochon P.L. Anomalous Cis Isomer Orientation in a Liquid CRYSTALLINE Azo Polymer on Irradiation with Linearly-Polarized Light. J. Phys. Chem B, 2003, 107, 2197 - 2204.
    (30) Morikawa, Y.; Nagano, S.; Watanabe, K.; Kamata, K.; Iyoda, T.; Seki, T. Optical Alignment and Patterning of Nanoscale Microdomains in a Block Copolymer Thin film. Adv. Mater, 2006, 18, 883 - 886.
    (31) Natansohn, A.; Rochon, P., Photoinduced Motions in Azo-Containing Polymers, Chem. Rev. 2002, 102, 4139 - 4175.
    (32) H, Rau. Spectroscopic Properties of Organic Azo Compounds. Angew. Chem., Int. Ed, 1973, 12, 224 - 235.
    (33) Simomura, M.; kunitake, T. Fluorescence and photoisomerization of azobenzene-containing bilayer membranes. J. Am. Chem. Soc., 1987, 109, 5175- 5183.
    (34) Han, M.; Hara, M. Intense Fluorescence from Light-Driven Self-Assembled Aggregates of Nonionic Azobenzene Derivative. J. Am. Chem. Soc., 2005, 127, 10951 - 10955.
    (35) Han, M.; Hirayama, Y.; Hara, M. Fluorescence Enhancement from Self-Assembled Aggregates: Substituent Effects on Self-Assembly of Azobenzenes. Chem. Mater., 2006, 18, 2784 - 2786.
    (36) Tsuda K.; Dol G. C.; Gensch T.; Hofkens J.; Latterini L.; Weener J. W.; Meijer E. W.; Schryver F. C. Fluorescence from Azobenzene Functionalized Poly(propylene imine) Dendrimers in Self-Assembled Supramolecular Structures. J. Am. Chem. Soc., 2000,122, 3445 - 3452.
    (37) Bo, Q.; Zhao, Y. Fluorescence from an Azobenzene-Containing Diblock Copolymer Micelle in Solution. Langmuir, 2007, 23, 5746 - 5751.
    (38) Shimomura, M.; Kunitake, T. Fluorescence and photoisomerization of azobenzene-containing bilayer membranes. J. Am. Chem. Soc., 1987, 109, 5175 - 5183.
    (39) Tsuda, K.; Dol, G. C.; Gensch, T.; Hofkens, J.; Latterini, L.; Weener, J. W.; Meijer, E. W.; De Schryver, F. C. Fluorescence from Azobenzene Functionalized Poly(propylene imine) Dendrimers in Self-Assembled Supramolecular Structures. J. Am. Chem. Soc., 2000, 122, 3445 - 3452.
    (40) Kuiper, J. M.; Engberts, B. F. N. H-Aggregation of Azobenzene-Substituted Amphiphiles in Vesicular Membranes. Langmuir, 2004, 20, 1152 - 1160.
    (41) Han, M. R.; Hirayama, Y.; Hara, M. Fluorescence Enhancement from Self-Assembled Aggregates: Substituent Effects on Self-Assembly of Azobenzenes. Chem. Mater., 2006, 18, 2784 - 2786.
    (42) Bo, Q.; Zhao, Y. Fluorescence from an Azobenzene-Containing Diblock Copolymer Micelle in Solution. Langmuir, 2007, 23, 5746 - 5751.
    (43) Guojie Wang et al. Preparation and characterization of a novel poly(1,4-phenylenevinylene) derivative with an azobenzene side chain. Macromol Rapid Commun., 1999, 20, 591 - 594.
    (44) T. Matsui et al. Novel properities of conducting polymers containing azobenzene moieties in side chain. Synthetic Metals., 2001, 119, 599 - 600.
    (45) Elizabeth J. Harbron,* Diego A. Vicente, Deana H. Hadley, and Matthew R. Imm. Phototriggered Fluorescence Color Changes in Azobenzene-Functionalized Conjugated Polymers. J. Phys. Chem. A. 2005, 109, 10846 - 10853
    (46) Otsu T, Yoshida M, Tazaki T. A model for living radical polymerization. Makromol. Chem. Rapid Commun., 1982, 3, 133.
    (47) Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules, 1993, 26, 2987 - 2988.
    (48) [5a] Wang, J. S.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes J. Am. Chem. Soc 1995, 117: 5614-5615; [5b] Xia, J. H.; Matyjaszewski, K. Controlled/“Living”Radical Polymerization Homogeneous Reverse Atom Transfer Radical Polymerization Using AIBN as the Initiator. Macromolecules,1997, 30, 7692 - 7696.
    (49) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride /Dichlorotris- (triphenylphosphine) ruthenium(II)/Methylaluminum Bis(2,6-di-tertbutylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules, 1995, 28, 1721 - 1723.
    (50) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Rizzardo, E.; Thang, S. H. Living Free-Radical Polymerization by Reversible Addition- Fragmentation Chain Transfer: The RAFT Process. Macromolecules, 1998, 31, 5559 - 5562.
    (51) Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S. Ultrafast Synthesis of Ultrahigh Molar Mass Polymers by Metal-Catalyzed Living Radical Polymerization of Acrylates, Methacrylates, and Vinyl Chloride Mediated by SET at 25°C J. Am. Chem. Soc., 2006, 128, 14156 - 14165.
    (52) Hawthorne, D. G.; Moad, G.; Rizzardo, E.; Thang, S. H. Living Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT): Direct ESR Observation of Intermediate Radicals. Macromolecules, 1999, 32, 5457 - 5459.
    (53) Barner-Kowollik, C.; Quinn, J. F.; Morsley, D. R.; Davis T. P. Modeling the reversible addition-fragmentation chain transfer process in cumyl dithiobenzoate-mediated styrene homopolymerizations: Assessing rate coefficients for the addition-fragmentation equilibrium. J. Polym. Sci., Part A: Polym. Chem , 2001, 39, 1353 - 1365.
    (54) Barner-Kowollik, C.; Quinn, J. F.; Nguyen, T. L. U.; Heuts, J. P. A.; Davis, T. P. Kinetic Inverstigations of Reversible Addition Fragmentation Chain Transfer Polymerizations: Cumyl Phenyldithioacetate Mediated Homopolymerizations of Styrene and Mehtyl Methacrylate. Macromolecules, 2001, 34, 7849 - 7857.
    (55) Krstina, J.; Moad, C. L.; Moad, G.; Rizzardo, E.; Berge, C. T.; Fryd, M. preparation of block copolymer with low dispersity by radical polymerization. Macromol. Symp, 1996, 111, 13 - 22.
    (56) Barner, L.; Barner-Kowollik, C.; Davis, T. P.; Stenzel-Martina, H. Complex molecular architecture polymers via RAFT. Aust. J. Chem., 2004, 57, 19 - 24.
    (57) Shi, L.; Chapman, T. M.; Beckman, E. J. Poly(ethylene glycol)-block-poly (N-vinylformamide) Copolymers Synthesized by the RAFT Methodology.Macromolecules, 2003, 36, 2563 - 2567.
    (58) Petersen, H.; Fechner, P. M.; Fischer, D.; Kissel, T. Synthesis, Characterization, and Biocompatibility of Polyethylenimine-graft-poly(ethylene glycol) Block Copolymers. Macromolecules, 2002, 35, 6867 - 6874.
    (59) Li, Y. G.; Shi, P. J.; Zhou, Y.; Pan, C. Y. Synthesis and characterization of block comb-like copolymers P(A-MPEO)-block-PSt. Polym. Int., 2004, 53, 349 - 354.
    (60) Mayadunne, R. T. A.; Jeffery, J.; Moad, G.; Rizzardo, E. Living Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization): Approaches to Star Polymers. Macromolecules, 2003, 36, 1505 - 1513.
    (61) Zheng, Q.; Pan, C. Y. Preparation and characterization of dendrimer-star PNIPAAM using dithiobenzoate-terminated PPI dendrimer via RAFT polymerization. European Polymer Journal, 2006, 42, 807 - 814.
    (62) Barner, L. Surface Grafting via the Reversible Addition–Fragmentation Chain-Transfer (RAFT) Process: From Polypropylene Beads to Core–Shell Microspheres. Aust. J. Chem. 2003, 56, 1091-1093.
    (63) Lowe, A. B.; Sumerlin, B. S.; Donovan, M. S.; McCormick, C. L. Facile Preparation of Transition Metal Nanoparticles Stabilized by Well-Defined (Co)polymers Synthesized via Aqueous Reversible Addition-Fragmentation Chain Transfer Polymerization. J. Am. Chem. Soc. 2002, 124, 11562 - 11563.
    (64) Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Krstina, J.; Moad, G.; Postma, A.; Thang, S. H. Living Polymers by the Use of Trithiocarbonates as Reversible Addition-Fragmentation Chain Transfer (RAFT) Agents: ABA Triblock Copolymers by Radical Polymerization in Two Steps. Macromolecules, 2000, 33, 243 - 245.
    (65) Stenzel-Bosenbaum, M.; Davis, T. P.; Chen, V.; Fane, A. G. Star-Polymer Synthesis via Radical Reversible Addition-Fragmentation Chain-Transfer Polymerization. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2777 - 2783.
    (66) Quinn, J. F.; Chaplin, R. P.; Davis, T. P. Facile Synthesis of Comb, Star, and Graft Polymers via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 2956 - 2966.
    (67) Chen, Y.; Ying, L.; Yu, W.; Kang, E. T.; Neoh, K. G.; Poly(vinylidene fluoride) with Grafted Poly(ethylene glycol) Side Chains via the RAFT-Mediated Process and Pore Size Control of the Copolymer Membranes. Macromolecules,2003,36, 9451 - 9457.
    (68) Yu, W. H.; Kang, E. T.; Neoh, K. G. Controlled Grafting of Comb Copolymer Brushes on Poly(tetrafluoroethylene) Films by Surface-Initiated Living Radical Polymerizations. Langmuir. 2005, 21, 450 - 456.
    (69) Prescott, S. W.; Ballard, M. J.; Rizzardo, E.; Gilbert, R. G. RAFT in emulsion polymerization: what makes it different. Aust. J. Chem. 2002, 55, 415 - 424.
    (70) Destarac, M.: Charmot, D.;Franck, X.: et al. Dithiocarbamates as universal reversible additionfragmentation chain transfer agents. Macromol Rapid Communs, 2000, 21, 1035 - 1039.
    (71) Charmot, D,: Corpart, P,: Adam, H,;et al. Controlled radical polymerization in dispersed media. Macromolecular Symposia, 2000, 150, 23 - 32.
    (72) Almar, P.: Thomas, P.D.; Li, G.; et al. RAFT polymerization with phthalimidomethyl trithiocarbonates or xanthates . on the origin of bimodal molecular weight distributions in living radical polymerization. Macromolecular, 2006, 39, 5307 - 5318
    (73)张颖,徐冬梅,张可答.醋酸乙烯酯的可控/活性自由基聚合.功能高分子学报,2005, 18, 526 - 533
    (74) Taton, D.; Wilczewska, A.Z.; Destarac, M. Direct Synthesis of Double Hydrophilic Statistical Di- and Triblock Copolymers Comprised of Acrylamide and Acrylic Acid Units via the MADIX Process. Macromolr Rapid Commun., 2001, 22, 1497 - 1503
    (75) Lebreton, P.; Ameduri,B.;Boutevin, B.;et al. Use of original-Perfluorinated dithioesters for the synthesis of well-controlled polymers by reversible addition-fragmentation chain transfer (RAFT). Macromolecular Chemistry and Physics., 2002, 203, 522 - 537
    (76) Destarac, M.; Bzducha, W.; Taton, D.; Gauthier-Gillaizeau, I.; Zard, S. Z. Xanthates as Chain-Transfer Agents in Controlled Radical Polymerization (MADIX): Structural Effect of the O-Alkyl Group. Macromol. Rapid Commun, 2002, 23, 1049 - 1054.
    (77) Stenzel, M. H. ; Cummins, L.; Roberts, G. E.; Davis, T. P.; Vana, P.;Barner-Kowollik, C. Xanthate Mediated Living Polymerization of Vinyl Acetate: A Systematic Variation in MADIX/RAFT Agent Structure. Macromol. Chem. Phys, 2003,204, 1160 - 1168.
    (78) Bernard, J.; Favier, A.; Zhang, L.; Nilasaroya, A.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. Poly(vinyl ester) Star Polymers via Xanthate-Mediated Living Radical Polymerization: From Poly(vinyl alcohol) to Glycopolymer Stars. Macromolecules, 2005, 38, 5475 - 5478.
    (79) Simms, R. W.; Davis, T. P.; Cunningham, M. F. Xanthate-Mediated Living Raical Polymerization of Vinyl Acetate in miniemulsion. Macromol. Rapid. Commun. 2005, 26, 592 - 596.
    (80) Baethge,H.; Butz, S.; Han, H. C.; et al. Rate enhancement of the N-oxyl-controlled free radical copolymerization of styrene with N-vinylcarbazole. Angewandte Makromolekulare Chemie, 1999, 267, 52 - 56.
    (81) Baethge, H.; Butz,S.; Naake,G .S. Living free radical copolymerization of styrene and N-vinylcarbazole. Macromol Rapid Commun,1997, 18, 911 - 916.
    (82) Hua, J.; Chen, D.; Jing, X.; et al. Preparation and photoconducting property of C60Cln-m- bonded Poly(N-vinylcarbazole) with C(60)Cln/CuCI/Bpy catalyst system. Journal of Applied Polymer Science,2003,87, 606 - 609.
    (83) Hideharu, M.; Hiroshi, O.; Shuji, N. Xanthate- mediated controlled radical polymerization of N -vinylcarbazolea. Chem.Phys. 2006, 207, 1005 - 1017.
    (84) Yamago, S.; lida, K,; Yoshida, J. Organotellurium compounds as novel initiators for controlled/living radical polymerizations .synthesis of functionalized Polystyrenes and end-group modifications. J. Am. Chem. Soc., 2002, 124, 2874 - 2875.
    (85) Yamago,S.; lida, K.; Yoshida, J. Tailored synthesis of strueturally defined polymers by organotellurium-mediated living radieal polymerization(TERP):synthesis of poly(meth) acrylate derivatives and their di-and triblock copolymers. J. Am. Chem. Soc., 2002, 124, 13666 - 13667.
    (86) Yamago, S.; Ray, B.; lida, K.; et al. Highly versatile organostibine mediators for living radical polymerization. J. Am. Chem. Soc., 2004, 126, 13908 - 13909.
    (87) Wan, D.; Satoh, K.; Kamigaito, M.; et al. Xanthate-mediated radical Polymerization of N-vinylpyrrolidone in fluoroalcohols for simultaneous control of molecular weight and tacticity. Macromolecules, 2005, 38, 10397 - 10405.
    (88) Maki, Y.; Mori, H.; Endo, T. Xanthate-mediated controlled radical Polymerization of N-vinylindole derivatives. Macromolecules, 2007, 40, 6119 - 6130.
    (89) Monique, A.; Alex, M. H.; Mathias, D. Influence of the chemical structure of MADlX agents on the RAFT Polymerization of styrene. Macromolecules, 2003, 36, 2293 - 2301.
    (90) Alexander, T.; Thomas, P.D.; Martina, H.S.; et al. Probing the reaction kinetics of vinyl acetate free radical polymerization via living free radical polymerization (MADIX). Polymer, 2006, 47, 999 - 1010
    (91)C. H. Chen, J. Shi, C. W. Tang,“Recent developments in molecular organic electroluminescent materials,”Macromolecular Symposia, 1997, 125, 1 - 48.
    (92) Y. Hamada, T. Sano, H. Fujii, Y. Nishio, H. Takahashi, K. Shibate,“White-Light-Emitting Material for Organic Electroluminescent Devices,”Japanese Journal of Applied physics, 1996, 35, 1339 - 1341.
    (93) H. Tanaka, S. Tokito, Y. Taga, A. Okada,“Novel metal–chelate emitting materials based on polycyclic aromatic ligands for electroluminescent devices,”Journal of Materials Chemistry, 1999, 8, 1999 - 2003.
    (94) Y. Qiu, Y. Shao, D. Zhang, X. Hong,“Preparation and Characterization of High Efficient Blue-Light Emitting Materials with a Secondary Ligand for Organic Electroluminescence,”Japanese Journal of Applied physics, 2000, 39, 1151 - 1153.
    (95) A. Meyers, C. South, M. Weck,“Design, syhthesis, characterization, and fluorescent studies of the first zinc-quinolate polymer,”Chemical Communication, 2004, 1176 - 1177.
    (96) B. J. Chen, W. Y. Lai, Z. Q. Gao, C. S. Lee, S. T. Lee, W. A. Gambling,“Electron drift mobility and electroluminescent efficiency of tris(8-hydroxyquinolinolato) aluminum,”Applied Physics Letters, 1999, 75, 4010 - 4012.
    (97) T. Takayama, M. Kitamura, Y. Kobayashi, Y. Arakawa, K. Kudo,“Soluable Polymer Complex Having AlQ3-Type Pendent Groups,”Macromolecular Rapid Communication, 2004, 24, 1171 - 1174.
    (98) T. Yamamoto, I. Yamaguchi,“Enzymatic Synthesis of Poly( quinolinol) and Its Fluorescent Aluminum Complex,”Polymer Bulletin, 2003, 50, 55 - 60.
    (99) X. Y. Wang, M. Weck,“Poly(styrene)-Supported Alq3 and BPh2q,”Macromolecules, 2005, 38, 7219 - 7224.
    (100) J. Lu, A. R. Hlil, Y. Meng, A. S. Hay, Y. Tao, M. Diorio, T. Maindron, J. P. Dodelet,“Synthesis and characterization of a novel AlQ3-containing polymer,”Journal of Polymer Science, Part A: Polymer Chemistry, 2000, 38, 2887 - 2892.
    (101) Y. F. Duann, Y. J. Liao, W. J. Guo, S. M. Chang,“The characteristic of photoluminescence of tris-(7-substituted-8-hydroxyquinoline) aluminum complexes and polymeric complexes,”Applied Organometal Chemistry, 2003, 17, 952 - 957.
    (102) S. J. Li, M. N. Lin, J. Lu, H. Liang,“Synthesis, Self-Assembly, and Formation of Al3+ Complex Micelles for Diblock Copolymer of 2-((8-Hydroxyquinolin-5-yl)methoxy)ethyl Methacrylate and Styrene,”Macromolecules, 2009, 42, 1258 - 1263.
    (103) Kunitake, T.; Okahata, Y.; Shimomura, M.; Yasunami, S.; Takarabe, K. Formation of stable bilayer assemblies in water from single-chain amphiphiles. Relationship between the amphiphile structure and the aggregate morphology. J. Am. Chem. Soc., 1981, 103, 5401 - 5413.
    (104) Kunitake, T.; Okahata, Y.; Nakashima, N.; Shimomura, S.; Kano, K.; Ogawa, T. Unique properties of chromophore-containing bilayer aggregates: enhanced chirality and photochemically induced morphological change. J. Am. Chem. Soc. 1980, 102, 6642 - 6644.
    (105) Kunitake, T.; Nakashima, N.; Morimitsu, K. Enhanced Circular Dichroism and Fluidity of Disk-like Aggregates of a Chiral, Single-chain Amphiphile. Chem. Lett., 1980, 1347 - 1350.
    (106) Shimomura, M.; Hashimoto H.; Kunitake T. Formation of Monolayer and Bilayer Membranes from Amphiphilic Anthracene Derivatives. Peculiar Spectroscopic Behavior and Chromophore Orientation. Chem. Lett., 1982, 1285 - 1288.
    (107) Shimomura, M.; Ando, R.; Kunitake, T. Orientation and Spectral Characteristics of the Azobenzene Chromophore in the Ammonium Bilayer Assembly. Ber. Bunsenges. Phys. Chem., 1983, 87, 1134 - 1143.
    (108) Kunitake T.; Tawaki S.; Nakashima N. Excimer Formation and Phase Separation of Hydrocarbon and Fluorocarbon Bilayer Membranes. Bull. Chem. SOC. Jpn., 1983, 56, 3235 - 3242.
    (109)Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M. Polymeric Systems for Controlled Drug Release. Chem Rev, 1999, 99, 3181 - 3198.
    (110) Lee, K. Y.; Mooney, D. J. Hydrogels for tissue engineering. Chem Rev, 2000, 101, 1869 - 1880.
    (111) Orienti, I.; Di Piera, A.; Luppi, B.; Zecchi, V. Crosslinked polyvinylalcohol as vehicles for hydrophilic drugs. Arch Pharm, Pharm Med Chem 2000, 333, 421 - 424.
    (112) Hassan, C. M.; Stewart, J. E.; Peppas, N. A. Diffusion characteristics of frrze/thawed poly(vinyl alcohol) hydrogels: Applications to protein controlled release from multilaminate devices. Eur J Pharm Biopharm., 2000, 49, 161 - 165.
    (113) Mardare, D.; Matyjaszewski, K.“Living”Radical Polymerization of Vinyl Acetate. Macromolecules, 1994, 27, 645 - 649.
    (114)Zou, Y.; Lin, J.; Zhuang, R.; Ye, J. L.; Dai, L.; Zheng L. Synthesis of Block Copolymer from Dissimilar Vinyl Monomer by Stable Free Radical Polymerization. Macromolecules, 2000, 33, 4745 - 4749.
    (115) Park, E. S.; Yoon, J. S. Synthesis of Poly(vinyl acetate)- graft-Polystyrene and Application to Preparation of Porous Membranes. J. Appl. Polym. Sci., 2001, 82, 1658 - 1666.
    (116) Xia, J.; Paik, H-j.; Matyjaszewski, K. Polymerization of Vinyl Acetate Promoted by Iron Complexes. Macromolecules, 1999, 32, 8310 - 8314.
    (117) M. Ghedini., M. La., Deda, I., Aiello, A. Grisolia. Synthesis and photophysical characterisation of soluble photoluminescent metal complexes with substituted 8-hydroxyquinolines. Synthetic Metals, 2003, 138, 189 - 192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700