可生物降解两亲性聚天冬氨酸衍生物的合成及其pH敏感性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境刺激响应高分子材料因能够对外界刺激(如pH、温度、光、电信号的变化)进行识别和响应,而在许多领域显示了良好的应用前景。如果环境刺激响应高分子同时具有亲水-疏水两亲性,则可以在选择性溶剂中形成纳米尺度的高分子胶束。以往研究的具有两亲性环境刺激响应高分子,多数为不可生物降解的高分子化合物,如聚(N-异丙基丙烯酰胺)、聚丙烯酸、聚4-乙烯基吡啶等,作为生物医用材料在体内使用时会受到很多限制。如果能够将环境刺激响应性能、两亲性、生物降解性能赋予一种高分子中,就可以得到适于在体内应用的新型高分子材料。这类材料形成的纳米级胶束,可以用作具有定位释放功能的纳米药物制剂的高分子载体;此类高分子也可以在特定组织中原位形成高分子水凝胶,用作诱导组织再生的支架材料(组织修复材料)。
     聚氨基酸由于具有良好的生物相容性,一般对生物体无毒、无副作用,并可以通过体内的水解或酶解反应最终降解为小分子氨基酸,被人体吸收或排出体外。有望广泛用于医学领域,比如作为药物控释载体等。聚(α,β-L-天冬氨酸)(α,β-L-PAsp)具有良好的生物相容性和生物降解性,而且合成简便,成本较低,作为药物载体和组织工程支架材料已多有研究。如果对聚(α,β-L-天冬氨酸)进行部分酯化,则聚(α,β-L-天冬氨酸)的侧链上含有疏水性的酯基和亲水性的羧基,部分酯化的聚(α,β-L-天冬氨酸)在一定条件下会呈现出两亲性。由于侧链羧基可以电离,在不同pH介质环境中有不同的电离度,因此部分酯化的聚(α,β-L-天冬氨酸)会表现出pH敏感性。不论聚酰胺主链还是酯基侧链,在生理条件下都是可以生物降解的。因此,部分酯化的聚(α,β-L-天冬氨酸)同时具有环境刺激响应性能、两亲性、生物降解性能,本实验室以该类高分子化合物为例,研究一类具有环境刺激响应性能的生物降解高分子纳米材料。
     (1)以L-天冬氨酸为起始物,采用热缩聚法制备得到聚琥珀酰亚胺(PSI),聚琥珀酰亚胺,开环水解得到聚(α,β-L-天冬氨酸)的钠盐。为调节聚合物的亲疏水平衡,赋予聚合物两亲性,对侧链羧基进行部分酯化,得到共聚物:聚(α,β-L-天冬氨酸盐)/聚(α,β-L-天冬氨酸丙酯)(PAsp-Na/PAsp-P)。利用FTIR,~1H-NMR,DSC,TG等方法对各阶段得到的聚合物中间体和两亲性目标聚合物进行了结构与性能表征。
     (2)对PAsp-Na/PAsp-P共聚物在水溶液中的pH诱导胶束化行为进行了系统研究。诱导胶束形成的临界pH值在3附近,由于低pH溶液环境中,PAsp-Na链段侧链羧基处于质子化状态,PAsp-Na链段和PAsp-P链段均表现为疏水性,聚合物PAsp-Na/PAsp-P在强酸性环境中会产生沉淀;pH升高,羧基去质子化,PAsp-Na链段表现为亲水性,整个PAsp-Na/PAsp-P共聚物表现为两亲性,可自组装形成胶束。对pH=4时的胶束形态进行了SEM,TEM和AFM观察,并结合动态/静态光散射验证了pH敏感核-壳胶束的存在,证明聚合物形成了以PAsp-Na为亲水性壳层,PAsp-P为疏水性核的核.壳胶束结构。而pH=6条件下,核-壳结构由于环境pH的改变而遭到破坏,形成空心曲面结构。同时利用ζ电位仪测定聚合物表面电荷,证明胶束解离与形成的驱动力的确是聚合物侧链羧基的质子化与去质子化。同时胶束形态变化具有可逆性,随pH变化,聚集体会在沉淀,核-壳胶束和空心曲面结构间相互转变。
     (3)为得到聚(α-L-天冬氨酸)片段含量较高的聚(α,β-L-天冬氨酸)衍生物,采用另一种反应路线制备两亲性聚天冬氨酸酯(PAsp-Na/PAsp-R)。以聚琥珀酰亚胺为研究对象,选用不同的醇钠做为亲核取代反应进攻试剂,使聚琥珀酰亚胺开环制备聚(α,β-L-天冬氨酸酯)(PAsp-R)。研究发现,不同的亲核试剂进攻聚酰亚胺环时,得到共聚物中聚α-氨基酸与聚β-氨基酸的比例不同,空间位阻和电子效应共同影响反应结果。具有较长烷基链的亲核试剂会优先选择进攻空间位阻较小的β-位羰基碳原子,从而得到聚α-氨基酸占优势的聚(α,β-L-天冬氨酸酯)。由于与α-位碳原子相连羰基碳具有更强的电正性,电负性较大的亲核试剂会优先进攻α-位羰基碳而得到聚β-氨基酸占优势的聚(α,β-L-天冬氨酸酯)。PAsp-R部分水解,得到侧链既有亲水性羧基又有疏水性酯基的两亲性聚合物。
     以聚(α,β-L-天冬氨酸丁酯)为例,利用UV、~1H NMR等方法研究聚合物的水解降解行为。通过~1H NMR中侧链酯基质子信号峰的消失和主链游离氨基在紫外光谱中吸光度的变化,证明水解降解过程包括侧链酯键的水解和主链酰胺键的裂解两部分,水解过程受环境温度和缓冲溶液pH值的共同影响。水解速率具有温度依赖性,环境温度越高水解速率越快(37℃时的水解速率>25℃时的水解速率)。溶液pH对聚合物降解速率的影响体现为:pH 12>pH 4>pH7。实验结果证实所合成的聚(α,β-L-天冬氨酸酯)是一类性能优良且可生物降解的聚合物。
Stimuli-responsive polymers have been extensively investigated and used as smart biomaterials such as drug delivery systems(DDS).The phase transition or phase separation of polymer is induced by a change in various conditions such as temperature,pH,electric field and solvent composition.However,the application of polymers to DDS is difficult because most stimuli-responsive polymers are not biodegradable and some are toxic.Polymeric biodegradability and biocompatibility are the most important factors for the application of polymers to drug delivery systems.Poly(amino acid)s is a kind of biodegradable materials in vivo.They are useful in pharmaceutical and biomedical areas.
     The precursor polymer,polysuccinimide(PSI),was synthesized by the thermal polycondensation of L-aspartic acid.Poly(α,β-L-aspartate)(PAsp) was prepared by hydrolysis of PSI.And PAsp was partially esterified to afford an amphiphilic biodegradable polyanion,poly(sodium aspartate-co-propyl aspartate)(PAsp-Na/ PAsp-P).The synthesized polyanion could be assembled into the nano-scaled aggregates in aqueous medium.The aggregate morphologies were studied by scanning electron microscopy(SEM) and transmission electron microscopy(TEM) as a function of pH.It was demonstrated that micellization of this random copolymer occurred with stimulus of pH changes to form various morphological micelles.The copolymer existed as precipitate at low pH(pH<2).When pH increased to 4,the polymers were associated into spherical micelles with the core of poly(propyl aspartate)(PAsp-P) hydrophobic units and shell of some negatively charged poly(sodium aspartate)(PAsp-Na) units.At higher pH(pH>5),toroidal nanostructures of the micelles were formed because rigid polyamide chains directly assemble into the large hollow spheres.The circular dichroism(CD) study showed that the conformation underwent a transition betweenα-helix and random coil at pH 3-7.The cooperative transitions were regulated by the degree of ionization of carboxylic side chains.When they were protonated(neutralized),the molecular backbone was in favor of the regular helical structure;when deprotonated(ionized), the electrostatic repulsions among side chains destabilized the intramolecular hydrogen bonds,thus randomizing the regular conformation.
     Some kinds of novel biodegradable polymers,poly(α,β-alkoxy-L-aspartates), were successfully synthesized by nucleophilic substitution in polysuccinimide. Biocompatible polysuccinimide derivatives conjugated with alkoxy side chains were obtained by using sodium alkoxide(n=1-4),sodium isopropoxide and sodium tertbutoxide as nucleophilic agents.Due to the steric hindrance effect and electronegative effect of the nucleophilic agent,poly(alkoxy-L-aspartate) with differentαandβ-amide unit compositions could be obtained.The contents ofα- andβ-amide unit were determined by ~1H NMR spectroscopy and ~(13)C NMR spectroscopy.The highest content ofα-polyaspartate was 60%,obtained in poly(α,β-butoxy-L- aspartate).The lowest content ofα-polyaspartate was 30%, obtained in poly(α,β-tertbutoxy-L-aspartate) and poly(sodium aspartate) (PAsp-Na).Both steric and electronegative contributions were important factors that determine over all reactivity via either pathway.On ring-opening modes of the site selectivity,the stronger nucleophilicity of the nucleophilic agents,compared among methoxy,ethoxy,isopropoxy and tert-butoxy anions,would induce higherβ-amide content in the polymer.The steric hindrance effect of the nucleophilic agents such as methoxy,ethoxy,n-propoxy and n-butoxy anions leads to an increase in the extent ofαpeptide bonds in the reaction product.
     Amphiphilic polymer PAsp-Na/PAsp-R can be obtained by partially hydrolysis of poly(α,β-alkoxy-L-aspartates).Hydrolysis process of poly(α,β-butoxy-L-aspartates) (PAsp-B) was studied by UV spectroscopy and ~1H NMR.The results showed that the degradation of PAsp-B includes the rapid elimination of butyl side chains and the moderate cleavage ofpeptide linkages in backbone as well as that the hydrolytic properties of PAsp-B were controlled by hydrolytic environments such as temperature and pH value.The hydrolysis rate of PAsp-B in aqueous solutions decreased in the order of pH 12>pH 4>pH 7 and increase with increasing the environmental temperature(for example,the hydrolysis rate of PAsp-B is higher at 37℃than that at 25℃).
引文
[1]孙杰,张大伦,谭惠民等。聚丁二酸丁二醇酯的共聚改性。中国塑料,2004,18:43-45
    [2]Pitarresi G,Palumbo F S,Giammona G,et al.Biodegradable hydrogels obtained by photo-crosslinking of dextran and polyaspartamide derivative.Biomaterials,2003,24:4301-4313
    [3]Pariot N,Erdwards-Le'vy F,Andry M C,et al.Cross-linked β-cyclodextrin microcapsules.Ⅱ.Retarding effect on drug release through semi-permeable membranes.Int.J.Pharm.,2002,232:175-181
    [4]Mikos A G,Temenoff J S.Formation of highly porous biodegradable scaffolds for tissue engineering.Electron J Biotechnol.2000,3:114-119
    [5]Reed A M,Gilding D K.Biodegradable polymers for use surgery-poly(glycolic)/poly(lactic acid) bomeo and copolymers 2.In-vitro degradation.Polymer.1981,22:494-504
    [6]Leenslag J W,Pennings A J,Bos R,et al.Resorbable materials of poly(L-Lactide).Ⅵ Plates and Screws for Internal Fracture Fixation.Biomaterials.1987,8:70-73
    [7]Leroux N,Bujold E,et al.Impact of chromic catgut versus polyglactin 910 versus fast-absorbing polyglactin 910 sutures for perineal repair:A randomized,controlled trial.Am J Obstet Gynecol.2006,196:1585-1590
    [8]Middleton J C,Tipton A J,Middleton J C,et al.Biodegradable polymers asorthopedic devices.Biomaterials.2000,21:2335-2446
    [9]Yang J,Park S B,Yoon H G,et al.Preparation of polycaprolactone nanoparticles containing magnetite for magnetic drug carrier.Int J Pharm.2006,324:185-190
    [10]Sandow J,Seidel H R.Microcapsule of regulatory peptides with controlled release:manufacture and injection preparation.Eur Pat Appl.1985,172:422
    [11]Olkhov A.Water transport,structure features and mechanical behavior of biodegradable PHB/PVA blends.J Appl Polym Sci.2003,90:1471-1476
    [12]Liu J P,Bernd J,Jungnickel.Crystallization and morphology of poly(vinylidene fluoride)/poly(hydroxybutyrate) blends.Crystallization and phase diagram by scanning calorimetry.2003,41:873-882
    [13]Anderson J M,Spilizewski K L,Hiltner A.Poly-α-amino acids as biomedical polymers in biocompatibility of tissue analogs.Boca Raton.1985,4:67-88
    [14]Ng S,Vandamme T,Taylor M,Heller J.Synthesis and erosion studies of self-catalyzed poly(ortho ester).Macromolecules.1997,30:770-772
    [15]Heller J,Barr J,Abdellauoi K S,et al.Poly(ortho esters):synthesis,characterization,properties and uses.Adv Drug Deliv Rev.2002,54:1015-1039
    [16]Nelson C L,Hickmon S G,et al.Treatment of experimental osteomyelitis by surgical debridement and the implantation of bioerodable,polyanhydride gentamicin beads.J Ortho Res.1997,15:249-255
    [17]Domb A J,Israel ZH,Elmalak O,et al.Preparation and characterization of carmustine loaded polyanhydride wafers for treating brain tumors.Pharm Res.1999,16:762-765
    [18]Stephens D,Li L,Robinson D,et al.Investigation of the in vitro release of gentamicin from a polyanhydride matrix.J Control Release.2000,63(3):305-317
    [19]Barrera D A,Zystra E,Lansbury P T.Synthesis and RGD peptide modification of a new biodegradable copolymer system:poly(lactic acid-co-lysine).J Am Chem Soc.1993,115:11010-11011
    [20]Bourke S L,Kohn J.Polymers derived from the amino acid L-tyrosine:polycarbonates,polyarylates and copolymers with poly(ethylene glycol).Adv Drug Deliv Rev.2003,55:447-466
    [21]Brannon Peppas L.生物降解性微粒和毫微粒在药物控释方面的新进展.国外医学药学分册.15:22(5):289-292
    [22]黎洪珊,何应,魏树礼.疫苗控释制剂的研究进展.中国药学杂志.1999,34:291
    [23]冯新德.生物材料与医用高分子.化学通报1994,9:8-10
    [24]王章阳,廖工铁.毫微粒载体材料的体内外降解及毒性.中国药学杂志.1999,34:73-75
    [25]吴涛,潘卫三,庄殿友.口服渗透泵制剂的研究进展.中国药学杂志.1999,34:76-78
    [26]Gil E S,Hudson S M.Stimuli-reponsive polymers and their bioconjugates.Prog Polym Sci,2004,29:1173-1222
    [27]Shi X Y,Li J B,Sun C M,et al.Water-solution properties of a hydrophobically modified poly(N-isopropylacrylamide).J Appl Polym Sci,2000,75:247-255
    [28]史向阳.利用荧光探针法研究水溶性高分子的溶液性质及其与脂质体的相互作用.感光科学与光化学.1998,16:367-368
    [29]史向阳,孙曹民,吴世康.包覆NIPAM-ODA双亲共聚物的脂质体的温控释放行为.感光科学与光化学.1999,17:208-216
    [30]史向阳,吴世康,孙曹民.疏水化修饰的聚N-异丙基丙烯酰胺高分子的水溶液性质研究.高分子学报.1999,2:210-216
    [31]史向阳,李峻柏,孙曹民.N-异丙基丙烯酰胺/丙烯酸十八酯共聚物水溶液胶束及相分离行为研究.高等学校化学学报.1999,1:135-139
    [32]Hsiue G H,Hsu S H,Yang C C,et al.Preparation of controlled release ophthalmic drops,for glaucoma therapy using thermosensitive poly-N-isopropylacryl-amide.Biomaterials,2002,23: 457-462
    [33]Jeong B,Bae Y H,Kim S W.Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers.J Control Release,2000,63:155-163
    [34]Hoffman A S,Afrassiabi A,Dong L C.Thermally reversible hydrogels.Ⅱ.Delivery and selective removal of substances from aqueous solutions.J Control Release,1986;4:213-222.
    [35]Hoffman A S,Afrassiabi A,Dong L C.Thermally reversible hydrogels.Ⅲ.Immobilization of enzymes for feedback reaction control.J Control Release,1986;4:223-227.
    [36]Coughlan D C,Quilty F P,Corrigan O I.Effect of drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly(N-isopropylacrylamide) hydrogels.J Control Release,2004,98:97-114
    [37]Rijcken C J F,Soga O,Hennink W E,van Nostrum C F.Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity:an attractive tool for drug delivery.J Control Release,2007,120:131-148
    [38]Gil E S,Hudson S M.Stimuli-reponsive polymers and their bioconjugates.Prog Polym Sci,2004,29:1173-1222
    [39]Lee E S,Na K,Bae Y H.Polymeric micelle for tumor pH and folate-mediated targeting.J Control Release,2003,91:103-113
    [40]Lee E S,Shin H J,Na K,Bae Y H.Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization.J Control Release,2003,90:363-374
    [41]Borchert U,Lipprandt U,Bilang M,et al.pH-induced release from P2VP-PEO block copolymer vesicles.Langmuir,2006,22:5843-5847
    [42]Hu Y,Litwin T,Nagaraja A R,et al.Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles.Nano Lett,2007,7:3056-3064
    [43]Sant V P,Smith D,Leroux J C.Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-b-poly(alkyl acrylate-co-methacrylic acid) self-assemblies.J Control Release,2005,104:289-300
    [44]Sant V P,Smith D,Leroux J C.Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs:preparation and characterization.J Control Release,2004,97:301-312
    [45]Sarmento B,Ribeiro A,Veiga F,et al.Oral bioavailability of insulin contained in polysaccharide nanoparticles.Biomacromolecules,2007,8:3054-3060
    [46]Lee Y,Fukushima S,Bae Y,et al.A protein nanocarrier from charge-conversion polymer in response to endosomal pH.J Am Chem Soc,2007,129:5362-5363
    [47]Xu P S,van Kirk E A,Zhan Y H,et al.Targeted charge-reversal nanoparticles for nuclear drug delivery.Angew Chem Int Edit,2007,46:4999-5002
    [48]Siegel R A,Firestone B A.pH-dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels.Macromolecules,1988,21:3254-3259
    [49]赵峰,尹玉姬,姚康德,壳聚糖-明胶网络/羟基磷灰石复合材料支架的研究-成骨细 胞培养.中国修复重建外科杂志,2002,15:130-133
    [50]尹玉姬,姚康德,刘文广,组织工程相关壳聚糖-明胶基生物材料.应用化学,2004
    [51]Schwarte L M,Peppas N A.Preparation and characterization of PEG-containing pH-sensitive,cationic hydrogels for drug delivery applications.Polym Prepr.1997,38:596-597
    [52]Schwarte L M,Peppas N A.Novel poly(ethylene glycol)-grafted cationic hydrogels:preparation,characterization and diffusive properties.Polymer,1998,39:6057-6066
    [53]Kumar A,Lahiri S S,Sihgh H.Development of PEGDMA:MAA based hydrogel microparticles for oral insulin delivery.Int J Pharm,2006,323:117-124
    [54]Kim E J,Cho S H,Yuk S H.Polymeric microspheres composed of pH/temperature-sensitive polymer complex.Biomaterials,2001,22:2495-2499
    [55]Tan B H,Ravi P,Tam K C.Synthesis and characterization of novel pH-responsive polyampholyte microgels.Macromol Rapid Conunun,2006,27:522-528
    [56]Pauling L,Corey R B,Branson H R.The structure of proteins:two hydrogen-bonded helical configurations of the polypeptide chain.Proc Natl Acad Sci USA,1951,37:205-234
    [57]Kendrew J C,Dickerson R E,Strandberg B E,et al.Structure of myoglobin:a three-dimensional fourier synthesis at 2 A resolution,Nature,1960,185:422-427
    [58]Petersson E J,Craig C J,Daniels D S,et al.Biophysical characterization of a β-peptide bundle:comparison to natural proteins.J Am Chem Soc,2007,129:5344-5345
    [59]Petersson E J,Schepartz A.Toward β-amino acid proteins:design,synthesis,and characterization of a fifteen kilodalton β-peptide tetramer.J Am Chem Soc,2008,130:821-823
    [60]E.R.Blour,R.H.Karlson,Polypeptides:ⅢThe synthesis of high molecular weight polyγ-benzyl -L-glutamates.J Am Chem Soc.1956,78;941
    [61]M.Idelson,E.R.Blour,High molecular weight poly γ-glutamic acid:preparation and optical rotation changes.J Am Chem Soc.1958,80:4631
    [62]Anderson J M,邓先模,聚γ-苄酯-L-谷氨酸酯的合成.生物医学工程学杂志.1987,4:8-10
    [63]潘仕荣,黄宁芳,林在峰.聚-γ-苄酯-L-谷氨酸酯的合成改进.生物医学工程学杂志.1990,7:321-324
    [64]McCormick-Thomson LA,Duncan R.Poly(amino acid) copolymers as a potential soluble drug delivery system.J Bioact Compat Polym,1989;4:242-251.
    [65]Wagner E,Zenke M,Cotton M,et al.Transferrin-polycation conjugates as carriers for DNA uptake into cell.Proc Natl Acad.1998,87:3410-3414
    [66]Trubetskoy V S,Torchilin V P,Kennel S J,et al.Use of N-terminal modified poly(L-lysine)-antibody conjugate as a carrier for targeted gene delivery in mouse lung endothelial cells.Bioconjugate Chem.1992,3:323-327
    [67]Fuller W D,Cohen M P,Shabankareh M,et al.Urethane protected amino acid N-carboxyarthydrides and their use in peptide synthesis.J Am Chem Soc.1990,112:7414-7416
    [68]Fuller W D,Verlander M S,Goodman M.A procedure for the facile synthesis of amino acid.N-carboxyanhydrides.Biopolymers.1976,15:1869
    [69]何立敏,薛毅珑.微囊化牛嗜铬细胞移植于脊髓蛛网膜下镇痛作用的研究.解放军医 学杂志.1999,24:241-243
    [70]Daly W H,Poche D.The preparation of N-carboxy-anhydrides of α-amino acids using bis(trichloromethyl) carbonate,Tetrahedron Lett.1988,29:5859-5961
    [71]Wilder R,Mohashery S.The use of triphosgene in preparation of N-carboxy-α-amino acid anhydrides.J Org Chem.1992,57:2755-2756
    [72]Neri P,Antoni G,Benvenuti F,et al.Synthesis of α,β-poly[(2-hydroxyethyl)-D,Laspartamide],a new plasma expander.J Med Chem.1973,16:893-897
    [73]Choi S J.Geckeler K E.Synthesis and properties of hydrophilic polymers Part 8.Preparation,characterization and metal complexing of poly[(2-hydroxyethyl)-DL-aspartamide]in aqueous solution.Polym Int,2000,49:1519-1524
    [74]Nakato T,Tomida M,Suwa M,et al.Preparation and characterization of dodecylamine-modified poly(aspartic acid) as a biodegradable water-soluble polymeric material.Polym Bull,2000,44:385-391
    [75]Nakato T,Oda K,Yoshitake M,et al.Synthesis and characterization of poly(aspartic acid)and its derivatives as biodegradable material.JMS-Pure Appl.Chew,1999,A36:949-961
    [76]Suwa M,Hashidzume A,Morishima Y,et al.Self-association behavior of hydrophobically modified poly(aspartic acid) in water studied by fluorescence and dynamic light scattering techniques.Macromolecules,2000,33:7884-7892
    [77]Kang H S,Shin M S,Kim J D,et al.Self-aggregates of poly(aspartic acid) grafted with long alkyl chains.Polym Bull,2000,45:39-43
    [78]Katritzky A R,Yao J C,Qi M,et al.Preparation and physical properties of N-defunctionalized derivatives of poly(aspartic acid).J Appl Polym Sci.2001,81:85-90
    [79]Kakuchi T,Shibata M,Matsunami S,et al.Synthesis and characterization of poly(succinimide-co-6-aminocaproic acid) by acid-catalyzed polycondensation of L-aspartic acid and 6-aminocaproic acid.J Polym Sci.Polym Chem,1997,35:285-289
    [80]Won C Y,Chu C C,Lee J D.Novel biodegradable copolymers containing pendant amine functional groups based on aspartic acid and poly(ethylene glycol).Polymer,1998,39:6677-6681
    [81]Yokoyama M,Inoue S,Kataoka K,et al.Preparation of adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer.Macromol Chem Rapid Commun,1987,8:431-435
    [82]Yokoyama M,Miyauchi M,Yamada N,et al.Polymer micelles as novel drug carrier:adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer.J Control Rel.1990,11:269-278
    [83]Harada A.Kataoka K.Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments.Macromolecules,1995,28:5294-5299
    [84]Harada A.Kataoka K.Novel polyion complex micelles entrapping enzyme molecules in the core:preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium.Macromolecules,1998, 31:288-294
    [85]Pivcova H,Sandek V.~(13)C NMR relaxation study of poly(aspartic acid).Polymer,1985,26:667-672
    [86]Koskan L P,Low K C.Polyaspartic acid as a calcium sulfate and a barium sulfate inhibitor.US Patent 5,116,513,1992
    [87]Wolk S K,Swift G,Paik Y H,et al.One-and two-dimensional nuclear resonance characterization of poly(aspartic acid) prepared by thermal polymerization of L-aspartic acid.Macormolecules,1994,27:7613-7620
    [88]Nakato T,Yoshitake M,Matsubara K,et al.Relationships between structure and properties of poly(aspartic acid)s.Macromolecules,1998,31:2107-2113
    [89]霍宇凝,陆柱。聚合物阻垢剂研究进展。水处理技术,2000,26:199-202.
    [90]方俊,黄发荣,郭红梅等。脂肪族聚酯及共聚酯的生物降解性研究。功能高分子学报,2003,16:191-196
    [91]Ross R J,Low K C.Polyaspartate scale inhibitors biodegradable alternatives to polyacrylates.Materials Performance,1997,65:53-57
    [92]熊蓉春,董雪玲等。绿色生物高分子聚天冬氨酸的合成及其阻垢性能研究.工业水处理。2001,21:17-20
    [93]Ririgsdorf H.Structure and properties of pharmacologically active polymers.J Polym Sci.Polymer Symposium.1975,51:135-153
    [94]Kim S W,et.al美国尤它大学内部资料
    [95]Zupon M A,Fang S M,Christensen J M,et al.In vivo release of norethindrone coupled to a biodegradable poly(α-amino acid) drug delivery system.J Pharm Sci.1983,72:1232-1236
    [96]Kunioka M,Fumsawa K.Poly(γ-glutamic acid) hydrogel prepared from microbial poly(γ-glutamic acid) and alkanediamine with water soluble carbodiimide.J Appl Polym Sci.1997,65:1889
    [97]Naoki N,David B,Bennett,Chong S C,et al.Coupling of naltrexone to biodegradable poly(α-amino acids).Pharmaceutical Research 1987,4:305-310
    [98]Yasuyosi M,Kazuyuki J,Masahito O,et al.Preparation and properties of biodegradable copoly(N-hydroxyalkyl-D,L-glutamine) membranes.Eur Polym J.1999;35:767-773
    [99]Mitsuuru H,Hideki H,Makiya N,et al.Targeted delivery of drug and proteins to the liver via receptor-mediated cndocytosis.J Control Release.1997,46:129
    [100]李崇辉,温守明,池木根等。肝靶向配体半乳糖基白蛋白和多聚谷氨酸生物化学与生物物理学进展。1998,25:532-535
    [101]Claudia S.Leopold,David R.Friend in vitro study for the assessment of poly(L-aspartic acid) as a drug carrier for colon-specific drug delivery.Int J Pharm.1995,126:139-145
    [102]Domurado M,Domurado D,Vansteenkiste S,et al.Glucose oxidase as a tool to study in vivo the interaction of glycosylated polymers with the mannose receptor of macrophages.J Control Release.1995,33:115-123
    [103]刘振华,王健,范昌烈,卓仁禧。α,β-聚-D,L-天冬酰胺衍生物水凝胶的合成及其溶 胀性能研究。高分子学报,1998,5:562-566
    [104]吕正荣,余家会,卓仁禧等。聚(L-天冬氨酸)衍生物-顺铂结合物的制备及体外细胞毒性研究。高等学校化学学报,1998,19:817-820
    [105]Byron P R,Sun Z,Katayama H,et al.Solute absorption from the airways of the isolated rat lung.Ⅳ.mechanisms of absorption of fluorophore-labeled poly-α,β-[N-(2-hydroxyethyl)-DL -aspartamide].Pharm Res.1994,11:221-225
    [106]Niven R W,Rypacek F,Byron P R.Solute absorption from the airways of the isolated rat lung.Ⅲabsorption of several peptidase resistant,synthetic polypeptides:poly-(2-hydroxyethyl)-aspartamides.Pharniaceutical Research.1990,7:990-994
    [107]Gaetano G,Bianca C,Gennara C,et al.A new water-soluble synthetic polymer,α,β-polyasparthydrazide,as potential plasma expander and drug carrier.J Control Release.1994,29:63-72
    [108]Gaetano G,Giovanna P,Vincenzo T,et al.Crosslinked α,β-polyasparthydrazide hydrogels:effect of crosslinking degree and loading method on cytarabine release rate.J Control Release.1996,41:195-203
    [109]Giammona G,Cavallaro G,Fontana G,et al.Macromolecular prodrug of diflunisal.Ⅱ.Investigations of in vitro release and of photochemical behaviour.European Journal of Pharmaceutical Sciences.1996,4:273-282
    [110]Gaetano G,Gennara C,Giacomo F,et al.Coupling of the antiviral agent zidovudine to polyaspartmide and in vitro drug release studies.J Control Release.1998,54:321-331
    [111]Gaetano G,Vincenzo T,Giovanna P,et al.Glycidyl methacrylate derivation of α,β-poly(N-hydroxyethyl)-DL-aspartamide and α,β-polyasparthydratid.Polymer.1997,38:3315-3323
    [112]Caldwell G,Neuse E W,Perlwitz A G.Water soluble polyamides as potential drug carriers.Ⅸ.Polyaspartamide grafted with amine terminated poly(ethylene oxide) chains.J Appl Polym Sci.1997,6:911-919
    [113]Neuse E W,Perlwitz A G,Barbosa A P.Water soluble polyamides as potential drug carriers.Ⅷ.Polyaspartamide(alkylene oxide)-grafted polyaspartamides bearing ethylenediamine side-group functions.J Appl Polym Sci.1994,54:57-63
    [114]Lovrek M,Zorc B,Boneschans B,et al.Macromolecular prodrugs Ⅷ.synthesis of polymer-gemfibrozil conjugates.Int J Pharm.2000,200:59-66
    [115]Zorc B,Maysinge D,Kalcic I,et al.Macromolecular prodrugs.Ⅴ,polymer-broxuridine conjugates.Int J Pharm.1995,123:65
    [116]Colin W,Pouton,Paul L,Beverley J,et al.Polycation-DNA complexes for gene delivery:a comparison for the biopharmaceutical properties of cationic polypeptides and cationic lipids.J Control Release.1998,53:289-299
    [117]Choi Y H,Liu F,Kim J S,et al.Polyethylene glycol-grafted poly(L-lysine) as polymeric gene carrier.J Control Release.1998,54:39-48
    [118]Hugues J P R,Wei C S.Conjugation of methotrexate to poly(L-lysine) as a potential way to overcome drug resistance.Cancer.1980,45:1207-1211
    [119]Mezo G,Remenyi J,Kajtar J.Synthesis and conformational studies of poly(L-lysinc)based branched polypeptides with Ser and Glu/Leu in the side chains.J Control Release.2000,63:81-95
    [120]Jeong B,Choi Y K,Bae Y H,et al.New biodegradable polymers for injectable drug delivery.J Control Release,1999,62:109-114
    [121]Kataoka K,Matsumoto T,Yokoyama M,et al.Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) copolymer micel les:their pharmaceutical characteristics and biological significance.J Control Release,2000,64:143-153
    [122]Yokoyama M,Okano T,Sakurai Y,et al.Improved synthesis of adriamycin-conjugated poly(ethylene oxide)-poly(aspartic acid) block copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin.J Control Release,1994,32:269-277
    [123]Yokoyama M,Fukushima S,Uehara R.Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor.J Control Release,1998,50:79-92
    [124]Gaucher G,Dufresne M H,Sant V P,et al.Block copolymer micelles:preparation,characterization and application in drug delivery.J Control Release,2005,109:169-188
    [122]陈智.口腔药物控制释放系统.国外医学:口腔医学分册,1989,16(6):321-324
    [126]陈蓉,陆瑾,戚慧心.控释药物.生物学通报,1998,33:21-22
    [127]张阳德,李亚勇.纳米控释系统在肿瘤治疗中的应用研究.中国现代医学杂志,2004,14:63-68
    [128]Edlund U,Albertsson A C.Degradable polymer microspheres for controlled drug delivery.Adv Polym Sci,2001,157:67-112
    [129]Nair L S,Laurencin C T.Polymers as biomaterials for tissue engineering and controlled drug delivery.Adv Biochem Engin/Biotechnol,2006,102:47-90
    [130]俞耀庭主编。生物医用材料。天津:天津大学出版社.2000
    [131]苏新梅。靶向型药物控释体系研究明。新乡师范高等专科学校学报,2004,18:21-23
    [132]刘引烽。特种高分子材料。上海:上海大学出版社,2001
    [133]吴礼光,刘茉娥,朱长乐,潘祖仁。控制释放技术。应用化学,1994,11:1-10
    [134]李建蓉,公瑞煌。以亲水凝胶为载体的药物控制释放体系。大理医学院学报,1998,7:42-45
    [135]郑巧东,高春燕,陈欢林。药物控制释放研究及应用。浙江化工,2003,34:26-29
    [136]平其能编著。现代药剂学。北京:中国医药科技出版社.1998
    [137]崔福德主编。药剂学。北京:人民卫生出版社,2003
    [138]邹立家编。药剂学。北京:中国医药科技出版社,1996
    [139]毕殿洲主编。药剂学。北京:人民卫生出版社,1999
    [140]陈红艳主编。药剂学。北京:高等教育出版社,2005
    [141]Langer R.Drug delivery and targeting.Nature,1998,392:5-10
    [142]Pannier A K,Shea L D.Controlled release systems for DNA delivery.Mol Ther,2004,10: 19-26.
    [143]田威,范晓东,陈卫星,刘郁杨.药物控制释放用高分子载体的研究进展.高分子材料科学与工程,2006,22:19-23
    [144]李又欣,冯新德.控制药物释放体系及其机理.高分子通报,1991,1:19-27
    [145]Zhang W Q,Shi L Q,Ma R J,et al.Micellization of thermo-and pH-responsive triblock copolymer of poly(ethylene glycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide).Macromolecules,2005,38:8850-8852
    [1]Amass W,Amass A,Tighe B.A review of biodegradable polymers:uses,current developments in the synthesis and characterization of biodegradable polyesters,blends of biodegradable polymers and recent advances in biodegradation studies.Polym Int,1998,47:89-144
    [2]Seo K,Kim D.Phase transition behavior of novel pH-sensitive poly aspartamide derivatives grafted with 1-(3-aminopropyl)imidazole.Macromol.Biosci.2006,6:758-766
    [3]Takeuchi Y,Uyama H,Tomoshige N.Injectable thermoreversible hydrogels based on amphiphilic poly(amino acid)s.Journal of Polymer Science:Part A:Polymer Chemistry,2006,44:671-675
    [4]Yoshimura O,Ochi Y,Fujioka R.Synthesis and properties of hydrogels based on polyaspartamides with various pendants.Polymer Bulletin,2005,55:377-383
    [5]Koide A,Kishimura A,Osada K,Jang W D.Semipermeable polymer vesicle(PICsome)self-assembled in aqueous medium from a pair of oppositely charged block copolymers:physiologically stable micro-/nanocontainers of water-soluble macromolecules.J Am Chem Soc.2006,128:5988-5989
    [6]Wang Y L,Chang Y C.Synthesis and conformational transition of surface-tethered polypeptide:poly(L-glutamic acid).Macromolecules,2003,36:6503-6510
    [7]Shinoda H,Asou Y,Suetsugu A,et al.Synthesis and characterization of amphiphilic biodegradable copolymer,poly(aspartic acid-co-lactic acid).Macromol Biosci,2003,1:34-43
    [8]Cao Y,Shen X C,Jiang X Q.pH-induced self-assembly and capsules of sodium alginate.Biomacromolecules,2005,6:2189-2196
    [9]Jurgen M,Smeenk,Matthijs B J,et al.Controlled assembly of macromolecular β-sheet fibrils.Angew Chem Int Edit,2005,44,1968-1971
    [10]Roger C W,Liu,Agne's Pallier,et al.Impact of polymer microstructure on the self-assembly of amphiphilic polymers in aqueous solutions.Macromolecules,2007,40:4276-4286
    [11]Martin W M,Fijten,Menno S,et al.Synthesis and structure-property relationships of random and block copolymers:a direct comparison for copoly(2-oxazoline)s.Macromolecules 2007,40:5879-5886
    [12]Kricheldorf H R,α-amino acid-N-carboxy-anhydride and related heterocycles:syntheses,properties,peptide synthesis,polymerization.Springer-Verlag,Berlin.1987.
    [13]Nakato T,Kusuno A,Kakuchi T.Synthesis of poly(succinimide) by bulk polycondensation of L-aspartic acid with an acid catalyst.J Polym Sci.Part A 2000,38:117-122
    [14]Kakuchi T,Shibata M,Matsunami S,et al.Synthesis and characterization of poly(succinimide-co-6-aminocaproic acid) by acid-catalyzed polycondensation of L-aspartic acid and 6-aminocaproic acid.J Polym Sci.Part A,1997,35:285-289
    [15]Tomida M,Nakato T,Kuramochi M,et al.Novel method of synthesizing poly(succinimide) and its poly(succinimide) L-aspartic acid.Polymer,1996,37:4435-4437
    [16]Larry P.Koskan,orland Park,Abdul R.Y.Meah,Inventors.Donlar Cor.Assignee.US,5,219,952.1993-07-15
    [17]Robert J R,Kim C L,James E S.Green chemistry applied to corrosion and scale inhibitors.Material Performance,1997,4:52-57
    [18]Wolk S K,Swift G,Paik Y H,One-and two-dimensional nuclear magnetic resonance characterization of poly(aspartic acid) prepared by thermal polymerization of L-aspartic acid.Macromolecules,1994,27:7613-7620
    [19]Neri P,Antoni G,Benvenuti F,et al.Synthesis of α,β-poly[(2-hydroxyethyl)-DL-aspartamide],a new plasma expander.J Med Chem.1973,16:893-897
    [20]Choi S J,Geckeler K E.Synthesis and properties of hydrophilic polymers Part 8.Preparation,characterization and metal complexing of poly[(2-hydroxyethyl)-DL-aspartamide]in aqueous solution.Polym Int,2000,49:1519-1524
    [21]Nakato T,Tomida M,Suwa M,et al.Preparation and characterization of dodecylamine-modified poly(aspartic acid) as a biodegradable water-soluble polymeric material.Polym Bull,2000,44:385-391
    [22]Nakato T,Oda K,Yoshitake M,et al.Synthesis and characterization of poly(aspartic acid)and its derivatives as biodegradable material.JMS-Pure Appl.Chem,1999,A36:949-961
    [23]Suwa M,Hashidzume A,Morishima Y,et al.Self-association behavior of hydrophobically modified poly(aspartic acid) in water studied by fluorescence and dynamic light scattering techniques.Macromolecules,2000,33:7884-7892
    [24]Kang H S,Shin M S,Kim J D,et al.Self-aggregates of poly(aspartic acid) grafted with long alkyl chains.Polym Bull,2000,45:39-43
    [25]Katritzky A R,Yao J C,Qi M,et al.Preparation and physical properties of N-defunctionalized derivatives of poly(aspartic acid).J Appl Polym Sci.2001,81:85-90
    [26]Gaetano G,Bianca C,Gennara C,et al.A new water-soluble synthetic polymer,α,β-polyasparthydrazide,as potential plasma expander and drug carrier.J Control Release.1994,29:63-72
    [27]Gaetano G,Giovanna P,Vincenzo T,et al.Crosslinked α,β-polyasparthydrazide hydrogels:effect of crosslinking degree and loading method on cytarabine release rate.J Control Release.1996,41:195-203
    [28]Gaetano G,Gennara C,Giacomo F,et al.Macromolecular prodrug of diflunisal.Ⅱ.Investigations of in vitro release and of photochemical behaviour.Eur J Pharm Sci.1996,4:273-282
    [29]Gaetano G,Gennara C,Giacomo F,et al.Coupling of the antiviral agent zidovudine to polyaspartmide and in vitro drug release studies.J Control Release.1998,54:321-331
    [30]Gaetano G,Vincenzo T,Giovanna P,et al.Glycidyl methacrylate derivation of α,β-poly(Nhydroxyethyl)-DL-aspartamide and α,β-polyasparthydratid.Polymer.1997,38:3315-3323
    [31]Caldwell G,Neuse E W,Perlwitz A G.Water soluble polyamides as potential drug carriers.Ⅸ.Polyaspartamide grafted with amine terminated poly(ethylene oxide) chains.J Appl Polym Sci.1997,6:911-919
    [32]Neuse E W,Perlwitz A G.,Barbosa A P.Water soluble polyamides as potential drug carriers.Ⅷ.Polyaspartamide(alkylene oxide)-grafted polyaspartamides bearing ethylenediamine side-group functions.J Appl Polym Sci.1994,54:57-63
    [33]Tang G P,Zhu K J,Chen Q Q.Poly-α,β-(3-hydroxypropyl)-DL-aspartamide:a new drug carriers.J Appl Polym Sci.2000,7:2411-2417
    [34]朱卡琳,汤谷平,陈启琪等.5-氟尿嘧啶-聚-α,β-(2-羟乙基)-DL-天冬酰胺的合成及体内释放的研究.药学学报.1998:32:906
    [35]Jiang H L,Tang G P,Zhu K J.Synthesis of biodegradable amphoteric poly[(aspartic acid)-co-lysine]by thermal polycondensation.Macromol Biosci,2001,1:266-269
    [36]Tang G P,Yang Z,Zhou J.Poly(ethylenimine)-grafted-poly[(aspartic acid)-co-lysine],a potential non-viral vector for DNA delivery.J Biomat Sci,Polymer E,2006,17:461-480
    [37]Shimokuri T,Kaneko T,Akashi M.Effects of thermoresponsive coacervation on the hydrolytic degradation of amphipathic poly(γ-glutarnate)s.Macromol Biosci.2006,6:942-951
    [1]Zhang L F,Eisenberg A.Multiple morphologies of crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers.Science,1995,268:1728-1731
    [2]Liu S Y,Jiang M,Liang H G.Intermacromolecular complexes due to specific interactions.13.Formation of micelle-like structure from hydrogen-bonding graft-like complexes in selective solvents.Polymer,2000,41:8697-8702
    [3]Euliss L E,Grancharov S G,Brien S O,et al.Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media.Nano Lett.2003,3:1489-1493
    [4]Kang Y J,Taton T A.Core/Shell gold nanoparticles by self-assembly and crosslinking of micellar,block-copolymer shells.Angew Chem Int Ed.2005,44:409-412
    [5]Gao X H,Cui Y Y,Nie S,et al.In vivo cancer targeting and imaging with semiconductor quantum dots.Nature Biotech.2004,22:969-976
    [6]Dubertret B,Skourides P,Norris D J,et al.In vivo imaging of quantum dots encapsulated in phospholipid micelles.Science,2002,298:1759-1762
    [7]Wu X Y,Liu H J,Haley K N,et al.Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.Nature Biotech.2003,21:41-46
    [8]Zhang L,Eisenberg A.Multiple morphologies and characteristics of crew-cut micelle-like aggregates of polystyrene-b-poly(acrylic acid)diblock copolymers in aqueous solutions.J Am Chem Soc.1996,118:3168-3181
    [9]Gao Z S,Varshney S K,Wong S,Eisenberg A.Block copolymer crew-cut micelles in water.Macromolecules,1994,27:7923-7927
    [10]Burke,S,Eisenberg A.Kinetics and mechanisms of the sphere-to-rod and rod-to-sphere transitions in the ternary system PS_(310)-b-PAA_(52)/Dioxane/Water.Langmuir,2001,17:6705-6714
    [11]Zhang L,Eisenberg A.Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-bpoly (acrylic acid) block copolymers in dilute solution.Macromolecules,1999,32:2239-2249
    [12]Zhang L,Eisenberg A.Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution.J Polym Sci B:Polym Phys.1999,37:1469-1484
    [13]Riegel I C,Eisenberg A.novel bowl-shaped morphology of crew-cut aggregates from amphiphilic block copolymers of styrene and 5-(N,N-Diethylamino)isoprene.Langmuir,2002,18:3358
    [14]Shen H,Eisenberg A.Control of architecture in block-copolymer vesicles.Angew Chem Int Ed.2000,39:3310-3312
    [15]Shen H,Eisenberg A.Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H_2O.Macromolecules,2000,33:2561-2572
    [16]Liang H,Favis B D.Correlation between the interfacial tension and dispersed phase morphology in interfacially modified blends of LLDPE and PVC.Macromolecules,1999,32:1637-1642
    [17]Duan H W,Chen D Y,Jiang M,et al.Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent.J Am Chem Soc.2001,123,12097-12098
    [18]Choucair A,Eisenberg A.Control of amphiphilic block copolymer morphologies using solution condition.Eur Phys J,E.2003,10:37-44
    [19]Soo P L,Eisenberg A.Preparation of block copolymer vesicles in solution.J Polym Sci.B:Polym Phys.2004,42:923-938
    [20]Kukula H,Schlaad H,Antonietti M,et al.The formation of polymer vesicles or "peptosomes" by polybutadiene-block-poly(1-glutamate)s in dilute aqueous solution.J Am Chem Soc.2002,124:1658-1663
    [21]Raez J,Manners I,Winnik M A.Nanotubes from the self-assembly of asymmetric crystalline-coil poly(ferrocenylsilane-siloxane) block copolymers.J Am Chem Soc.2002,124:10381-10395
    [22]Jonathan V M,Weaver,Steven P A.A "holy trinity" of micellar aggregates in aqueous solution at ambient temperature:unprecedented self-assembly behavior from a binary mixture of a neutral-cationic diblock copolymer and an anionic polyelectrolyte.Macromolecules,2003,36:9994-9998
    [23]Dennis D E,Eisenberg A.Matermials science:soft surfaces:polymer vesicles.Science,2002,297:967-973
    [24]Gan Z H,Jim T F,Li M,et al.Enzymatic biodegradation of poly(ethylene oxide-b-ε-caprolactone) diblock copolymer and its potential biomedical applications.Macromolecules,1999,32:590-594
    [25]Kim S Y,Lee Y M.Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(ε-caprolactone) as novel anticancer drug carriers.Biomaterials 2001,22:1697-1704.
    [26]Kataoka K,Harada A,Nagasaki Y.Block copolymer micelles for drug delivery:design,characterization and biological significance.Advanced Drug Delivery Reviews 2001,47:113-131
    [27]Terreau O,Bartels C,Eisenberg A.Effect of poly(acrylic acid) block length distribution on polystyrene-b-poly(acrylic acid) block copolymer aggregates in solution.2.A partial phase diagram.Langmuir,2004,20:637-645
    [28]Burke S E,Eisenberg A.Effect of sodium dodecyl sulfate on the morphology of polystyrene-b-poly(acrylic acid) aggregates in dioxane-water mixtures.Langmuir,2001,17:8341-8347
    [29]Juan R H,Lecommandoux S.Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers.J Am Chem Soc.2005,127:2026-2027
    [30]Shen H W,Eisenberg A.Morphological phase diagram for a ternary system of block copolymer PS_(310)-b-PAA_(52)/Dioxane/H_2O.J Phys Chem B.1999,103:9473-9487
    [31]Desbaumes L,Eisenberg A.Single-solvent preparation of crew-cut aggregates of various morphologies from an amphiphilic diblock copolymer.Langmuir,1999,15:36-38
    [32]Checot F,Lecommandoux S,Gnanou Y,et al.Water-soluble stimuli-responsive vesicles from peptide-based diblock copolymers.Angew Chem Int Ed.2002,41:1339-1343
    [33]王克夷,蛋白质导论.科学出版社,2007:112
    [34]Nivaggioli T,Tsao B,Alexandridis P,et al.Microviscosity in pluronic and tetronic poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles.Langmuir,1995,11:119-126
    [35]吴其晔.高分子凝聚态物理及其进展.华东理工大学出版社,2006:160
    [36]Vamvakaki M,Billingham N C,Armes S P.Synthesis of controlled structure water-soluble diblock copolymers via oxyanionic polymerization.Macromolecules,1999,32:2088-2090
    [37]Gil E S,Hudson S M.Stimuli-responsive polymers and their bioconjugates.Prog Polym Sci,2004,29:1173-1222
    [38]Giacomelli C,Men L L,Borsali R,et al.Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles:light scattering,electron microscopy and fluorescence experiments.Biomacromolecules,2006,7:817-828
    [39]Xu P,Van Kirk E A,Murdoch W J,et al.Anticancer efficacies of cisplatin-releasing pH-responsive nanoparticles.Biomacromolecules,2006,7:829-835
    [40]Henry S M,El-Sayed M E H,Pirie C H,et al.pH-Responsive poly(styrene-alt-maleic anhydride) alkylamide copolymers for intracellular drug delivery.Biomacromolecules,2006,7:2407-2414
    [41]Sakai K,Smith E G,Webber G B,et al.Effects of copolymer concentration and chain length on the pH-responsive behavior of diblock copolymer micellar films.J Colloid Interface Sci,2006,303:372-379
    [42]Brahim S,Narinesingh D,Guiseppi-Elie A.Release characteristics of novel pH-sensitive p(HEMA-DMAEMA) hydrogels containing 3-(trimethoxy-silyl) propyl methacrylate.Biomacromolecules,2003,4:1224-1231
    [43]Tuned A,Unsal E,Clcek H.pH-sensitive uniform gel beads for DNA adsorption.J Appl Polym Sci.2000,77:3154-3161
    [44]Tan J F,Ravi P,Too H P,et al.Association behavior of biotinylated and non-biotinylated poly(ethylene oxide)-b-poly(2-(diethylamino)ethyl methacrylate).Biomacromolecules,2005,6498-506
    [45]Hu Y,Jiang X Q,Ding Y,et al.Synthesis and characterization of chitosan-poly(acrylic acid)nanoparticles.Biomaterials 2002,23:3193-3201
    [46]Rodrguez-Hernndez J,Lecommandoux S.Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers.J.Am.Chem.Soc.2005,127:2026-2027
    [47]Fasman G D.Circular dichroism and the conformational analysis of biomolecules.Plenum Press,New York,1996
    [1]Cheng H Li,Y Y,Zeng X,et al.Protamine sulfate/poly(L-aspartic acid) polyionic complexes self-assembled via electrostatic attractions for combined delivery of drug and gene.Biomaterials.2009,30:1246-1253
    [2]Yang J,Wang F,Tan T W.Synthesis and characterization of a novel soil stabilizer based on biodegradable poly(aspartic acid) hydrogel.Korean J Chem Eng.2008,25:1076-1081
    [3]Aurich K,Schwalbe M,Clement J H,et al.Polyaspartate coated magnetite nanoparticles for biomedical applications.J Magn Magn Mater.2007,311:1-5
    [4]Jeong J H,Kang H S,Yang S R,et al.Polymer micelle-like aggregates of novel amphiphilic biodegradable poly(asparagine) grafted with poly(caprolactone).Polymer,2003,44:583-591
    [5]Tang G P,He B B.Biodegradation of poly(L-aspartic aeid-co-valine) and its derivatives.J Appl Polym Sci.2006,102:46-51
    [6]Jiang T Y,Wang Z Y,Tang L X,et al.Polymer micellar aggregates of novel amphiphilic biodegradable graft copolymer composed of poly(aspartic acid) derivatives:Preparation,characterization,and effect of pH on aggregation.J Appl Polym Sci.2006,99:2702-2709
    [7]Shinoda H,Asou Y,Kashima T,et al.Amphiphilic biodegradable copolymer,poly(aspartic acid-co-lactide):acceleration of degradation rate and improvement of thermal stability for poly(lactic acid),poly(butylene succinate) and poly(epsilon-caprolactone).Polym Degrad Stabil.2003,80:241-250
    [8]Shinoda H,Asou Y,Suetsugu A,et al.Synthesis and characterization of amphiphilic biodegradable copolymer,poly(aspartic acid-co-lactic acid).Marcomol Biosci.2003,3:34-43
    [9]Kang H S,Yang S R,Kim J D,et al.Effects of grafted alkyl groups on aggregation behavior of amphiphilic poly(aspartic acid).Lagmuir,2001,17:7501-7506
    [10]Jiang H L,Tang G P,Zhu K J.Synthesis of biodegradable amphoteric poly[(aspartic acid)-co-lysine]by thermal polycondensation.Marcomol Biosci.2001,1:266-269
    [11]Choi S J,Geckeler K E.Synthesis and properties of hydrophilic polymers Part 8.Preparation,characterization and metal complexing of poly[(2-hydroxyethyl)-DL-aspartamide]in aqueous solution.Polym Int,2000,49:1519-1524
    [12]Nakato T,Tomida M,Suwa M,et al.Preparation and characterization of dodecylamine-modified poly(aspartic acid) as a biodegradable water-soluble polymeric material.Polym Bull,2000,44:385-391
    [13]Nakato T.Oda K,Yoshitake M,et al.Synthesis and characterization of poly(aspartic acid)and its derivatives as biodegradable material.JMS-Pure Appl Chem,1999,A36:949-961
    [14]Suwa M,Hashidzume A,Morishima Y,et al.Self-association behavior of hydrophobically modified poly(aspartic acid) in water studied by fluorescence and dynamic light scattering techniques.Macromolecules,2000,33:7884-7892
    [15]Kang H S,Shin M S,Kim J D,et al.Self-aggregates of poly(aspartic acid) grafted with long alkyl chains.Polym Bull,2000,45:39-43
    [16]Katritzky A R,Yao J C,Qi M,et al.Preparation and physical properties of N-defunctionalized derivatives of poly(aspartic acid).J Appl Polym Sci.2001,81:85
    [17]Kakuchi T,Shibata M,Matsunami S,et al.Synthesis and characterization of poly(succinimide-co-6-aminocaproic acid) by acid-catalyzed polycondensation of L-aspartic acid and 6-aminocaproic acid.J Polym Sci,Polym Chem,1997,35:285-289
    [18]Won C Y,Chu C C,Lee J D.Novel biodegradable eopolymers eontaining pendant amine funetional groups based on aspartic acid and poly(ethylene glyeol).Polymer,1998,39:6677-6681
    [19]Yokoyama M,Inoue S,Kataoka K,et al.Preparation of adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer.Macromol Chem Rapid Commun,1987,8:431-435
    [20]Yokoyama M,Inoue S,Kataoka K,et al.Molecular design for missile drug:synthesis of adriamycin conjugated with immunoglobulin G using poly(ethylene glycol)-block-poly(aspartic acid) as intermediate carrier.Macromol Chem,1989,190:2041-2054
    [21]Harada A,Kataoka K.Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments.Macromolecules,1995,28:5294-5299
    [22]Harada A,Kataoka K.Novel polyion complex micelles entrapping enzyme molecules in the core:preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium.Macromolecules,1998,31:288-294
    [23]Kang H,Kim J D,Han S H,Chang I S.Self-aggregates of poly(2-hydroxyl ethyl aspart amide) copolymers loaded with methotrexate by physical and chemical entrapments.J Control Release,2002,81:135-144
    [24]Bae S K,Kim J D.Aggregation behaviors and their pH sensitivity of cholesterol-conjugated proteinoids composed of glutamic acid and aspartic acid matrix.J Biomed Mater Res A,2003,64:282-290
    [25]Jeong J H,Kang H S,Yang S R,et al.Polymer micelle-like aggregates of novel amphiphilic biodegradable poly(asparagine) grafted with poly(caprolactone).Polymer 2003,44:583-591
    [26]Jeong J H,Kang H S,Yang S R,et al.Biodegradable poly(asparagine) grafted with poly(caprolactone) and the effect of substitution on self-aggregation.Colloids and Surfaces A,2005,264:187-194
    [27]谢孟峡,刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究.高等学校化学学报,2003,24:226-231
    [28]Roweton S,Huang S J,Swift G.Poly(aspartic acid):synthesis,biodegradation,and current applications.J Polym Environ.1997,5:175-181
    [29]Harada K.Polycondensation of thermal precursors of aspartic acid.J Org Chem.1959, 24:1662-1666
    [30]Vegotsky A,Harada K,Fox S W.The characterization of polyaspartic acid and some related compounds.J Am Chem Soc.1959,80:3361-3366
    [31]Harada K,Matsuyama M,Kokufuta E.The aqueous thermal polycondensation of asparagine and isoasparagine and the structure of polyaspartic acid.Polym Bull.1978,1:177-180
    [32]Kovacs J,Kovacs H N,Konyves I,et al.Chemical studies of polyaspartic acids.J Org Chem.1961,26:1084-1091
    [33]Matsuyama M,Kokufuta E,Kusumi T,Harada K.On the poly(β-DL-aspartic acid).Macromolecules 1980,13,196-198
    [34]Pivcova H,Saudek V,Dronbnik H.13 C NMR study of the structure of poly(aspartic acid).Polymer,1982,23:1237-1241
    [35]Pivcova H,Saudek V,Dronbnik J,Vlasak J.NMR.study of poly(aspartic acid).Biopolymers,1980,20:1605-1614
    [36]Rao V S,Lapointe P,McGregor D N.Synthesis of uniform poly(aspartic acids).Makromol Chem.1993,194,1095-1104
    [37]Wolk S K,Swift G,Paik Y H,et al.One-and two-dimensional nuclear magnetic resonance characterization of poly(aspartic acid) prepared by thermal polymerization of L-aspartic acid.Macromolecules.1994,27:7613-7620
    [38]Kenji T,Hideki A,Yoshiharu D.Microbial degradation of poly(aspartic acid) by two isolated strains of pedobacter sp.and sphingomonas sp.Biomacromolecules.2000,1:157-161
    [39]Lim Y B,Kim S M,Lee Y,et al.Cationic hyperbranched poly(amino ester):a novel class of DNA condensing molecule with cationic surface,biodegradable three-dimensional structure,and tertiary amine groups in the interior.J Am Chem Soc.2001,123:2460-2461
    [40]Lynn D M,Amiji M M,Langer R.pH-responsive polymer microspheres:rapid release of encapsulated material within the range of intracellular pH.Angew Chem Int Ed.2001,113:1757-1760
    [41]Akinc A,Lynn D M,Anderson D G,Langer R.Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery.J Am Chem Soc.2003,125:5316-5323
    [42]Obst M,Steinbuchel A.Microbial degradation of poly(amino acid) s.Biomacromolecules,2004,5:1166-1176
    [43]Wu D C,Liu Y,Jiang X,et al.Evaluation of hyperbranched poly(amino ester)s of amine constitutions similar to polyethylenimine for DNA delivery.Biomacromolecules,2005,6:3166-3173
    [44]Wu D C,Liu Y,He C B.Thermal-and pH-responsive degradable polymers.Macromolecules,2008,41:18-20.
    [45]Shimokuri T,Kaneko T,Akashi M.Effects of thermoresponsive coacervation on the hydrolytic degradation of amphipathic poly(γ-glutamate)s.Macromol Biosci.2006,6:942-951
    [46]Jaeger R D,Gleria M.Poly(organophosphazene)s and related compounds:synthesis, properties and applications.Prog.Polym.Sci.1998,23:179-276.
    [47]Allcock H R,Fuller T J,Mack D P,et al.Synthesis of poly[(amino acid alkyl ester)phosphazenes].Macromolecules,1977,10:824-830.
    [48]Allcock H R,Pucher S R,Scopelianos A G.Synthesis of poly(orgnaophosphazenes) with glycolic acid ester and lactic acid ester side groups:prototypes for new bioerodible polymers.Macromolecules,1994,27:1-4.
    [49]Yang J,Wang F,Fang L,et al.Synthesis,characterization and application of a novel chemical sand-fixing agent-poly(aspartic acid) and its composites.Environ Pollut.2007,149:125-130.
    [50]Jun Y,Li F,Tan T W.Synthesis and characterization of superabsorbent hydrogels composites based on polysuccinimide.J Appl Polym Sci.2006,102:550-557
    [51]Jeong J H,Kang H S,Yang S R,et al.Polymer micelle-like aggregates of novel amphiphilic biodegradable poly(asparagine) grafted with poly(caprolactone).Polymer,2003,44:583-591.
    [52]Takeuchi Y,Uyama H,Tomoshige N,et al.Injectable thermoreversible hydrogels based on amphiphilic poly(amino acid)s.J Polym Sci:A:Pol Chem,2006,44:671-675
    [53]Wang Y,Wang Y N,Wu G L,Fan Y G,Ma J B.pH-responsive self-assembly and conformational transition of partially propyl-esterified poly(α,β-L-aspartic acid) as amphiphilic biodegradable polyanion.Colloids Surf B.2009,68:13-19
    [54]王克夷,蛋白质导论.科学出版社,2007:112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700