几类重要自由基—分子反应机制的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用量子化学计算方法对几类重要的自由基反应以及水冰催化的自由基-分子反应机理进行了详细的理论研究,给出了反应物、中间体、过渡态和产物的结构和能量以及相应的反应势能面的信息,讨论了可能的反应通道和反应机理。本文结果可为有机化学、星际化学与燃烧化学中重要的自由基-分子反应模型的建立奠定基础,并可为实验室合成以及在星际太空中探测新型分子提供理论依据和支持。主要的内容有:i)通过首次研究新型的中性PH3CH自由基与中性σ键分子HX(X=CH3,NH2,OH等,且中心原子均为第二周期元素)的反应,揭示了一类新的中性自由基-分子反应类型-亲核加成消除反应机制。我们进一步研究了该自由基与不饱和分子乙烯、乙炔及甲醛的反应,特别是通过与甲醛分子的反应,进一步证明了该自由基的特殊性,即它不仅具有自由基特性,还具有P-Ylide特性。ii)对一系列与燃烧化学、星际化学相关的重要自由基-分子反应机制进行了详细的研究,得到的结果对理解它们在燃烧、大气层和星际空间中的化学过程有着重要意义,为治理环境污染、探测新型星际分子提供了理论线索。这些反应是:C2H3+H2CO,HCCO+C2H2,和NCO+C2H2。iii)通过对水冰催化的1,3O+HC3N, C2n+1N+H2O(n=1,2,3,4)和C3H+H2O反应机制的理论研究,首次成功给出了星际水冰催化的原子自由基-分子反应和分子自由基分子反应的例子。为推动星际水冰催化化学的发展提供了重要的理论依据,并且我们通过1,3O+HC3N和C3H+H2O在星际水冰表面的反应机制的理论研究,为一直令人感兴趣且利用其它气相模型都一直没有得到很好解决的星际丙炔醛及3HCCN的形成机制提供了一种新思路。
Reactions of radicals play a significant role in diverse areas such as organic chemistry, photochemistry, biochemistry, environmental chemistry, combustion chemistry, interstellar chemistry, and atmospheric chemistry. In this thesis, quantum chemical investigations on the potential energy surfaces of a series of important radical-molecule reactions as well as radical-molecule reactions catalyzed by interstellar water ice have been carried out. Important information of potential energy surfaces such as structures and energies of intermediate isomers and transition states, possible reaction channels, reaction mechanisms and major products are obtained. The results obtained in the present thesis may lay a strong foundation for building important radical-molecule models in organic chemistry, interstellar chemistry and combustion chemistry, and provide theoretical supports and warranty for future experimental study and detection of interstellar molecules in space. The main results are summarized as follows:
     1. Theoretical investigations are performed on mechanism of PH3CH reaction with a series ofσ-bonded molecule HX (X=CH3, NH2, OH,F, CH2F, CHF2, CF3, NHCH3 / CH2NH2, OCH3/CH2OH, the central atom belongs to elements of the second line.) andπ-bonded molecules such as C2H4/C2H2 and H2CO. The main results are as follows:
     (1) For PH3CH+ HX, main reaction pathways are as follows: R PH3CH+HX→PH3XCH2→→products (X= NH2,OH,F, NHCH3 and OCH3) R PH3CH+HX→PH3CH2+X(X= CH3, CH2F, CHF2, CF3, CH2NH2, CH2OH) So, PH3CH toward HX(X= CH3, CH2F, CHF2, CF3, CH2NH2, CH2OH) behaves H-abstraction mechanism; however, for X= NH2,OH,F, NHCH3 and OCH3, reactions prefer a nucleophilic addition and elimination mechanism. The latter is a new type of neutral radical-molecule reaction, in contrast to previous known atom/group abstraction and carbenoid insertion mechanisms.
     (2) For PH3CH+C2H4/C2H2 reaction, the main reaction pathways can be indicated as: R PH3CH+C2H4→PH3CHCH2CH2 ? cPH3CHCH2CH2→PH3-cCHCH2CH2→cCHCH2CH2 +PH3 R PH3CH+C2H4→PH3CHCH2CH2 ? cPH3CHCH2CH2→PH2CHCH2CH3→PHCH2CH2CH3→PHCH2+C2H5 R PH3CH+C2H4→PH3CHCH2CH2?cPH3CHCH2CH2→PH2CHCH2CH3→→PH2CHCH2 +CH3 R PH3CH+C2H2→PH3CHCHCH→cPH3CHCHCH→PH2CHCHCH2→PHCHCHCH3→PHCHCHCH2+H.
     For both reactions, the four-membered ring species (cPH3CHCH2CH2 and cPH3CHCHCH, respectively) are important entrance intermediates, whereas they are of negligible importance for normal unsaturated radical reactions with alkenes and alkynes. For both the PH3CH+C2H4/C2H2 reactions, theλ5-P bonding within PH3CH is effectively transformed into theλ3-P bonding within the products, also in contrast to normal reactions of unsaturated radicals.
     (3) For PH3CH+H2CO reaction, the main reaction pathways are presented as: Path 1 R PH3CH+H2CO→cPH3CHCH2O→P2 PH3CHCHO+H Path 2 R PH3CH+H2CO→cPH3CHCH2O→PH3-cCHCH2O→P4 PH3 + cCH2CHO
     For the entrance channels, [2+2] cycloaddition to form oxaphosphetane radical cPH3CHCH2O is more favorable, which is an analogical process to Wittig reaction of P-Ylide. So PH3CH shows P-Ylide character in entrance channel, However, in subsequent transformation processes, the reaction behaves radical-like character. So, we conclude that PH3CH has duplicate reactivity.
     2. A combined quantum chemical and master equation rate constant calculational study is performed on the mechanism of the NCO+C2H2 reaction. The main results are as follows: Path 1: R NCO+C2H2→HCCHNCO L1→cCHCHNC-O r4→NCHCHCO L5→P2 HCN+HCCO, Path 2: R NCO+C2H2→HCCHNCO L1→cCHCHNC-O r4→NCHCHCO L5→P5 NCCHCO+H.
     The most favorably reaction channel is a previously ignored four-membered ring channel that will eventually generate the products P2 HCN+HCCO and P5 OCCHCN+H. The previously proposed“H-abstraction,”“C2H-abstraction,”and“five-membered ring”channels are thermodynamically and kinetically much less competitive. With the new mechanism, the calculated rate constants of the title reaction have a positive temperature effect and no distinct pressure dependence effect. Our calculated results are in qualitative agreement with available experimental data. Also, it seems unlikely to synthesize the five-membered ring heterocycle oxazoles via the title reaction.
     3. A detailed mechanistic study on potential energy surfaces was reported for reaction C2H3+H2CO. the main results are as follows: Path 1i: R C2H3+H2CO→H2CCHCH2O L10→P1 H2CCHCHO+H Path 1ii: R C2H3+H2CO→H2CCHCH2O L10→H2CCH2CHO L3→P2 C2H4+HCO→P9 C2H4+CO+H Path 2: R C2H3+H2CO→P2 C2H4+HCO→P9 C2H4+CO+H G3B3 and CBS-QB3 computational methods both predict that the addition-elimination process Path 1 is more competitive, in contrast to the previously suggested H-abstraction mechanism.
     4. A detailed mechanistic study on potential energy surfaces was reported for reaction HCCO+C2H2, most feasible channel is shown as: R HCCO+C2H2→HCCHCHCO L1→OC-cCHCHCH r3→P6 cCHCHCH+CO
     It is demonstrated that cC3H3 should be responsible for the observed C3H3+ ion in one early experiment. Moreover, the predominance of P6 from the HCCO+C2H2 reaction suggests that this reaction could be a useful precursor for generating the long-sought cyclopropyl radical (c-C3H3).
     5. Detailed theoretical investigations are performed on reactions of 1,3O+H3CN, C2n+1N+H2O and C3H+H2O catalyzed by interstellar water ice. Applying this gas-grain model, we successfully account for the formation mechanism of interesting interstellar propynal and cyanomethylene, which to date, have not been resolved by a variety of gas-reaction models. Moreover, chemical behavior of C2n+1N on water ice should have a prominent influence on the concentration of the polycyanoacetylene radicals C2n+1N (n=1-4), as well as their parents HC2n+1N. Our conclusions also enrich radical-molecule or atom-molecule reaction chemistry catalyzed interstellar water ice.
引文
1. J. K. Kochi, Free Radicals, in 2 Vols, 1973.
    2. R. L. Huang, The Chemistry of Free Radicals, 1974.
    3. K. H. Hay, W. A. Waters, Chem. Rev., 1937, 21, 169.
    4. M. S. Kharasch, J. V. Mansfield, F. R. Mayo, J. Am. Chem. Soc., 1937, 59, 1155.
    5. P. Walden, L. F. Audrieth, Chem. Rev. 1928, 5, 339.
    6. N. Uri, Chem. Rev. 1952, 50, 375.
    7. H. Garcia, H. D. Roth, Chem. Rev., 2002, 103, 3947.
    8. L. J. Johnston, Chem. Rev., 1993, 93, 251.
    9. B. M. Monroe, G. C. Weed, Chem. Rev., 1993, 93, 435.
    10. M. Sablier, T. Fujii, Chem. Rev., 2002, 102, 2855.
    11. R. Atkinson, Chem. Rev., 1986, 86, 69.
    12. Y. Bedjanian, G. Poulet, Chem. Rev., 2003, 103, 4639.
    13. J. J. Orlando, G. S. Tyndall, T. J. Wallington, Chem. Rev., 2003, 103, 4657.
    14. M. J. Kurylo, V. L. Orkin, Chem. Rev., 2003, 103, 5049.
    15. H. Follmann Chem. Society Rev., 2004, 33, 225.
    16. F. Himo, P. E. M. Siegbahn, Chem. Rev., 2003, 103, 2421.
    17. J. W. Whittaker, Chem. Rev., 2003, 103, 2347.
    18. S. W. Ragsdale, Chem. Rev., 2003, 103, 2333.
    19. J. Stubbe, D. G. Nocera, C. S. Yee, M. C. Y. Chang, Chem. Rev., 2003, 103, 2167.
    20. M. Fontecave, S. Ollagnier-de-Choudens, E. Mulliez, Chem. Rev., 2003,103, 2149.
    21. R. Banerjee, Chem. Rev., 2003, 103, 2081.
    22. R. C. Murphy, Chemical Research In Toxicology, 2001, 14, 463.
    23. J. Strbbe, W. A. van der Donk, Chem. Rev., 1998, 98, 2661.
    24. J. Strbbe, W. A. van der Donk, Chem. Rev., 1998, 98, 705.
    25. C. Hansch, H. Gao, Chem. Rev., 1997, 97, 2995.
    26. C. J. Easton, Chem. Rev., 1997, 97, 53.
    27. Grissom B. Charles, Chem. Rev., 1995, 95, 3.
    28. P. A. Frey, Chem. Rev. 1990, 90, 1343.
    29. S. Wilson, Chem. Rev. 1980, 80, 263.
    30. M. S. Kharasch, J. V. Mansfield, F. R. Mayo, PHOTODECOMPOSITION OF CHLORINE DIOXIDE IN CARBON TETRACHLORIDE SOLUTION, J. Am. Chem. Soc., 1937, 59, 1155
    31. (a) W.C. Gardiner, Combustion Chemistry, Springer-Verlag: New York, 1984. (b) L.K. Puri, Environmental Implications of Combustion Processes, CRC Press: Boca Raton, FL, 1993.
    32. S.J. Harris, A.M. Weiner, Annu. Rev. Phys. Chem. 1985, 36, 31. (b) J.A. Miller, R.J. Kee, C.K. Westbrook, Annu. Rev. Phys. Chem. 1990, 41, 345.
    33. E. Herbst, The Chemistry of Interstellar Space Angew. Chem. Int. Ed. Engl. 1990, 29, 595-608.
    34. D. Smith, Chem. Rev. 1992, 92, 1473-1485.
    35. Mathey, F. Angew. Chem. Int. Ed. 2003, 42, 1578.
    36. Wang, Z. X.; Huang, M. B. Chem Comm 1998, 8, 905
    37. Zeng, Y. L.; Meng, L. P.; Zheng, S. J. Chin J Chem 2005, 23, 627.
    38. J. A, Miller, R. J. Kee, C. K, Westbrool, Annu. Rev. Phys. Chem. 1990, 41,345.
    39. Kaiser, R.I. 2002, Chem. Rev., 102, 1309
    40. Andrew, B.H, Ed; LA.U Symposium 87, Interstellar Molecules; Reidel; Dordrecht, The Netherlands, 1980.
    41. Les Houches Workshop; Solid Interstellar Matter; The ISO Revolution; d’ Hendecourt, L, Joblin, C, Jones, A., Eds.; Springer/EDP Sciences; New York, 1999.
    42. Smith I. W.M., & Rowe B.R., Acc. Chem. Res. 2000, 33, 261 and references therein.
    43. Barrientos, C., Redondo, P., & Largo, A., Recent Res. Dev. Phys. Chem. 1997, 1, 51.
    44. Papoular, R., Monthly Notices of the Royal Astronomical Society, 2005. 362, 489-497
    45. Donahue N.M., Chem. Rev. 2003, 103, 4604.
    46. Borget F., Chiavassa T., Allouche A., Marinelli F., & Aycard J.P., J. Am. Chem. Soc. 2001a, 123, 10668 and references therein.
    47. Borget F., Chiavassa T., Allouche A., & Aycard J.P., J. Phys. Chem. B. 2001b, 105, 449.
    48. Guennoun Z., Couturier-Tamburelli I., Pietri N., & Aycard J.P., J.Chem. Phys. B 2005, 109, 3437 and references therin.
    49. Tamburelli I., Chiavassa T., Borget F., & Pourcin J., J. Phys. Chem. A. 1998, 102, 422.
    50. Voegele A F., Tautermann C. S., Loerting T, and Liedl K. R. J.Phys.Chem.A, 2002,106,7850.
    51. Liu Z.F, Siu C.K and Tse J. S, Chem. Phys. Lett, 1999,309,335
    52. Zhou Y.F and Liu C.B, Int. J. Quan. Chem, 2000, 78, 281
    53. Diao G.W. and Chu L.T., J.Phys.Chem A, 2005,109,1364.
    54. Graham J. D, and Roberts J.T, J. Phys. Chem.B, 2000,104,978 and reference herein
    55. Xu S.C, and Zhao X. S, J. Phys. Chem. A, 1999, 103,2100
    56. Woon D. E, J. Phys. Chem. A, 2001, 105, 9478
    57. Bolton K, and Pettersson J.B.C, J. Am. Soc.Chem, 2001, 123,7360
    58. Gardebien F. and Sevin A. J.Phys.Chem A. 2003, 107,3935.
    59. Duvernay F., Chiavassa T., Borget F., & Aycard J.P., J. Am. Chem. Soc. 2004, 126, 7772.
    60. Woon D. E, J. Phys. Chem. A, 2001, 105, 9478
    61. Roser, J. E., Vidali, G., Manicao, G. and Pirronello, V. The Astrophy. J., 2001, 555, L61-L64.
    1. M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84, 457.
    2. W. J. Hehre, L. Radom, P. v. R. Schleyer, et al., Ab Initio Molecular Orbital Theory, John Wiley &Sons, Inc., 1986. (b) D.A. McQuarrie, Quantum Chemistry University Science Books: Mill Vally. CA. 1983.
    3. 唐敖庆, 杨忠志, 李前树, 量子化学, 北京, 科学出版社, 1982. (b) 徐光宪, 黎乐民, 王德民, 量子化学基本原理和从头计算法, 北京, 科学出版社, 1985.
    4. P. O. Lowdin, Adv. Chem. Phys.,1959, 2, 207.
    5. J. A. Pople, R. Seeger and R. Krishnan, Int. J. Quant. Chem. Symp., 1977,11, 149.
    6. J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch, Toward a systematic molecular orbital theory for excited states, J. Phys. Chem., 1992, 96, 135.
    7. R. Krishnan, H. B. Schlegel and J. A. Pople, Thermodynamics of ionization of deuterium oxide, J. Chem. Phys., 1980, 72, 4654.
    8. B.R. Brooks, W.D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, H.F. Schaefer, J. Chem. Phys., 1980, 72, 4652.
    9. E. A. Salter, G. W. Trucks and R. J. Bartlett, J. Chem. Phys., 1989, 90, 1752.
    10. K. Raghavachari and J. A. Pople, Int. J. Quant. Chem., 1981, 20, 167.
    11. J. A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys., 1987, 87, 5968
    12. J. Cioslowski, Chem. Phys. Lett., 1994, 219, 151.
    13. H. B. Schlegel, M. A. Robb, Chem. Phys. Lett., 1982, 93, 43.
    14. R. H. E. Eade, M. A. Robb, Chem. Phys. Lett., 1981, 83, 362.
    15. D. Hegarty and M. A. Robb, Mol. Phys. 1979, 38, 1795.
    16. J. A. Pople, R. Krishnan, H. B. Schlegel, J. S. Binkley, Int. J. Quant. Chem. XIV, 1978, 545.
    17. R. J. Bartlett and G. D. Purvis, Int. J. Quant. Chem., 1978, 14, 516.
    18. G. E. Scuseria and H. F. Schaefer, III, J. Chem. Phys., 1989, 90, 3700.
    19. G. D. Purvis and R. J. Bartlett, J. Chem. Phys., 1982, 76, 1910.
    20. G. E. Scuseria, C. L. Janssen and H. F. Schaefer, III, J. Chem. Phys., 1988, 89, 7382.
    21. D. Hegarty and M. A. Robb, Mol. Phys. 38, 1795 (1979).
    22. R. H. E. Eade and M. A. Robb, Chem. Phys. Lett. 83, 362 (1981).
    23. H. B. Schlegel and M. A. Robb, Chem. Phys. Lett. 93, 43 (1982).
    24. F. Bernardi, A. Bottini, J. J. W. McDougall, M. A. Robb and H. B. Schlegel, Far. Symp. Chem. Soc. 19, 137 (1984).
    25. N. Yamamoto, T. Vreven, M. A. Robb, M. A. Robb and H. B. Schlegel, “A Direct Derivative MC-SCF Procedure”, Chem. Phys. Lett. 250, 373 (1996).
    26. M. J. Frisch, I. N. Ragazos, M. A. Robb and H. B. Schlegel, “An Evaluation of 3 Direct MCSCF Procedures”, Chem. Phys. Lett. 189, 524 (1992).
    27. P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136, B864.
    28. W. Kohn, L. J. Sham, Phys. Rev., 1965, 140, A1133.
    29. J.C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: New York, 1974.
    30. D. R. Salahub and M. C. Zerner, eds., The Challenge of d and f Electrons ACS: Washington, D.C. 1989.
    31. R. G. Parr and W. Yang, Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989.
    32. J. A. Pople, P. M. W. Gill and B. G. Johnson, Chem. Phys. Lett., 1992, 199, 557.
    33. B. G. Johnson and M. J. Frisch, J. Chem. Phys., 1994, 100, 7429.
    34. J. K. Labanowski, J. W. Andzelm, eds., Density Functional Methods in Chemistry, Springer-Verlag: New York, 1991.
    35. K. Morokuma, R. D. Froese, S. Dapprich, I. Komaromi, D. Khoroshun, S. Byun, D. G. Musaev, C. L. Emerson, “The ONIOM (our own integrated N-layered molecular orbital and molecular mechanics) method, and its applications to calculations of large molecular systems”, Abstr. Pap. Am. Chem. Soc., 1998, 215: U218
    36. G. Monard, K. M. Merz, “Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems”, Accounts Chem. Res., 1999, 32: 904
    37. J. L. Gao, M. Freindorf, “Hybrid ab initio QM/MM simulation of N-methylacetamide in aqueous solution”, J. Phys. Chem. A, 1997, 101: 3182
    38. J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, L. A. Curtiss, J. Chem. Phys., 1989, 90, 5622 (G1); L. A. Curtiss, K. Raghavachari, G. W. Trucks, J. A. Pople, J. Chem. Phys., 1991, 94, 7221 (G2); L. A. Curtiss, K. Raghavachari, J. A. Pople, J. Chem. Phys., 1993, 98, 1293 (G2(MP2)); B. J. Smith, L. Radom, J. Phys. Chem., 1995, 99, 6468 (G2(MP2, SVP)); A. M. Mebel, K. Morokuma, M. C. Lin, J. Chem. Phys., 1995, 103, 7414 (G2M(cc3)); L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, J. A. Pople, J. Chem. Phys., 1998, 109, 7764 (G3) and the G3large basis set is downloaded from the website http://chemistry.anl.gov/compmat/ g3theory.htm. (G3); L. A. Curtiss, P. C. Redferm, K. Raghavachari, V. Rassolov, J. A. Pople, J. Chem. Phys., 1999, 110, 4703 (G2(MP2)); C. W. Bauschlicher, H. Partridge, J. Chem. Phys., 1995, 103, 1788 (G2(B3LYP/MP2/CC)); A. G. Baboul, L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys., 1999, 110, 7650 (G3//B3LYP); D. K. Hahn, S. J. Klippenstein, J. A. Miller, Faraday Discuss., 2001, 119, 79 (HL).
    39. C. F. Melius, J. S. Binkley, The 20th Symposium (International) on Combustion, The Combustion Institute. Pittsburgh, 1984, p.575.
    40. P. E. M. Siegbahn, M. R. A. Blomberg, M. Svensson, Chem. Phys. Lett., 1994, 223, 35.
    41. K. Fukui, Int. J. Quantum. Chem., 1981, 15, 633.
    42. K. Fukui, A. Tachibana, K. Yamashita, Int. J. Quantum. Chem., 1981, 15, 621.
    1. See: Heidbrink, J. L.; Gular, L. E. Ramirez.-Arizmendi. K. K. Thoen. L.; Kenttamaa, H. I. J Phys Chem A 2001, 105, 7875 and references therein.
    2. See: Arnaut, L. G.; Pais, A. A. C. C. S.; Formosinho, J.; Barroso, M. and references therein. J Am Chem Soc, 2003, 125, 5236.
    3. See: Seki, K.; Yagi, M.; He, M. Q.; Joshua, B.; Okabe, H.; Chem Phys Lett 1996, 258, 657, and references therein.
    4. See: Butkovskaya, N. I.; Setser, D. W. J Phys Chem A 2000, 104, 9428, and references therein.
    5. See: Wang, Z. X.; Huang, M. B. J Phys Chem A 1999, 103, 265, and references therein.
    6. Mathey, F. Angew. Chem. Int. Ed. 2003, 42, 1578.
    7. Wang, Z. X.; Huang, M. B. Chem Comm 1998, 8, 905.
    8. Zeng, Y. L.; Meng, L. P.; Zheng, S. J. Chin J Chem 2005, 23, 627.
    9. Gaussian 98, Revision A.7, Frisch, M. J. et. al., Gaussian, Inc., Pittsburgh PA, 1998.
    10. Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Rassolov, V.; Pople, J. A.J Chem Phys 1999, 110, 4703.
    11. Curtiss. L.A, Raghavachari. K, Redfern. P.C, Rassolov. V, and Pople. J.A, J. Chem Phys. 1998, 109,7764.
    12. Boboul. A.G, Curtiss. L.A, Redfern. P.C, and Raghavachari. K, J. Chem. Phys. 1999, 110, 7650.
    13. Balucani. N, Asvany. O, Chang. A. H. H. and Kaiser. R. I.; J. Chem. Phys, 2000, 113, 8643.
    14. Huang. L. C. L., Asvany. O., Chang. A. H. H. and Kaiser. R. I.; J. Chem. Phys, 2000, 113, 8656.
    15. Ceursters. B., Nguyen. H. M. T., Peeters. J., Nguyen. M. T.; Chem. Phys, 2000, 263, 243.
    16. Miller. Johanna L., J. Phys. Chem. A, 2004, 108, 2268, C2H3 + C2H2 and C2H4 Unpublished for us.
    17. Feng, W. L, W, Y., Zhang, S.W and Pang, X.Y, Chem. Phys. Lett., 1997, 266,43.
    18. Dong, H, Ding, Y.H and Sun, C.C, J. Chem. Phys., 2005, 122, 204321.
    19. Xie, H.B, Ding, Y.H, and Sun C.C, J. Phys. Chem. A., 2005, 109, 8419.
    20. Xu, S.C., Zhu R. S., and Lin, M. C., Int. J. Chem. Kinet, 2006, 38, 322, and reference herein.
    21. J. Y. Liu, Z. S. Li, J. Y. Wu, Z. G. Wei, G. Zhang, and C. C. Sun, J. Chem.Phys. 2003, 119, 7214, and references therein.
    22. Choi. Y. M., Xia. W., Park. J., and Lin. M. C. J. Phys. Chem. A. 2000, 104, 7030.
    1. Miller, J.A and Bowman, C. T.; Progr. Energy Combustion Sci. 1989, 15, 287
    2. Prasad, S. S., Huntress, W. T.; Jr, Monthly Notice of the Royal Astronomical Society, 1978, 185, 741-744.
    3. Chen, H. T. and Ho, J. J., J. Phys. Chem. A, 2003, 107, 7643-7649.
    4. Reviews: Meyers, A. I. Heterocycles in Organic Synthesis; Wiley: New York, 1974.
    5. Kingston, D. G. I.; Kolpak, M. X.; LeFevre, J. W.; Borup-Grochtman, I. J. Am. Chem. Soc. 1983, 105, 5106. Meyers, A. I.; Amos, R. A. J. Am. Chem. Soc. 1980, 102, 870. Meyers, A. I.; Lawson, J. P.; Conver, D. R. J. Org. Chem. 1981, 46, 3119. Meyers, A. I.; Lawson, J. P.; Walker, D. G.; Linderman, R. J. J. Org. Chem. 1986, 51, 5111.
    6. Gao, Y. D., and Macdonald, R. G., J. Phys. Chem. A 2005, 109, 5388-5397.
    7. William F. Cooper, J. P. and Hershberger F.; J. Phys. Chem. 1993, 97, 3283-3290 and reference here in.
    8. Juang, D. Y., Lee, J. S., and Wang, N. S., Int. J. Chem. Kinet. 1995, 27, 11111. and reference here in.
    9. Hu, C. G., Zhu, Z. Q., Pei, L. S., Ran, Q., Chen, Y., Chen, C. X. and Ma, X. X., J. Chem. Phys. 2003, 118. 5408.
    10. Pei, L. S., HU, C. G., Liu, Y. Z., Zhang, Z. Q., Chen, Y. and Chen, C. X. Chem. Phys. Lett. 2003, 381, 199-204.
    11. Wategaonkar, S., and Setser, D. W., J. Phys. Chem A. 1993, 97, 10028-10034.
    12. Park, J. and Hershberger, J. F., Chem. Phys. Lett. 1994, 218, 537.
    13. Becher, K. H., Kurtenbach, R., Schmidt, F., and Wiesen, P., Chem. Phys. Lett. 1995, 235, 230-234.
    14. Becher, K. H., Kurtenbach, R., and Wiesen, P., J. Phys. Chem. 1995, 99, 5986, 5991.
    15. . Zhou, Z. Y., Guo, L., and Gao, H, W. Inc. Int. J. Chem. Kinet. 2003, 35, 52-60.
    16. Gao, Y. and Macdonald, R. G., J. Phys. Chem. A, 2003, 107, 4625-4635.
    17. Zhu, R. S., and Lin, M. C. J. Phys. Chem. A, 2000, 104, 10807-10811.
    18. Wei, Z. G., Huang, X. R., Sun, Y. B. Zhang, S. W., and Sun, C.C. Theochem. 2004, 679, 101-106 and references therein.
    19. Campomanes, P., Menéndez, I., and Sordo, T. J. Phys. Chem. A, 2001, 105, 229-237.
    20. Chen, H. T. and Ho, J. J., J. Phys. Chem. 2003, 107,7004-7012.
    21. Frisch, M. J., Trucks, G. W., Schlegel, H. B. et al., GAUSSIAN 98, Revision A.11 (Gaussian, Inc., Pittsburgh, PA, 1998).
    22. (a) Stephen J. Klippenstein and James A. Miller, J. Phys. Chem. A 2002, 106, 9267-9277. (b) James A. Miller, Stephen J. Klippenstein, Struan H. Robertson, J. Phys. Chem. A 2000, 104, 7525-7536. (c) Michael J. Pilling and Struan H. Robertson, Annu. Rev. Phys. Chem. 2003. 54:245–75. (d) Terry J. Frankcombe and Sean C. Smith, J. Chem. Phys., 2003, 119, 12741.
    23. R. G. Gilbert, S. C. Smith, Theory of Unimolecular and Recombination Reactions, Blackwell Scientific: Carlton, Australia, 1990
    24. At the B3LYP/6-31G(d) level, the frontier orbital energies are -0.36744, -0.21972, -0.28193 and 0.05243 a.u. for E(SOMONCO), E(LUMONCO),E(HOMOC2H2), E(LUMOC2H2), respectively. The energy difference 0.06221 a.u. between E(LUMONCO) and E(HOMOC2H2) is smaller than 0.41987 a.u. between E(SOMONCO) and E(LUMOC2H2). Thus, the interaction should take place between NCO’s LUMO and C2H2’s HOMO.
    25. The species H2CO, H3COH, C2H6, C2H4, H2CNH, H3CNH2 are calculated at the B3LYP/6-31G(d) level for comparison of the typical C=O (1.207 ?), C-O (1.419 ?), C-C (1.531 ?), C=C (1.331 ?), C=N (1.271 ?), and C-N (1.465 ?) bonds.
    26. (a) Curtiss. L.A, Raghavachari. K, Redfern. P.C, Rassolov. V, and Pople. J.A, J. Chem Phys. 1998, 109,7764. (b) Boboul. A.G, Curtiss. L.A, Redfern. P.C, and Raghavachari. K, J. Chem. Phys. 1999, 110, 7650.
    27. Zhang S. W, Truong T. N., VKLab version 1.0, University of Utah, 2001.
    28. Miller J.A and Klippenstein S. J. Int. J. Chem.Kinet, 2001,33,654.
    29. a) C.P. Fenimore, G.W. Jones, J. Chem. Phys. 1963, 39, 1514.; b) Chikan, V. and Leone, S. R., J. Phys. Chem. A, 2005,109, 2525-2533 and reference therein. c) Carl, S.A., Sun, Q., and Peeters, J., J. Chem. Phys. 2001, 114, 10332 and references therein.
    30. Moskaleva, L. V., Xia, W. S. and Lin, M. C., Chem. Phys. Lett. 2000,331,269-277.
    31. McAnoy, A. M., Bowie, J. H., and Dua S., J. Phys. Chem, A, 108, 3994, 1003.
    32. Maier, G., Reisenauer, H. P. and Rademacher K., Chem. Eur. J. 4, 1957, 1998.
    33. (a) Kress, M. E., Tielens, A. G. G.. M. and Roberge, W. G. Technical Report, NASA Ames Research Center Moffett field, CA United States.1998. (b) Edward, A., Hayatsu, R., and Studier, M. H., Astrophy. J., 1974, 192, L101.
    34. Fahr. A., Monks P. S., Stief L. J., and Laufer A. H., 1995.116, 415.
    35. Knyazev V. D., Bencsura A., Stoliarov S. I., and Slagle I. R., J. Phys. Chem. 1996, 100, 11346.
    36. Duran R. P., Amorebieta V. T., and Colussi A. J., Int. J. Chem. Kinet. 1989, 21, 947.
    37. Weissman M., and Benson S. W., Int. J. Chem. Kinet. 1984, 16, 307.
    38. Thorn R. P., Payne W. A., Chillier X. D. F., Stief L. J., Nesbitt F. L., and Tardy D. D., Int. J. Chem. Kinet 2000, 32, 304.
    39. Fahr A., Laufer A. H., and Tardy D. C., J. Phys. Chem. A 1999, 103, 8433.
    40. Tsang W., and Hampson R. F., J. Phys. Chem. Ref. Data 1986, 15, 1087.
    41. Mebel A. M., Diau E. W. G., Lin M. C., and Morokuma K., J. Am. Chem. Soc. 1996, 118, 9759.
    42. Benson S. W., Int. J. Chem. Kinet. 1994, 26, 997.
    43. Heinemann P., Hofmann-Sievert R., and Hoyermann K., Symp. Int. Combust. Proc. 1998, 21, 865.
    44. Scherzer K., Loser U., and Stiller W., Z. Chem. 1987, 27, 300.
    45. Garrett B. C., and Truhlar D. G., J. Chem. Phys. 1979, 70, 1593.
    46. Zhang Y., Zhang S. W., and Li Q. S., Chem. Phys. 2004, 306, 51-56.
    47. Laufer. A.H, and Fahr. A, Chem. Rev. 2004, 104, 2813.
    48. For example, see Terentis A. C. and Kable S. H., Chem. Phys. Lett. 1996, 258, 626.
    49. For example, see Smith G. D., Molina L. T., and Molina M. J., J. Phys.Chem. A 2002, 106, 1233.
    50. For example, see Zhang X., Zou S., Harding L. B., and Bowman J. M., J. Phys. Chem. A 2004, 108, 8980.
    51. Barbe A., Marche P., Secroun C., and Jouve P., Geophys. Res. Lett. 1979,
    6, 463.Oehlers C., Wagner H. Gg., Ziemer H., Temps F., and Dobe S., J. Phys. Chem. A 2000, 104, 10500.
    52. Chang J. S., Barker J. R., J. Phys. Chem. 1979, 83, 3059.
    53. Ferrieri R. A. and Wolf A. P., J. Phys. Chem. 1992, 96, 7164.
    54. Beukes J. D’Anna A., Bakken B., V., and Nielsen C. J., Phys. Chem. Chem. Phys. 2000, 2, 4049.
    55. .Feilberg K. L., Johnson M. S., and Nielsen C. J., J. Phys. Chem. A 2004, 108, 7393.
    56. Liu J. Y., Li Z. S., Wu J. Y, Wei Z. G., Zhang G., and Sun C. C., J. Chem. Phys. 2003, 119, 7214, and references therein.
    57. Li Q. S. and Lu R. H., J. Phys. Chem. A. 2002, 106, 9446.
    58. Butkovskaya N. I. and Setser D. W., J. Phys. Chem. A.1998, 102, 9715.
    59. Alvarez-Idaboy J. R., Mora-Diez N., R. Boyd J., and Vivier-Bunge A.. J. Am. Chem. Soc. 2001, 123, 2018.
    60. D’Anna B., Bakken V., Beukes J. A., Nielsen C. J., Brudnik K., and Jodkowski J. T., Phys. Chem. Chem. Phys. 2003, 5, 1790.
    61. Barnes I., Becker K. H., Fink E. H., Reimer A., Zabel F., and Niki H., Chem. Phys. Lett. 1985, 115, 1.
    62. Jemi-Alade A. A., Lightfoot P. D., and Lesclaux R., Chem. Phys. Lett. 1992, 195, 25.
    63. Pinceloup S., Laverdet G., Maguin F., Doussin J. F., Carlier P., and BrasG. L., J. Photochem. Photobio. A: Chem. 2003, 157, 275.
    64. Hansen J. C., J Y. Li,. Francisco S., and Li Z., J. Phys. Chem. A 1999, 103, 8543.
    65. Feng W. L., Wang Y. S., Zhang W., and Pang X. Y., Chem. Phys. Lett. 1997, 266, 43.
    66. Choi Y. M., Xia W. S., Park J., and Lin M. C., J. Phys. Chem. A 2000,104, 7030.
    67. Xia W. S. and Lin M. C., Phys. Chem. Chem. Phys. 2000, 2, 5566.
    68. Oehlers C., Wagner H. Gg., Ziemer H., Temps F., and Dobe S., J. Phys. Chem. A 2000, 104, 10500.
    69. Curtiss. L.A, Raghavachari. K, Redfern. P.C, Rassolov. V, and Pople. J.A, J. Chem Phys. 1998, 109,7764.
    70. Boboul. A.G, Curtiss. L.A, Redfern. P.C, and Raghavachari. K, J. Chem. Phys.
    71. Montgomery Jr J.A.., Frisch M. J., Ochterski J. W., and Petersson G. A., J. Chem. Phys. 2000, 112, 6532.
    72. Montgomery Jr.J.A., Frisch M. J., Ochterski J. W., and Petersson G. A., J. Chem. Phys. 1999, 110, 2822.
    73. Chase Jr.M. W., NIST-JANAF Themochemical Tables, J. Phys. Chem. Ref. Data, Monograph 9 1998.
    74. Liu, J. Y.; Li, Z. S.; Wu, J. Y.; Wei, Z. G.; Zhang, G.; Sun, C. C.J. Chem. Phys. 2003, 119, 7214.
    75. Jewell J. M., , Lovas P. R., Remjian F. J., , A. & M?llendal, H. Ap. J. Letters, 2004, , 610, L21
    76. Grebe, J.; Homann, K. H. Ber. Bunsen-Ges. Phys. Chem. 1982, 86, 581.
    77. Grebe, J.; Homann, K. H. Ber. Bunsen-Ges. Phys. Chem. 1982, 86, 587.
    78. Devriendt, K.; Peeters, J. J. Phys. Chem. A, 1997, 101, 2546.
    79. Peeters, J.; Devriendt, K. Symp. (Int.) Combust. [Proc.] 1996, 26,1001.
    80. Marinov, N. M.; Pitz, W. J.; Westbrook, C. K.; Castaldi, M. J.;Senkan, S. M. Combust. Sci. Technol. 1996, 21, 116.
    81. McEnally, C. S.; Pfefferle, L. D. Combust. Flame 2000, 121, 575.
    82. Peeters, J.; Boullart, W.; Devriendt, K. J. Phys. Chem. 1995, 99, 3583.
    83. Phippen, D. E.; Bayes, K. D. Chem. Phys. Lett. 1989, 164, 625.
    84. Blauwens, J.; Smets, B.; Peeters, J. Symp. (Int.) Combust. [Proc.] 1976, 16, 1055.
    85. Boullart, W.; Nguyen, M. T.; Peeters, J. J. Phys. Chem. 1994, 98, 8036.
    86. Kilpinen, P.; Glarborg, P.; Hupa, M. Ind. Eng. Chem. Res. 1992, 31, 1477.
    87. Dagaut, P.; Luche, J.; Cathonnet, M. Int. J. Chem. Kinet. 2000, 32, 365.
    88. Dagaut, P.; Lecomte, F.; Chevailler, S.; Cathonnet, M. Combust. Flame 1999, 19, 494.
    89. Peeters, J. Bull. Soc. Chim. Belg. 1997, 106, 337.
    90. Turner, B. E., Sears, T. J., Astrophysical Journal, Part 1 (ISSN 0004-637X), 1989,340, 900
    91. Kaiser, R. T., Chem. Rev, 2002, 102, 1309.
    92. Osborn, D. L.; Mordaunt, D. H.; Choi, H.; Bise, R. T.; Neumark, D. M.; Rohlfing, C. M. J. Chem. Phys. 1997, 106, 10087.
    93. Unfried, K. G.; Glass, G. P.; Curl, R. F. Chem. Phys. Lett. 1991, 177, 33.
    94. Mordaunt, D. H.; Osborn, D. L.; Choi, H.; Bise, R. T.; Neumark, D. M. J. Chem. Phys. 1996, 105, 6078.
    95. Endo, Y.; Hirota, E. J. Chem. Phys. 1987, 88, 4319.
    96. Brock, L. R.; Mischler, B.; Rohlfing, E. A. J. Chem. Phys. 1997, 07, 665.
    97. Brock, L. R.; Mischler, B.; Rohlfing, E. A. J. Chem. Phys. 1999, 110, 6773.
    98. Unfried, K. G.; Curl, R. F. J. Mol. Spectrosc. 1991, 150, 86.
    99. Meyer, J. P. and Hershbrger, J. F., J. Phys. Chem. A. 2005, 109, 4772 and reference herein.
    100.Murray, K.K, Unfried, K. G., Glass, G. P. and Curl, R. F., Chem. Phys. Lett. 1992, 192, 512 and reference herein.
    101.Wei, Z. G., Huang, X. R., Sun, Y. B., and Sun, C. C., Chem. J. Chin. Univ. 20004, 25, 1504.
    102.Tokmakov, I. V., Moskaleva, L. V., Paschenko, D. V. and Lin. M. M. J. Phys. Chem. A. 2003, 107, 1066, and reference herein.
    103.Chikan, V. and Lenoe, S. R., J. Phys. Chem. A. 2005, 109, 2525 and reference herein.
    104.Boullart, W. and Peeters, J., J. Phys. Chem, 1992, 96, 9810 and reference herein.
    105.Xie, H. B., Ding, Y. H., and Sun, C. C., J.Chem Phys, 2006,125,124317-1
    106.Le, T. N., Lee, H. Y., Mebel, A. M. and Kaiser R. I., J. Phys. Chem. A. 2001, 105, 1847.
    107.Zou, P and Osborn, D. L. Phys. Chem. Chem. Phys. 2004, 6, 1697.
    108.Vereechen, L., Pierloot, K. and Peeters, J., J. Chem. Phys. 1998, 108, 1068.
    109.Cano, M., Quintana, J., Juliá, L., Camps, F. and Joglar, J., J. Org. Chem, 1999, 64, 5096.
    110.Closs, G.L and Redwine, O.D, J.Am.Chem.Soc, 1986,108,506
    111.Closs, G. L., Evanochko, W. T. and Norris. J. R., J. Am. Chem. Soc, 1982,
    104, 350 and reference herein.
    112.Yuan, L., Desain, J. D., Curl, R. F., J. Mol. Spectrosc., 1998, 187, 102 and reference herein.
    113.Geppert, W. D., Eskola, A. J., Timonen, R. S. and Halonen, L., J. Phys. Chem. A. 2004, 108, 4232 and reference herein.
    1. Kaiser, R.I. 2002, Chem. Rev., 102, 1309
    2. Andrew, B.H, Ed; LA.U Symposium 87, Interstellar Molecules; Reidel; Dordrecht, The Netherlands, 1980.
    3. Les Houches Workshop; Solid Interstellar Matter; The ISO Revolution; d’ Hendecourt, L, Joblin, C, Jones, A., Eds.; Springer/EDP Sciences; New York, 1999.
    4. Smith I. W.M., & Rowe B.R., Acc. Chem. Res. 2000, 33, 261 and references therein.
    5. Barrientos, C., Redondo, P., & Largo, A., Recent Res. Dev. Phys. Chem. 1997, 1, 51.
    6. Papoular, R., Monthly Notices of the Royal Astronomical Society, 2005. 362, 489-497
    7. Donahue N.M., Chem. Rev. 2003, 103, 4604.
    8. Borget F., Chiavassa T., Allouche A., Marinelli F., & Aycard J.P., J. Am. Chem. Soc. 2001, 123, 10668 and references therein.
    9. Borget F., Chiavassa T., Allouche A., & Aycard J.P., J. Phys. Chem. B.2001, 105, 449.
    10. Guennoun Z., Couturier-Tamburelli I., Pietri N., & Aycard J.P., J.Chem. Phys. B 2005, 109, 3437 and references therin.
    11. Tamburelli I., Chiavassa T., Borget F., & Pourcin J., J. Phys. Chem. A. 1998, 102, 422.
    12. Voegele A F., Tautermann C. S., Loerting T, and Liedl K. R. J.Phys.Chem.A, 2002,106,7850.
    13. Liu Z.F, Siu C.K and Tse J. S, Chem. Phys. Lett, 1999,309,335
    14. Zhou Y.F and Liu C.B, Int. J. Quan. Chem, 2000, 78, 281
    15. Diao G.W. and Chu L.T., J.Phys.Chem A, 2005,109,1364.
    16. Graham J. D, and Roberts J.T, J. Phys. Chem.B, 2000,104,978 and reference herein
    17. Xu S.C, and Zhao X. S, J. Phys. Chem. A, 1999, 103,2100
    18. Woon D. E, J. Phys. Chem. A, 2001, 105, 9478
    19. Bolton K, and Pettersson J.B.C, J. Am. Soc.Chem, 2001, 123,7360
    20. Gardebien F. and Sevin A. J.Phys.Chem A. 2003, 107,3935.
    21. Duvernay F., Chiavassa T., Borget F., & Aycard J.P., J. Am. Chem. Soc. 2004, 126, 7772.
    22. Woon D. E, J. Phys. Chem. A, 2001, 105, 9478
    23. Roser, J. E., Vidali, G., Manicao, G. and Pirronello, V. The Astrophy. J., 2001, 555, L61-L64.
    24. Borget F., Chiavassa T., & Aycard J. P., Chem. Phys. Lett. 2001, 348, 425.
    25. Woon, D.E. 2002, Astrophys. J., 569, 541
    26. McCarthy, M.C., Fuchs, G.W., Kucera, J., Winnewisser, G., & Thaddeus,P.J. 2003, J. Chem. Phys., 118, 3549 and reference therein
    27. Guélin, M.; Thaddeus, P. Astrophys. J. 1977, 212, L81.
    28. Guélin, M., Neningner, N., & Cernicharo, J. 1998, Astron. Astrophys., 335, L1
    29. Petrie, S., & Osamura, Y. 2004, J. Phys. Chem. A, 108, 3623.
    30. Howe J.A.; & Goldstein, J.H, 1995, J. Chem. Phys. 23, 1223.
    31. Irvine, W.M et al. 1988, Apj, 335, L89
    32. Turner, B.E 1991, ApjS, 76, 617.
    33. Costain, C.C & Mortaon, J.R, 1959, J. Chem. Phys. 31, 389.
    34. Williams, D., 1971, J. Chem. Phys, 55, 4578.
    35. Thayer, C. A., & Yardley, J. T.; 1972, J. Chem. Phys, 57, 3992.
    36. Bitto, H., et al, 1990, J. Chem. Phys, 92, 187.
    37. Bitto, H., et al, 1991, J. Chem. Phys, 95, 4765.
    38. Rogaski, C. A. and Wodtkea, A. M. 1994, J. Chem. Phys, 100, 78.
    39. Herbst, E.; Smith, D.; & Adams, N. G. 1984, Astron. Astrophys., 138, L13.
    40. Maclagan, R. G. A. R.; McEwan, M. J.; & Scott, G. B. 1995, Chem. Phys. Lett. 240, 185.
    41. Petrie, S. 1995, Apj, 454, L165.
    42. Dong, H., Ding, Y.H., & Sun, C.C. 2005, J. Chem. Phys., 122, 064303
    43. Ekern, S., & Vala. M.; 1997, J. Phys. Chem. A. 101, 3601.
    44. Herbst, E.; Chang, Q. & Cuppen, H. M.; 2005, Journal of Physics: Conference Series 6, 18
    45. Qu, Z. W., Ding, Y.-H., Li, Z. S. & Sun C. C. 1999, Theochem, 489, 131.
    46. Delrío, E., López, R., I.Menéndez, M. & Sordo, T. L., 2000, J. Comput,Chem. 21, 35.
    47. Dong, H., Ding, Y.H., & Sun, C.C. 2005, J. Phys. Chem. A, 109, 11941
    48. Dong,H, Ding,Y.H; & Sun, C.C.2005, J. Chem. Phys. 122, 204321
    49. Gottlieb, C. A., Vrtilek, J. M., Gottlieb, E. W., Thaddeus, P., & Hjalmarson, A.,1985, Apj, 294, L55
    50. Yamamoto, S. and Saito, S., 1994, J. Chem. Phys. 101, 5484
    51. Frisch M. J., Trucks G. W., & Schlegel H. B. et al., GAUSSIAN 98, Revision A.11 (Gaussian, Inc., Pittsburgh, PA, 1998).
    52. Andersson. K.at al, Molcas (version 5.2), Lund University, Sweden, 2001.
    53. Jenniskens.P.; & Blake D.F; 1996, Astrophy. J. 473,1104.
    54. Fowler J.E., Galbraith J.M., Vacek G., & Schaefer III H.F., J. Am. Chem. Soc, 1994, 116, 9311.
    55. Woon, D.E. 2001, Icarus, 149,277.
    56. Woon. D.E. 1999, Icarus,142,550.
    57. Allouche, A.; 2005, J. Chem. Phys. 122, 234703.
    58. Maseras, F, and Morokuma, K., 1995, J. Comput. Chem., 16, 1170.
    59. Dapprich, S., Komaromi, I., Byun, K. S., Morokuma, K. and Frisch, m. J. 1999, J. Mol, Struct., 461, 1.
    60. Corcbado, J. C., Olivares del Valle, F. J., & Espinosa-Garcia, J. 1993, J .Phys. Chem., 97, 9129
    61. Dubey, M.K., Mohrschlad, R., Donahue, N.M., & Anderson, J.G. 1997, J. Phys. Chem. A, 101, 1494
    62. Shapley,W.A., & Bacskay, G.B. 1999, J. Phys. Chem. A, 103, 4514
    63. Srinivasan, N. K., Su, M. C., Sutherland, J. W., & Michael, J. V. 2005, J. Phys. Chem. A, 109, 1857
    64. Ding, Y.H., Zhang, X., Li, Z.S., Huang, X.R., & Sun, C.C. 2001, J .Phys. Chem. A, 105, 8206
    65. Chen, C.C., Bozzelli, J.W., & Farrell, J.T. 2004, J. Phys. Chem. A, 108, 4632
    66. Deskevich, M.P., & Nesbitt, D.J. 2004, J. Chem, Phys., 120, 7281
    67. Wang J, Ding, Y.H, & Sun C.C, 2006, ChemPhysChem, 7, 710.
    68. Pisani, C.; Casassa, S.; Ugliengo, P. ; 1996, Chem. Phys. Lett, 201, 1253.
    69. Allouche, A; 1996, J. Phys. Chem, 100, 17915.
    70. Allouche, A.; Couturier-Tamburelli, Chiavassa, T.; 2000, J. Phys. Chem. B, 104, 1497.
    71. Hollis J.M & Churchwell E, 2001, Astrophy. J., 551, 803.
    72. V?hringer,M. E., Hansmann, B., Hernandez, H., Francisco, J. S., Troe,J. and Abel B. 2007, Science, 315, 26
    73. Cernicharo, J.; Guelin, M.; & Walmsley, C. M. 1987, A&A, 172, L5.
    74. Dickens, J. E.; Langer, W. D., & Velusamy, T.; 2001, Apj, 558, 693.
    75. Adams, N, G.; Smith, D.; Giles, K. and Herbst. E.; 1989, A&A, 220,269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700