椎体成形术和椎体后凸成形术治疗骨质疏松性椎体压缩骨折的相关生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
椎体成形术(Vertebroplasty)和椎体后凸成形术(Kyphoplasty)治疗骨质疏松性椎体压缩骨折(osteoporotic vertebral compression fractures,OVCFs)所致的顽固性腰背痛,可以起到缓解疼痛、稳定伤椎、改善患者活动状况的目的。Kyphoplasty弥补了Vertebroplasty不能恢复椎体高度、纠正后凸畸形的缺陷,并且骨水泥渗漏率较低。Kyphoplasty和Vertebroplasty自应用临床以来取得了初步的令人鼓舞的临床效果,但是术后邻近椎体发生骨折时有报道,越来越引起临床医生的重视。Kyphoplasty和Vertebroplasty术后邻近椎体再骨折究竟是骨质疏松症的自然发生过程,或是手术干预、椎体强化的结果,或是二者兼而有之,临床和生物力学研究都仍未达成共识。
     第一部分胸腰椎节段有限元模型屈伸过程中肌肉力的模拟
     目的研究胸腰椎节段(T12-L1-L2)屈伸过程中竖脊肌力、椎间盘压力和椎体表面von Mises应力的变化。
     方法建立T12-L1-L2节段三维有限元模型,并采用离体生物力学实验资料来验证模型有效性。以Follower load代替节段间局部肌肉力的作用。分别在T12-L1-L2节段屈曲-10°、-5°、0°、5°、10°、15°、20°时,模拟上身重力(260N)、竖脊肌力以及Follower load(0、100、200N)作用,观察竖脊肌力、椎间盘压力和椎体表面von Mises应力的变化。
     结果随着T12-L1-L2节段屈曲角度增大,竖脊肌力、椎间盘压力以及椎体表面von Mises应力也随之逐渐增大。T12-L1-L2节段屈曲-10°、0°以及20°时,竖脊肌力分别需要0N、150N和410N才能维持平衡。Follower load可以减小竖脊肌力,并使椎间盘压力增高,但是对椎体表面von Mises应力影响不明显。如果忽略所有肌肉力作用,模型在纯弯矩作用下屈伸相同的角度,椎间盘压力和椎体表面von Mises应力将相应发生明显变化,较有肌肉力作用时明显降低。
     结论脊柱生物力学研究中不能忽视脊柱周围肌肉力的作用,胸腰椎屈曲角度和肌肉力影响椎间盘压力和椎体表面von Mises应力。如果忽略所有肌肉力的作用,椎间盘压力、椎体表面von Mises应力将会发生明显改变。Follower load代替节段间局部肌肉力作用,可以获得理想的椎间盘压力,使模拟脊柱真实载荷状况具有了可行性。
     第二部分骨质疏松椎体骨水泥强化之生物力学评估
     目的研究胸腰椎节段(T12-L1-L2)不同程度骨质疏松椎体预防性骨水泥强化对治疗椎体、邻近椎体以及椎间盘的生物力学影响。
     方法通过调整椎体松质骨、皮质骨的弹性模量建立不同程度骨质疏松的胸腰椎节段(T12-L1-L2)三维有限元模型,并模拟L1椎体经1.0GPa和3.0GPa两种弹性模量的骨水泥强化过程。观察在上身重力(260N)、竖脊肌力和Follower load(200N)作用下,轻度疏松、重度疏松模型L1椎体骨水泥强化前后治疗椎体、邻近椎体最大von Mises应力、椎间盘压力变化。
     结果骨质疏松使L1椎体的压缩刚度下降,经骨水泥强化以后椎体刚度和强度增加。骨质疏松对椎间盘压力、椎体最大von Mises应力影响较大。与正常骨质比较,轻度疏松模型的椎间盘压力增高22.6%,椎体皮质骨最大von Mises应力增高50.2%,重度疏松模型的椎间盘压力增高36.2%,椎体皮质骨最大von Mises应力增高77.7%。骨水泥强化以及骨水泥弹性模量差异对椎间盘压力、椎体最大von Mises应力影响较小。骨水泥强化使椎间盘压力增高2.2%-3.1%,邻近椎体皮质骨最大von Mises应力减小2.6%-4.6%,治疗椎体皮质骨最大von Mises应力增高4.6%-5.7%。
     结论骨质疏松影响胸腰椎节段的生物力学性质,使松质骨应力水平降低,弹性模量较高的椎体皮质骨承担较大的应力。椎间盘压力与骨质疏松程度、椎体皮质骨、松质骨应力分布有关。骨质疏松的胸腰椎节段经骨水泥强化以后,虽然治疗椎体的刚度、强度增加,承担了较大的应力,但是骨水泥以及骨水泥弹性模量差异对邻近节段椎体、椎间盘的应力水平以及应力分布影响十分有限。
     第三部分椎体成形术和椎体后凸成形术对邻近椎体、椎间盘的生物力学影响
     目的研究胸腰椎节段(T12-L1-L2)在L1椎体楔形骨折前、椎体成形术(Vertebroplasty)和后凸成形术(Kyphoplasty)后维持直立位所需要竖脊肌力,以及骨折椎体经骨水泥强化治疗以后椎间盘压力、邻近椎体终板最大von Mises应力变化。方法建立胸腰椎节段(T12-L1-L2)重度骨质疏松三维有限元模型,并模拟L1椎体楔形压缩骨折、Vertebroplasty和Kyphoplasty。在Vertebroplasty和Kyphoplasty模型中,L1椎体作为治疗椎体,其前缘高度分别较正常椎体降低35%和10%。研究在上身重力(260N)、竖脊肌力和Follower load(200N)作用下,T12-L1-L2节段L1椎体骨折前和Vertebroplasty、Kyphoplasty治疗后维持直立位所需的竖脊肌力,以及骨折椎体骨水泥强化以后椎间盘压力、邻近椎体终板最大von Mises应力变化。
     结果L1椎体楔形压缩骨折使上身重心位置前移,重力弯矩增大,因此需要竖脊肌力增大以恢复躯体平衡。如果上身重心位置没有代偿后移,与骨折前比较,Vertebroplasty和Kyphoplasty的竖脊肌力分别增高183%、56%;此时Vertebroplasty的椎间盘压力和终板最大von Mises应力增高60%,Kyphoplasty的椎间盘压力和终板最大von Mises应力分别增高22%、21%。如果上身重心位置代偿后移,竖脊肌力将会下降,椎间盘压力与终板最大von Mises应力相应降低。与骨折前比较,Vertebroplasty的椎间盘压力增高27%、终板最大von Mises应力增高39%,Kyphoplasty的椎间盘压力增高6.5%、终板最大von Mises应力增高10.1%。骨水泥强化对椎间盘压力、终板最大von Mises应力的影响很小,尚不及重心位置代偿以后脊柱额外载荷造成的的影响。
     结论椎体压缩骨折使重心位置向前转移,需要竖脊肌力增大以维持平衡,造成脊柱负载增加,因此,椎间盘压力和终板应力增高。椎体内注入骨水泥对邻近椎体终板应力、椎间盘压力影响较小。即使重力的位置发生代偿,由于脊柱负载增加,楔形骨折对椎间压力、终板应力的影响也远远高于骨水泥强化所造成的影响。Kyphoplasty恢复了椎体高度、纠正了后凸畸形,使重力弯矩、竖脊肌力减小,原本增高的椎间压力、终板应力降低。
Chapter 1. Investigation of Muscle Forces for Flexion and Extension by Using a Finite Element Model of the Thoracolumbar Spine
     Study Design. The muscle forces, intradiscal pressure, and von Mises stresses in the cortical bone were calculated using a finite element model of the thoracolumbar spine. Objectives. To investigate the trunk muscle forces during flexion and extension in the thoracolumbar spine and to determine their influence on intradiscal pressure and stresses in the cortical bone.
     Summary of Background Data. The spine is primarily stabilized by muscle forces. However, little is known about the influence of trunk muscle forces on the deformation of, and stresses in, the spine. In most studies, muscle forces are neglected.
     Methods. A three-dimensional finite element model of the ligamentous thoracolumbar spine was created. It was validated by use of experimental data from in vitro measurements on cadaver specimens. Good agreement between analytical and experimental results proved achievable. The model was loaded with the upper body weight (260N), a compressive follower load (0N, 100N, and 200N, respectively) to account for the local muscle forces, and a force in the m. erector spinae. The force in the m. erector spinae, intradiscal pressure, and stresses in the cortical bone were estimated during extension and flexion in the thoracolumbar spine.
     Results. The force in the m. erector spinae increased with the flexion angle. The estimated forces in the erector spinae were 0N for 10°extension, 150N for standing, and 410N for 20°flexion in the thoracolumbar spine. Intradiscal pressure and von Mises stresse in the cortical bone increased with the flexion angle, but were slightly influenced by extension. The force in the m. erector spinae was decreased, and intradiscal pressure was increased with increasing the follower load. Intradiscal pressure and stresses in the cortical bone will be changed considerably when the muscle forces were neglected and only a pure moment was applied.
     Conclusions. This study confirms that the muscle forces should not be neglected for biomechanical studies at the spine. The muscle forces have a strong influence on intradiscal pressure and stresses in the cortical bone during extension and flexion in the thoracolumbar spine. Applying a follower load instead of a great number of small forces simulating the local muscles makes realistic loading in vitro studies feasible.
     Chapter 2. Biomechanical determination of bone cement augmentation of osteoporotic vertebral body in the thoracolumbar spine Study Design. The effect of prophylactic bone cement augmentation on osteoporotic thoracolumbar spinal units was determined using finite element models.
     Objectives. To estimate the stress levels in the bone of treated and adjacent vertebral bodies following prophylactic bone cement augmentation.
     Summary of Background Data. Osteoporosis is the most frequent skeletal disease of the elderly, leading to weakness of the bony structures. Cement injection into vertebral bodies has been used to treat osteoporotic compression fractures of the spine. The clinical results are encouraging. However, it remains unclear whether adjacent vertebral body fractures are related to the natural progression of osteoporosis or if adjacent fractures are a consequence of bone cement augmentation. Experimental biomechanical studies showed significant increase in stiffness and strength of treated bodies.
     Methods. In finite element models of the ligamentous thoracolumbar spine different levels of bone tissue loss (moderate osteoporosis and severe osteoporosis) were simulated by changing the elastic modulus of the cortical and trabecular bone. The elastic modulus of bone cement inserted in the L1 vertebral body was varied between 1.0GPa and 3.0GPa. In order to simulate‘standing’, the models were loaded with the upper body weight (260N), a follower load (200N), and a case-dependent force in the m. erector spinae. The intradiscal pressure and stresses in the cortical and trabecular bone were investigated during standing. Results. L1 vertebral body compressive stiffness decreased when moderate osteoporosis and severe osteoporosis were simulated. The intradiscal pressure and von Mises stresses in the cortical and trabecular bone depended strongly on the grade of osteoporosis in the vertebral body. Intradiscal pressure increased by 22.6% for moderate osteoporosis, and by 36.2% for severe osteoporosis compared intact model. Maximum von Mises stress in the cortical bone increased by 50.2% for moderate osteoporosis, and by 77.7% for severe osteoporosis compared intact model. The effects of bone cement augmentation and elastic modulus of bone cement on intradiscal pressure and stresses in the adjacent cortical and trabecular bone were smaller. For the treated vertebral body stresses in the cortical and trabecular bone were increased.
     Conclusions. Osteoporosis may lead to decreased compressive stiffness and reduced spinal stability. The grade of osteoporosis has stronger effects on the biomechanical behavior of thoracolumbar spine. The effects of bone cement augmentation are much smaller.
     Chapter 3. Biomechanical Effects of Vertebroplasty and Kyphoplasty on Adjacent Vertebral Body and Intervertebral Disc Study Design. The effects of vertebroplasty and kyphoplasty on the adjacent vertebral body and intervertebral disc were investigated using finite element models of the thoracolumbar spine.
     Objectives. To estimate the force in the m. erector spinae, intradiscal pressure, and von Mises stresses in the endplates during standing for a severe osteoporotic thoracolumbar spine, as well as after vertebroplasty and kyphoplasty treatment.
     Summary of Background Data. Vertebroplasty and kyphoplasty are frequently used for internal stabilization of a fractured vertebral body. Fractures in the adjacent vertebral body after vertebroplasty or kyphoplasty do occur occasionally. A wedge-shaped compression fracture shifts the centre of gravity of the upper body anteriorly and generally. However, it is unclear how a wedge-shaped compression fracture of a vertebral body increases muscle forces and intradiscal pressure.
     Methods. A wedge-shaped L1 vertebral body was simulated in finite element models of the severe osteoporotic thoracolumbar spine. For the vertebroplasty and kyphoplasty model an anterior height reduction of 35% and 10%, respectively, related to the severe osteoporotic model were assumed. In order to simulate‘standing’, the models were loaded with the upper body weight (260N), a follower load (200N), and a case-dependent force in the m. erector spinae. The force in the m. erector spinae, intradiscal pressure, and von Mises stresses in the endplates were investigated during standing.
     Results. A wedge-shaped vertebral body shifted the centre of gravity of the upper body anteriorly. This increased the flexion bending moment and thus the force in the m. erector spinae necessary for balancing the spine. Without compensation of upper body shift, the force in the m. erector spine increased by 183% for vertebroplasty and by only 56% for kyphoplasty compared to the severe osteoporotic spine. Intradiscal pressure increased by 60% and 22% for vertebroplasty and kyphoplasty, respectively. Maximum von Mises stress in the endplates increased by 60% and 21% for vertebroplasty and kyphoplasty, respectively. In contrast, with shift compensation of the upper body, the increase in the muscle forces was much lower, increase in intradiscal pressure was only 27% and 6.5%, and increase in maximum von Mises stress in the endplates was only 39% and 10.1% for for vertebroplasty and kyphoplasty, respectively. Bone cement augmentation had a much smaller effect on intradiscal pressure and maximum von Mises stress in the endplates. Moreover the effect of upper body shift after a wedge-shaped vertebral body fracture on spinal load was more pronounced than that of stiffness due to cement infiltration.
     Conclusions. The advantages of kyphoplasty found in this study will be apparent only if nearly full fracture reduction is achieved. Our results do not suggest that the adjacent vertebral body fractures after vertebroplasty or kyphoplasty are caused by the higher stiffness of the treated vertebral body but by the anterior shift of the upper body.
引文
1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis Prevention, Diagnosis, and Therapy. JAMA, 2001, 285(6): 785-795.
    2. Lin JT, Lane JM. Osteoporosis: a review. Clin Orthop Relat Res, 2004, 425: 126-134.
    3.朴俊红,庞莲萍,刘忠厚,等.中国人口状况及原发性骨质疏松症诊断标准和发生率.中国骨质疏松杂志, 2002, 8(1): 1-7.
    4.赵燕玲,潘子昂,王石麟,等.中国原发骨质疏松症流行病学.中国骨质疏松杂志, 1998, 4(1): 1-4.
    5. Riggs BL, Melton LJ III. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone, 1995, 17(suppl 5): S505-S511.
    6. Lin JT, Lane JM. The osteoporotic spine. Eura Medicophys, 2004, 40(3): 233-237.
    7. Kim DH, Vaccaro AR. Osteoporotic compression fractures of the spine; currentoptions and considerations for treatment. Spine J, 2006, 6(5): 479-487.
    8. Wu SS, Lachmann E, Nagler W. Current medical, rehabilitation, and surgical management of vertebral compression fractures. J Women’s health, 2003, 12(1): 17-26.
    9. Klotzbuecher CM, Ross PD, Landsman PB, et al. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res, 2000, 15(4): 721-739.
    10. Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. JAMA, 2001, 285(3): 320-323.
    11. Kado DM, Browner WS, Palermo L, et al. Vertebral fractures and mortality in older women: a prospective study. Arch Intern Med, 1999, 159(11): 1215-1220.
    12. Kado DM, Duong T, Stone KL, et al. Incident vertebral fractures and mortality in older women: a prospective study. Osteoporosis Int, 2003, 14(7): 589-594.
    13. Galibert P, Deramond H, Rosat P, et al. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie, 1987, 33(2): 116-168.
    14. Jensen ME, Evans AJ, Mathis JM, et al. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. AJNR Am J Neuroradiol, 1997, 18(10): 1897-1904.
    15. Barr JD, Barr MS, Lemley TJ, et al. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine, 2000, 25(8): 923-928.
    16. Garfin SR, Yuan HA, Reiley MA. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine, 2001, 26(14): 1511-1515.
    17. Liberman IH, Dudeney S, Reinhardt MK, et al. Initial outcome and efficacy of“kyphoplasty”in the treatment of painful osteoporotic vertebral compression fractures. Spine, 2001, 26(14): 1631-1638.
    18.杨惠林,Hansen AY,陈亮,等.椎体后凸成形术治疗老年骨质疏松脊柱压缩骨折.中华骨科杂志,2003,23(5): 262-265.
    19. Majd ME, Farley S, Holt RT. Preliminary outcomes and efficacy of the 360 consecutive kyphoplasties for the treatment of painful osteoporotic vertebral compression fractures. Spine J, 2005, 5(3): 244-255.
    20. Gaitanis IN, Hadjipavlou AG, Katonis PG, et al. Balloon kyphoplasty for the treatment of pathological vertebral compressive fractures. Eur Spine J, 2005, 14(3): 250-260.
    21. Grados F, Depriester C, Cayrolle G, et al. Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology, 2000, 39(12): 1410-1414.
    22. Uppin AA, Hirsch JA, Centenera LV, et al. Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology, 2003, 226(1):119-124.
    23. Fribourg D, Tang C, Sra P, et al. Incidence of subsequent vertebral fracture after kyphoplasty. Spine, 2004, 29(20): 2270-2276.
    24. Harrop JS, Prpa B, Reinhardt MK, et al. Primary and secondary osteoporosis’incidence of subsequent vertebral compression fractures after kyphoplasty. Spine, 2004, 29(19): 2120-2125.
    25. Hardouin P, Grados F, Cotten A, et al. Should percutaneous vertebroplasty be used to treat osteoporotic fractures? An update. Joint Bone Spine, 2001, 68(3): 216-221.
    26. Berlemann U, Ferguson SJ, Nolte LP, et a1. Adjacent vertebral failure after vertebroplasty: A biomechanical investigation. J Bone Joint Surg (Br), 2002, 84(5): 748-752.
    27. Baroud G, Nemes J, Heini P, et a1. Load shift of the intervertebral disc after a vertebroplasty: A finite-element study. Eur Spine J, 2003, 12(4): 421-426.
    28. Villarraga ML, Bellezza AJ, Harrigan TP, et al. The biomechanical effects of kyphoplasty on treated and adjacent nontreated vertebral bodies. J Spinal Disord Tech, 2005, 18(1): 84-91.
    1. Parnianpour M, Wang JL, Shirazi-Adl A, et al. The effect of variations in trunk models in predicting muscle strength and spinal loading. J Musculoskel Res, 1997, 1(1): 55-69.
    2. Wilke HJ, Wolf S, Claes LE, et al. Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study. Spine, 1995, 20(2): 192-198.
    3. Rohlmann A, Bergmann G, Graichen F, et al. Influence of muscle forces on loads in internal spinal fixation devices. Spine, 1998, 23(5): 537-542.
    4. Bogduk N, Macintosh JE, Pearcy MJ. A universal model of the lumbar back muscles in the upright position. Spine, 1992, 17(8): 897-913.
    5. Calisse J, Rohlmann A, Bergmann G. Estimation of trunk muscle forces using the finite element method and in vivo loads measured by telemeterized internal spinal fixation devices. J Biomech, 1999, 32(7): 727-731.
    6. Yuan HA, Brown CW, Phillips FM. Osteoporotic spinal deformity. A biomechanical rationale for the clinical consequences and treatment of vertebral body compression fractures. J Spinal Disord Tech, 2004, 17(3): 236-242.
    7. Wilke HJ, Rohlmann A, Neller S, et al. ISSLS Prize Winner: A novel approach to determine trunk muscle forces during flexion and extension. A comparison of data from an in vitro experiment and in vivo measurements. Spine, 2003, 28(23): 2585-2593.
    8. Silva MJ, Keaveny TM, Hayes WC. Load sharing between the shell and centrum in the lumbar vertebral body. Spine, 1997, 22(2): 140-150.
    9. Goel VK, Ramirez SA, Kong W, et al. Cancellous bone Young’s modulus variation within the vertebral body of a ligamentous lumbar spine-application of bone adaptive remodeling concepts . J Biomech Eng, 1995, 117(3): 266-271.
    10. Smit TH, Odgaard A, Schneider E. Structure and function of vertebral trabecular bone. Spine, 1997, 22(24): 2823-2833.
    11. Shirazi-Adl A, Ahmed AM, Shrivastava SC. Mechanical response of a lumbar motion segment axial torque alone and combined with compression. Spine, 1986, 11(9): 914-927.
    12. Qiu TX, Teo EC, Zhang QH. Effect of bilateral facetectomy of thoracolumbar spine T11–L1 on spinal stability. Med Biol Eng Comput, 2006, 44(5): 363-370.
    13. Panjabi MM, Oxland T, Takata K, et al. Articular facets of the human spine. Quantitative three-dimensional anatomy. Spine, 1993, 18(10): 1298-1310.
    14. Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine, 2003, 28(10): 991-996.
    15. Zander T, Rohlmann A, Calisse J, et al. Estimation of muscle forces in the lumbar spine during upper-body inclination. Clin Biomech, 2001, 16(suppl 1): S73-S80.
    16. Sharma M, Langrana NA, Rodriguez J. Role of ligaments and facets in lumbar spinal stability. Spine, 1995, 20(8): 887-900.
    17.王以进.肌肉与骨骼系统生物力学导论.第1版.上海:上海科技出版社,1987: 258.
    18. Lu YM, Hutton WC, Gharpuray VM. Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine, 1996, 21(22): 2570-2579.
    19. Panjabi MM, Oxland TR, Lin RM, et al. Thoracolumbar burst fracture: a biomechanical investigation of its multidirectional flexibility. Spine, 1994, 19(5): 578-585.
    20. Patwardhan AG, Havey RM, Meade KP, et al. A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine, 1999, 24(10):1003-1009.
    21. Rohlmann A, Neller S, Claes L, et al. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine, 2001, 26(24): E557-E561.
    22.周鸿奇,颜忠熙,陆瓞骥,等.尸体腰椎研究中的肌肉模拟.医用生物力学,1999,14(1):7-10.
    23. White AA, Panjabi MM. Clinical Biomechanics of the Spine (2nd ed). Philadelphia: Lippincott, 1990.
    24. Tawackoli W, Marco R, et al. The effect of compressive axial preload on the flexibility of the thoracolumbar spine. Spine, 2004, 29(9): 988-993.
    25. Stanley SK, Ghanayem AJ, Voronov LI, et al. Flexion-extension response of the thoracolumbar spine under compressive follower preload. Spine, 2004, 29(22): E510-E514.
    26. Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressure in the intervertebral disc in daily life. Spine, 1999, 24(8): 755-762.
    27. Wilke HJ, Neef P, Hinz B, et al. Intradiscal pressure together with anthropometric data: a data set for the validation of models. Clin Biomech, 2001, 16(suppl 1): S111-S126.
    28. Totoribe K, Chosa E, Tajima N. A biomechanical study of lumbar fusion based on a three-dimensional nonlinear finite element method. J Spinal Disord Tech, 2004, 17(2): 147-153.
    29.刘雷,裴福兴,宋跃明,等.破坏载荷下椎间盘对胸腰段脊柱应力分布影响的研究.创伤外科杂志,2002,4(3):145-148.
    30. Wilke HJ, Rohlmann A, Neller S, et al. Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load components in an internal fixator. Spine, 2001, 26(6): 636-642.
    1. Riggs BL, Melton LJ III. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone, 1995, 17(suppl 5): S505-S511.
    2. Wu SS, Lachmann E, Nagler W. Current medical, rehabilitation, and surgical management of vertebral compression fractures. J Women’s health, 2003, 12(1): 17-26.
    3. Harrop JS, Prpa B, Reinhardt MK, et al. Primary and secondary osteoporosis’incidence of subsequent vertebral compression fractures after kyphoplasty. Spine, 2004, 29(19): 2120-2125.
    4. Uppin AA, Hirsch JA, Centenera LV, et al. Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology, 2003, 226(1):119-124.
    5. Lunt M, O’Neill TW, Felsenberg D, et al. Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European Prospective Osteoporosis Study (EPOS). Bone, 2003, 33(4): 505-513.
    6. Berlemann U, Ferguson SJ, Nolte LP, et al. Adjacent vertebral failure after vertebroplasty: A biomechanical investigation. J Bone Joint Surg(Br), 2002, 84(5): 748-752.
    7. Bouza C, López T, Magro A, et al. Efficacy and safety of balloon kyphoplasty in the treatment of vertebral compression fractures: a systematic review. Eur Spine J, 2006, 15(7): 1050-1067.
    8. Fourney DR, Schomer DF, Nader R, et al. Percutaneous vertebroplasty and balloon kyphoplasty for painful vertebral body fractures in cancer patients. J Neurosurg, 2003, 98(suppl 1): 21-30.
    9. Kim SH, Kang HS, Choi JA, et al. Risk factors of new compression fractures inadjacent vertebrae after percutaneous vertebroplasty. Acta Radiol, 2004, 45(4): 440-445.
    10. Grados F, Depriester C, Cayrolle G, et al. Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology, 2000, 39(12): 1410-1414.
    11. Kaufmann TJ, Jensen ME, Schweickert PA, et al. Age of fracture and clinical outcomes of percutaneous vertebroplasty. AJNR Am J Neuroradiol, 2001, 22(10): 1860-1863.
    12. Komemushi A, Tanigawa N, Kariya S, et al. Percutaneous vertebroplasty for osteoporotic compression fracture: multivariate study of predictors of new vertebral body fracture. Cardiovasc Intervent Radiol, 2006, 29(4): 580-585.
    13. White AA, Panjabi MM. Clinical biomechanics of the spine. 2nd ed. Philadelphia: Lippincott, 1990.
    14. Lim TH, Brebach GT, Renner SM, et al. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine, 2002, 27(12): 1297-1302.
    15. Higgins KB, Harten RD, Langrana NA, et al. Biomechanical effects of unipedicular vertebroplasty on intact vertebrae. Spine, 2003, 28(14): 1540-1547.
    16. Tohmeh AG, Mathis JM, Fenton DC, et al. Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures. Spine, 1999, 24(17): 1772-1776.
    17. Belkoff SM, Maroney M, Fenton DC, et al. An in vitro biomechanical evaluation of bone cements used in percutaneous vertebroplasty. Bone, 1999, 25(suppl 2): S23-S26.
    18. Heini PF, Berlemann U, Kaufmann M, et al. Augmentation of mechanical properties in osteoporotic vertebral bones: a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J, 2001, 10(2): 164-171.
    19. Belkoff SM, Mathis JM, Jasper LE, et a1. The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine, 2001, 26(14): 1537-1541.
    20. Molloy S, Mathis JM, Belkoff SM. The effect of vertebral body percentage fill onmechanical behavior during percutaneous vertebroplasty. Spine, 2003, 28(14): 1549-1554.
    21. Sun K, Liebschner MAK. Biomechanics of prophylactic vertebral reinforcement. Spine, 2004, 29(13): 1428-1435.
    22. Lang T, Augat P, Majumdar S, et al. Noninvasive assessment of bone density and structure using computed tomography and magnetic resonance. Bone, 1998, 22(suppl 5): S149-S153.
    23. Andresen R, Haidekker MA, Radmer S, et al. CT determination of bone mineral density and structural investigations on the axial skeleton for estimating the osteoporosis-related fracture risk by means of a risk score. Br J Radiol, 1999, 72(858): 569-578.
    24. Homminga J, Weinans H, Gowin W, et al. Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine, 2001, 26(14): 1555-1561.
    25.刘忠厚,杨定焯,朱汉民,等.中国人原发性骨质疏松症诊断标准(试行).中国骨质疏松杂志,1999,5(1):1-4.
    26.朴俊红,庞莲萍,刘忠厚,等.中国人口状况及原发性骨质疏松症诊断标准和发生率.中国骨质疏松杂志,2002,8(1):1-7.
    27. Cyteval C, Thomas E, Picot MC, et al. Normal vertebral body dimensions: a new measurement method using MRI. Osteoporos Int, 2002, 13(6): 468-473.
    28. Odaci E, Sahin B, Sonmez OF, et al. Rapid estimation of the vertebral body volume:a combination of the Cavalieri principle and computed tomography images. Eur J Radiol, 2003, 48(3): 316-326.
    29. Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine, 2003, 28(10): 991-996.
    30. Rohlmann A, Zander T, Bergmann G. Influence of cement augmentation on intradiscal pressure: a finite element study. Eur Cell Mater, 2005, 10(suppl 3): 67.
    31. Liebschner MAK, Rosenberg WS, Keaveny TM. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine, 2001, 26(14): 1547-1554.
    32. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis Prevention, Diagnosis, and Therapy. JAMA, 2001, 285(6): 785-795.
    33. Beaupre GS, Hayes WC. Finite element analysis of a three-dimensional open-celled model for trabecular bone. Journal of Biomechanical Engineering, 1985, 107(3): 249-256.
    34. Hollister SJ, Fyhrie DP, Jepsen KJ, Goldstein SA. Application of homogenization theory to the study of trabecular bone mechanics. Journal of Biomech, 1991, 24(9): 825-839.
    35. Gibson LT. The mechanical behaviour of cancellous bone. J Biomech, 1985, 18(1): 90-97.
    36. Cao KD, Grimm MJ, Yang KH. Load sharing within a human lumbar vertebral body using the finite element method. Spine, 2001, 26(12): E253-E260.
    37. Villarraga ML, Bellezza AJ, Harrigan TP, et al. The biomechanical effects of kyphoplasty on treated and adjacent nontreated vertebral bodies. J Spinal Disord Tech, 2005, 18(1): 84-91.
    38. Eswaran SK, Gupta A, Adams MF, et al. Cortical and trabecular sharing in the human vertebral body. J Bone Miner Res, 2006, 21(2): 307-314.
    39. Adams MA, Freeman BJ, Morrison HP, et al. Mechanical initiation of intervertebral disc degeneration. Spine, 2000, 25(13): 1625-1636.
    40. Panjabi MM, Oxland TR, Lin RM, et al. Thoracolumbar burst fracture: a biomechanical investigation of its multidirectional flexibility. Spine, 1994, 19(5): 578-585.
    41. Tyndyk MA, Barron V, McHugh PE. Effect of osteoporosis on the biomechanics of the thoracolumbar spine: finite element study. Eur Cell Mater, 2005, 10(suppl 3): 73.
    42. Pheumaticos S, Lyndon N, Hipp J, et al. Effect of vertebroplasty on the compressivestrength of vertebral bodies. Spine J, 2002, 2(5)suppl 1: S109-S110.
    43. Heini PF, W?lchli B, Berlemann U. Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early results. Eur Spine J, 2000, 9(5): 445-450.
    44.辛兵,侯筱魁,李永刚.脊柱内固定与邻近关节突关节退变程度的关系.中国脊柱脊髓杂志,1999,9(6):321-323.
    45. Rohlmann A, Calisse J, Bergmann G, et al. Internal spinal fixator stifness has only a minor influence on stresses in the adjacent discs. Spine, 1999, 24(12): 1192-1196.
    46.赵必增,王以进,李家顺,等.椎体成形术后邻近椎间盘、椎体的力学性质变化.医用生物力学,2002,17(4):215-219.
    47. Baroud G, Nemes J, Heini P, et a1. Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J, 2003, 12(4): 421-426.
    48. Sun K, Liebschiner MAK. Evolution of vertebroplasty: a biomechanical perspective. Annals of Biomedical Engineering, 2004, 32(1): 77-91.
    49. Rohlmann A, Zander T, Jony, et al. Effect of vertebral body stiffness before and after vertebroplasty on intradiscal pressure. Biomed Tech(Berl), 2005, 50(5): 148-152.
    50. Schildhauer TA, Bennett AP, Wright TM, et al. Intravertebral body reconstruction with an injectable in situ-setting carbonated apatite. Biomechanical evaluation of a minimally invasive technique. J Orthop Res, 1999, 17(1): 67-72.
    1. Jensen ME, Evans AJ, Mathis JM, et al. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. AJNR Am J Neuroradiol, 1997, 18(10): 1897-1904.
    2. Barr JD, Barr MS, Lemley TJ, et al. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine, 2000, 25(8): 923-928.
    3. Garfin SR, Yuan HA, Reiley MA. New technologies in spine. Kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine, 2001, 26(14): 1511-1515.
    4. Liberman IH, Dudeney S, Reinhardt MK, et al. Initial outcome and efficacy of“kyphoplasty”in the treatment of painful osteoporotic vertebral compression fractures. Spine, 2001, 26(14): 1631-1638.
    5. Phillips FM, Todd Wetzel F, Lieberman I, et al. An in vivo comparison of the potential for extravertebral cement leak after vertebroplasty and kyphoplasty. Spine, 2002, 27(19): 2173-2178.
    6.杨惠林,Hansen AY,陈亮,等.椎体后凸成形术治疗老年骨质疏松脊柱压缩骨折.中华骨科杂志,2003,23(5):262-265.
    7. Majd ME, Farley S, Holt RT. Preliminary outcomes and efficacy of the 360 consecutive kyphoplasties for the treatment of painful osteoporotic vertebral compression fractures. Spine J, 2005, 5(3): 244-255.
    8. Gaitanis IN, Hadjipavlou AG, Katonis PG, et al. Balloon kyphoplasty for the treatment of pathological vertebral compressive fractures. Eur Spine J, 2005, 14(3): 250-260.
    9. Grados F, Depriester C, Cayrolle G, et al. Long term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology, 2000, 39(12): 1410-1414.
    10. Harrop JS, Prpa B, Reinhardt MK, et al. Primary and secondary osteoporosis’incidence of subsequent vertebral compression fractures after kyphoplasty. Spine,2004, 29(19): 2120-2125.
    11. Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. JAMA, 2001, 285(3): 320-323.
    12. Hardouin P, Grados F, Cotten A, et al. Should percutaneous vertebroplasty be used to treat osteoporotic fractures? An update. Joint Bone Spine, 2001, 68(3): 216-221.
    13. Yuan HA, Brown CW, Phillips FM. Osteoporotic spinal deformity: a biomechanical rationale for the clinical consequences and treatment of vertebral body compression fractures. J Disord Tech, 2004, 17(3): 236-242.
    14. Briggs AM, Greig AM, Wark JD, et al. A review of anatomical and mechanical factors affecting vertebral body integrity. Int J Med Sci, 2004, 1(3): 170-180.
    15. Klotzbuecher CM, Ross PD, Landsman PB, et al. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res, 2000, 15(4): 721-739.
    16. Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine, 2003, 28(10): 991-996.
    17. Heini PF, Orler R. Kyphoplasty for treatment of osteoporotic vertebral fractures. Eur Spine J, 2004, 13(3): 184-192.
    18. Smit TH, Odgaard A, Schneider E. Structure and function of vertebral trabecular bone. Spine, 1997, 22(24): 2823-2833.
    19. Goel VK, Ramirez SA, Kong W, et al. Cancellous bone Young’s modulus variation within the vertebral body of a ligamentous lumbar spine-application of bone adaptive remodeling concepts. J Biomech Eng, 1995, 117(3): 266-271.
    20. Shirazi-Adl A, Ahmed AM, Shrivastava SC. Mechanical response of a lumbar motion segment axial torque alone and combined with compression. Spine, 1986, 11(9): 914-927.
    21. Silva MJ, Keaveny TM, Hayes WC. Load sharing between the shell and centrum in the lumbar vertebral body. Spine, 1997, 22(2): 140-150.
    22. Qiu TX, Teo EC, Zhang QH. Effect of bilateral facetectomy of thoracolumbar spine T11–L1 on spinal stability. Med Biol Eng Comput, 2006, 44(5): 363-370.
    23. Zander T, Rohlmann A, Calisse J, et al. Estimation of muscle forces in the lumbar spine during upper-body inclination. Clin Biomech, 2001, 16(suppl 1): S73-S80.
    24. Sharma M, Langrana NA, Rodriguez J. Role of ligaments and facets in lumbar spinal stability. Spine, 1995, 20(8): 887-900.
    25.王以进.肌肉与骨骼系统生物力学导论.上海:上海科技出版社,1987:258.
    26. Lu YM, Hutton WC, Gharpuray VM. Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine, 1996, 21(22): 2570-2579.
    27. Wilke HJ, Rohlmann A, Neller S, et al. ISSLS Prize Winner: a novel approach to determine trunk muscle forces during flexion and extension. A comparison of data from an in vitro experiment and in vivo measurements. Spine, 2003, 28(23): 2585-2593.
    28. Patwardhan AG, Havey RM, Meade KP, et al. A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine, 1999, 24(10): 1003-1009.
    29. Rohlmann A, Neller S, Claes L, et al. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine, 2001, 26(24): E557-E561.
    30. Calisse J, Rohlmann A, Bergmann G. Estimation of trunk muscle forces using the finite element method and in vivo loads measured by telemeterized internal spinal fixation devices. J Biomech, 1999, 32(7): 727-731.
    31. Nording M, Frankel VH. Basic biomechanics of the musculoskeletal system.3rd ed. Lippincott Williams and Wikins, 2001, Ch10-Ch11.
    32. Fribourg D, Tang C, Sra P, et al. Incidence of subsequent vertebral fracture after kyphoplasty. Spine, 2004, 29(20): 2270-2276.
    33. Berlemann U, Franz T, Orler R, et al. Kyphoplasty for treatment of osteoporoticvertebral fractures: a prospective non-randomized study. Eur Spine J, 2004, 13(6): 496-501.
    34. Trout AT, Kallmes DF, Kaufmann TJ. New fractures after vertebroplasty. Adjacent fractures occur significantly sooner. AJNR Am J Neuroradiol, 2006, 27(1): 217-223.
    35. Jensen ME, Dion JE. Percutaneous vertebroplasty in the treatment of osteoporotic compression fractures. Neuroimaging Clin N Am, 2000, 10(3): 547-568.
    36. Belkoff SM, Mathis JM, Jasper LE, et a1. The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine, 2001, 26(14): 1537-1541.
    37. Liebschner MAK, Rosenberg WS, Keaveny TM. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine, 2001, 26(14): 1547-1554.
    38. Molloy S, Mathis JM, Belkoff SM. The effect of vertebral body percentage fill on mechanical behavior during percutaneous vertebroplasty. Spine, 2003, 28(14): 1549-1554.
    39. Sun K, Liebschner MAK. Biomechanics of prophylactic vertebral reinforcement. Spine, 2004, 29(13): 1428-1435.
    40. Berlemann U, Ferguson SJ, Nolte LP, et a1. Adjacent vertebral failure after vertebroplasty: a biomechanical investigation. J Bone Joint Surg (Br), 2002, 84(5): 748-752.
    41. Villarraga ML, Bellezza AJ, Harrigan TP, et al. The biomechanical effects of kyphoplasty on treated and adjacent nontreated vertebral bodies. J Spinal Disord Tech, 2005, 18(1): 84-91.
    42. Baroud G, Nemes J, Heini P, et a1. Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J, 2003, 12(4): 421-426.
    43. Rohlmann A, Zander T, Jony, et al. Effect of vertebral body stiffness before and after vertebroplasty on intradiscal pressure. Biomed Tech (Berl), 2005, 50(5): 148-152.
    44. Gaitanis IN, Carandang G, Phillips FM, et al. Restoring geometric and loading alignment of the thoracic spine with a vertebral compression fracture: effects of balloon (bone tamp) inflation and spinal extension. Spine J, 2005, 5(1): 45-54.
    45.吉立新,陈仲强.胸腰段后凸畸形对腰椎前凸角度的影响及其临床意义.中国矫形外科杂志,2003,11(17):1165-1166.
    46. Raisadeh K. Surgical management of adult kyphosis: idiopathic, posttraumatic and osteoporotic. Semin Spine Surg, 1999, 11(4): 367-381.
    47. Adams MA, Freeman BJ, Morrison HP, et al. Mechanical initiation of intervertebral disc degeneration. Spine, 2000, 25(13): 1625-1636.
    48. Ananthakrishnan D, Berven S, Deviren V, et al. The effect on anterior column loading due to different vertebral augmentation techniques. Clin Biomech, 2005, 20(1): 25-31.
    49. Lunt M, O’Neill TW, Felsenberg D, et al. Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European Prospective Osteoporosis Study (EPOS). Bone, 2003, 33(4): 505-513.
    50. Davis JW, Grove JS, Wasnich RD, et al. Spatial relationships between prevalent and incident spine fractures. Bone, 1999, 24(3): 261-264.
    51. Komemushi A, Tanigawa N, Kariya S, et al. Percutaneous vertebroplasty for osteoporotic compression fracture: multivariate study of predictors of new vertebral body fracture. Cardiovasc Intervent Radiol, 2006, 29(4): 580-585.
    52. Lin EP, Ekholm S, Hiwatashi A, et al. Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. AJNR Am J Neuroradiol, 2004, 25(2): 175-180.
    1. Lin JT, Lane JM. Osteoporosis: a review. Clin Orthop Relat Res, 2004, 425: 126-134.
    2. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis Prevention, Diagnosis, and Therapy. JAMA, 2001, 285(6): 785-795.
    3.朴俊红,庞莲萍,刘忠厚,等.中国人口状况及原发性骨质疏松症诊断标准和发生率.中国骨质疏松杂志, 2002, 8(1): 1-7.
    4.赵燕玲,潘子昂,王石麟,等.中国原发骨质疏松症流行病学.中国骨质疏松杂志, 1998, 4(1): 1-4.
    5. Riggs BL, Melton LJ III. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone, 1995, 17(suppl 5): S505-S511.
    6. Lin JT, Lane JM. The osteoporotic spine. Eura Medicophys, 2004, 40(3): 233-237.
    7. Kim DH, Vaccaro AR. Osteoporotic compression fractures of the spine; current options and considerations for treatment. Spine J, 2006, 6(5): 479-487.
    8. Kado DM, Browner WS, Palermo L, et al. Vertebral fractures and mortality in olderwomen: a prospective study. Arch Intern Med, 1999, 159(11): 1215-1220.
    9. Pluijm SMF, Tromp AM, Smit JH, et al. Consequences of vertebral deformities in older men and women. J Bone Miner Res, 2000, 15(8): 1564-1572.
    10. Silverman SL, Minshall ME, Harper KD, et al. The relationship of health-related quality of life to prevalent and incident vertebral fractures in postmenopausal women with osteoporosis. Arthritis Rheum, 2001, 44(11):2611-2619.
    11. Kado DM, Duong T, Stone KL, et al. Incident vertebral fractures and mortality in older women: a prospective study. Osteoporosis Int, 2003, 14(7): 589-594.
    12. White AA, Panjabi MM. Clinical Biomechanics of the Spine (2nd ed). Philadelphia: Lippincott, 1990.
    13. Klotzbuecher CM, Ross PD, Landsman PB, et al. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res, 2000, 15(4): 721-739.
    14. Briggs AM, Greig AM, Wark JD, et al. A review of anatomical and mechanical factors affecting vertebral body integrity. Int J Med Sci, 2004, 1(3): 170-180.
    15. Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. JAMA, 2001, 285(3): 320-323.
    16.吉立新,陈仲强.胸腰段后凸畸形对腰椎前凸角度的影响及其临床意义.中国矫形外科杂志,2003,11(17):1165-1166.
    17. Raisadeh K. Surgical management of adult kyphosis: idiopathic, posttraumatic and osteoporotic. Semin Spine Surg, 1999, 11(4): 367-381.
    18. Liberman IH, Dudeney S, Reinhardt MK, et al. Initial outcome and efficacy of“kyphoplasty”in the treatment of painful osteoporotic vertebral compression fractures. Spine, 2001, 26(14): 1631-1638.
    19. Garfin SR, Yuan HA, Reiley MA. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine, 2001, 26(14): 1511-1515.
    20. Gaitanis IN, Hadjipavlou AG, Katonis PG, et al. Balloon kyphoplasty for the treatmentof pathological vertebral compressive fractures. Eur Spine J, 2005, 14(3): 250-260.
    21. Belkoff SM, Mathis JM, Fenton DC, et al. An ex vivo biomechanical evaluation of an inflatable bone tamp used in the treatment of compression fracture. Spine, 2001, 26(2):151–156.
    22. Gaitanis IN, Carandang G, Phillips FM, et al. Restoring geometric and loading alignment of the thoracic spine with a vertebral compression fracture: effects of balloon (bone tamp) inflation and spinal extension. Spine J, 2005, 5(1): 45-54.
    23. Grados F, Depriester C, Cayrolle G, et al. Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology, 2000, 39(12): 1410-1414.
    24. Uppin AA, Hirsch JA, Centenera LV, et al. Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology, 2003, 226(1):119-124.
    25. Fribourg D, Tang C, Sra P, et al. Incidence of subsequent vertebral fracture after kyphoplasty. Spine, 2004, 29(20): 2270-2276.
    26. Harrop JS, Prpa B, Reinhardt MK, et al. Primary and secondary osteoporosis’incidence of subsequent vertebral compression fractures after kyphoplasty. Spine, 2004, 29(19): 2120-2125.
    27. Berlemann U, Franz T, Orler R, et al. Kyphoplasty for treatment of osteoporotic vertebral fractures: a prospective non-randomized study. Eur Spine J, 2004, 13(6): 496-501.
    28. Trout AT, Kallmes DF, Kaufmann TJ. New fractures after vertebroplasty. Adjacent fractures occur significantly sooner. AJNR Am J Neuroradiol, 2006, 27(1): 217-223.
    29. Jensen ME, Dion JE. Percutaneous vertebroplasty in the treatment of osteoporotic compression fractures. Neuroimaging Clin N Am, 2000, 10(3): 547-568.
    30. Lim TH, Brebach GT, Renner SM, et al. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine, 2002, 27(12): 1297-1302.
    31. Higgins KB, Harten RD, Langrana NA, et al. Biomechanical effects of unipedicularvertebroplasty on intact vertebrae. Spine, 2003, 28(14): 1540-1547.
    32. Belkoff SM, Mathis JM, Jasper LE, et a1. The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine, 2001, 26(14): 1537-1541.
    33. Molloy S, Mathis JM, Belkoff SM. The effect of vertebral body percentage fill on mechanical behavior during percutaneous vertebroplasty. Spine, 2003, 28(14): 1549-1554.
    34. Heini PF, Berlemann U, Kaufmann M, et al. Augmentation of mechanical properties in osteoporotic vertebral bones: a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J, 2001, 10(2): 164-171.
    35. Belkoff SM, Maroney M, Fenton DC, et al. An in vitro biomechanical evaluation of bone cements used in percutaneous vertebroplasty. Bone, 1999, 25(suppl 2): S23-S26.
    36. Tohmeh AG, Mathis JM, Fenton DC, et al. Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures. Spine, 1999, 24(17): 1772-1776.
    37. Liebschner MAK, Rosenberg WS, Keaveny TM. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine, 2001, 26(14): 1547-1554.
    38. Sun K, Liebschner MAK. Biomechanics of prophylactic vertebral reinforcement. Spine, 2004, 29(13): 1428-1435.
    39. Schildhauer TA, Bennett AP, Wright TM, et al. Intravertebral body reconstruction with an injectable in situ-setting carbonated apatite. Biomechanical evaluation of a minimally invasive technique. J Orthop Res, 1999, 17(1): 67-72.
    40. Berlemann U, Ferguson SJ, Nolte LP, et a1. Adjacent vertebral failure after vertebroplasty: a biomechanical investigation. J Bone Joint Surg (Br), 2002, 84(5): 748-752.
    41. Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine, 2003, 28(10): 991-996.
    42. Baroud G, Nemes J, Heini P, et a1. Load shift of the intervertebral disc after avertebroplasty: a finite-element study. Eur Spine J, 2003, 12(4): 421-426.
    43. Rohlmann A, Zander T, Jony, et al. Effect of vertebral body stiffness before and after vertebroplasty on intradiscal pressure. Biomed Tech(Berl), 2005, 50(5): 148-152.
    44. Adams MA, Freeman BJ, Morrison HP, et al. Mechanical initiation of intervertebral disc degeneration. Spine, 2000, 25(13): 1625-1636.
    45. Ananthakrishnan D, Berven S, Deviren V, et al. The effect on anterior column loading due to different vertebral augmentation techniques. Clin Biomech, 2005, 20(1): 25-31.
    46. Villarraga ML, Bellezza AJ, Harrigan TP, et al. The biomechanical effects of kyphoplasty on treated and adjacent nontreated vertebral bodies. J Spinal Disord Tech, 2005, 18(1): 84-91.
    47. Takemasa R, Yamamoto H. Bioactive calcium phosphatepaste injection for repair of vertebral fracture due to osteoporosis. Nippon Rinsho, 2002, 60(suppl 3): S696-S703.
    48. Hitchon PW, Goel V, Drake J, et al. Comparison of the biomechanics of hydroxyapatite and polymethylmethacrylate vertebroplasty in a cadaveric spinal compression fracture model. J Neurosurg, 2001, 95(suppl 2): S215-S220.
    49. Belkoff SM, Mathis JM, Erbe EM, et al. Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine, 2000, 25(9): 1061-1064.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700