复合乳酸菌对不同营养途径治疗的重症急性胰腺炎大鼠肠屏障功能的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】旨在建立适用于研究重症急性胰腺炎(severe acute pancreatitis,SAP)治疗的大鼠模型;并基于此模型,观察复合乳酸菌对早期肠内营养(early enteral nutrition,EEN)和肠外营养(parenteral nutrition,PN)治疗的SAP大鼠肠屏障功能的影响,深入探讨其作用机制。
     【方法】
     1、构建大鼠SAP模型
     92只SD大鼠(体重200±10克),随机分为假手术组(共20只,分6、12、24和48h 4个时间点观察组,每个时间点组为5只)、造模组(共72只,其中20只分6、12、24和48h 4个时间点观察组,每个时间点组为5只;其余52只,用于观察死亡率)。采用胰腺被膜下均匀注射3.8%牛磺胆酸钠造模,比较对照组和造模组4个时间点血清淀粉酶和胰腺病理的情况,统计造模组死亡率的情况。
     2、复合乳酸菌对不同营养途径治疗的SAP大鼠肠屏障功能的影响及其机制研究
     96只SD大鼠(体重200±10克),随机分为假手术早期肠内营养治疗组(Sham-EEN)、早期肠内营养治疗组(EEN)、早期肠内营养加复合乳酸菌治疗组(EEN+Lac);假手术肠外营养治疗组(Sham-PN)、肠外营养治疗组(PN)、肠外营养加复合乳酸菌组(PN+Lac),每组16只,分别于第4d(8只)和第7d(8只)取材,检测肝和肠系膜淋巴结肠道菌群易位、血浆内毒素、肠转运功能、二胺氧化酶(DAO)、Tunnel法测定小肠上皮细胞凋亡、免疫组化法和实时定量PCR法测定肠上皮紧密结合蛋白Occludin蛋白的表达及mRNA含量、ELISA法测定小肠黏液SIgA含量、BCA法测定小肠粘膜蛋白含量,从多个角度来研究复合乳酸菌对不同营养途径治疗的SAP大鼠肠道功能的影响及其机制。
     3、复合乳酸菌对不同营养途径治疗的SAP大鼠细胞因子平衡作用研究
[Objective] To establish an experimental severe acute pancreatitis (SAP) model in rats for evaluating therapeutic study;based on this SAP model, to investigate influence of different nutritional support with compound lactobacilli on intestinal barrier function of SAP in rats and its mechanism, and to investigate effect of different nutritional support with compound lactobacilli on cytokines balance of SAP in serum.[Methods] 1. Establishment of model of experimental SAP in rats: 92 SD rats were divided randomly into sham-operated group (SO) and SAP group. The SAP model in rat was established by injection of 1 ml of 3.8% sodium taurocholate beneath the pancreatic capsule. 20 rats of SO group and 20 rats of SAP group were killed at 6h, 12h, 24h and 48h after operation to determine the plasm amylase and the histopathologic changes of pancreatic. The rest 32 rats of SAP were added to calculate the mortality. 2. The influence of different nutritional support with compound lactobacilli on intestinal barrier function of severe acute pancreatitis in rats and its mechanism: 96 SD rats were divided randomly into sham-operated group with early enteral nutrition support (Sham-EEN), ENN group, EEN with compound lactobacilli (EEN+ Lac) group, sham-operated group with total parenteral nutrition support (Sham -TPN), TPN and PN with compound lactobacilli (PN+ Lac) group. Half of rats in each group were killed at 4d and 7d to determine the bacterial translocation in live and mesenteric lymph node (MLN), endotoxin and diamine oxidase( DAO) in plasm, intestinal transit index, epithelial cell apoptosis in intestinal barrier (by TUNEL), protein content in small intestinal mucosa (by BCA), the expression occludin protein
    (by immuneohistochemistry, IHC) and mRNA (by Real-time quantitative PCR) in small intestinal mucosa, slgA content in small intestinal mucus. 3. The rats was divided and managed with the same way of the 2 section of the research. At 4d and 7d, determine the level of TNF-a and IL-10 in serum, and observe the changes of IL-10/TNF-a ratio in different group.[Results] 1. Establishment of model of experimental SAP in rats: in SAP group, Plasm amylase increased 12 hours after injection, reached peak value at 24h, and maintained at high level at 48h. There was significant difference between model group and SO group. The HE staining results showed there was pancreatic hemorrhage and necrosis, and the impairment was progressive. The mortality rate was stable within one week. 2. The influence of different nutritional support with compound lactobacilli on intestinal barrier function of severe acute pancreatitis in rats and its mechanism: (1) the result of bacterial translocation in liver and MLN: the rate of bacterial translocation was significantly higher in SAP groups (P<0.01 vs. Sham-EEN and Sham-TPN groups);it was higher in TPN group (P<0.05 vs. EEN group);it was higher in TPN 4d group (P<0.05 vs. PN+Lac 4d group). (2) The result of endotoxin in pasm: the level of endotoxin in plasm was significantly higher in SAP groups (P<0.01 vs. Sham-EEN and Sham-TPN groups);it was higher in TPN group (P<0.05 vs. EEN and EEN+Lac group);it was higher in EEN group (P<0.05 vs. EEN+Lac group);it was significantly higher in TPN group (P<0.01 vs. PN+Lac group);and it was significantly higher in 4d group (P<0.01 vs. 7d group);(3) The change of small intestinal mechanic barrier: ?intestinal transit index: the intestinal transit index was significantly higher in SAP groups except EEN+Lac 4d and PN+ Lac 7d group (P<0.01 vs. Sham-EEN and Sham-TPN groups);it was significantly lower in TPN group (P<0.01 vs. PN+Lac group);?diamine oxidase ( DAO) in plasm: the level of DAO in plasm was significantly higher in TPN group (P<0.01 vs. Sham-EEN and Sham-TPN groups);it was significantly higher in TPN 4d group (P<0.01 vs. EEN);it was higher in EN 4d group (P<0.01 vs. EEN+Lac );and it was
    significantly higher in 4d group (P<0.01 vs. 7d group), ?intestinal epithelia AI (%): the intestinal epithelia AI was significantly higher in SAP groups (P<0.01 vs. Sham-EEN and Sham-TPN groups);it was higher in TPN group (P<0.05 vs. EEN and EEN+Lac group);it was higher in TPN group (P<0.05 vs. PN+Lac group);it was significantly higher in PN+Lac 4d group (P<0.01 vs. PN+Lac 7d group);and it was significantly higher in 4d group (P<0.01 vs. 7d group);@The relative gray value of occludin protein slices by IHC: the relative gray value of occluding was higher in SAP groups (P<0.05 vs. Sham-EEN and Sham-TPN groups);it was higher in TPN group (P<0.05 vs. EEN and EEN+Lac group);it was higher in EN 4d group (P<0.05 vs. EEN+Lac 4d group);it was higher in PN+Lac 7d group (P<0.05 vs. PN+Lac 7d group) and it was higher in EN 4d group (P<0.01 vs. EN 7d group), ?the expression of occludin protein mRNA: the expression of occludin protein mRNA was lower in SAP 4d groups (P<0.05 vs. Sham-EEN 4d and Sham-TPN 4d groups) and was lower in TPN 7d group (P<0.05 vs. Sham-TPN 7d group);it was lower in TPN group (P<0.05 vs. EEN and EEN+Lac group);it was lower in TPN 7d group (P<0.05 vs. PN+Lac group). ?There is significantly positive correlation between the occluding protein mRNA level and the reciprocal of relative gray value, r=0.9216, P<0.01.(Z)sIgA content in small intestinal mucus: the slgA content in small intestinal mucus was significantly lower in SAP groups except EEN+Lac 7d group (P<0.05 vs. Sham-EEN and Sham-TPN groups);it was lower in EEN group (P<0.05 vs. EEN+ Lac group);it was lower in TPN group (P<0.05 vs. EEN and EEN+Lac group);it was lower in PN+Lac group (P<0.05 vs. EEN+Lac group) and it was lower in SAP 4d group (P<0.05 vs. 7d group). (3)protein content in small intestinal mucosa: the protein content in small intestinal mucosa was lower in SAP groups except EEN+ Lac 7d group and PN+Lac 7d group (P<0.05 vs. Sham-EEN and Sham-TPN groups);it was lower in EEN group (P<0.05 vs. EEN+Lac group);it was lower in TPN group (P<0.05 vs. PN+Lac group);it was significantly lower in TPN group (P<0.01 vs. EEN and EEN+Lac group);it was lower in PN+Lac group (P<0.05 vs. EEN+Lac group) and it was lower in EEN+Lac 4d group (P<0.05 vs. EEN+Lac 7d group) . 3. The effect of different nutritional support with compound lactobacilli on cytokines balance
    of SAP in serum. (1) the level of TNF-a in serum: the level of TNF-a in serum was significantly higher in SAP group (P<0.01 vs. Sham-EEN and Sham-TPN groups);it was lower in 4d SAP group (P<0.05 vs. 7d SAP group);it was higher in EEN 4d group (P<0.05 vs. EEN+Lac 4dgroup);it was higher in TPN group (P<0.01 vs. EEN and EEN+Lac group);it was higher in TPN group (P<0.01 vs. PN+Lac group). (2)the level of IL-10 in serum: the level of IL-10 in serum was significantly higher in SAP group (P<0.01 vs. Sham-EEN and Sham-TPN groups);it was significantly lower in 4d SAP group (P<0.01 vs. 7d SAP group);it was higher in EEN group (P<0.05 vs. EEN+Lac group);it was higher in TPN group (P<0.05 vs. EEN+Lac group);it was higher in TPN group (P<0.05 vs. PN+Lac group). (3) the ratio of IL-10/TNF-a in serum: the ratio of IL-10/TNF-a in serum was lower in SAP group (P<0.05 vs. Sham-EEN and Sham-TPN groups);it was lower in EEN 4d group (P<0.05 vs. EEN + Lac 4d group);it was lower in TPN group (P<0.05 vs. PN + Lac group).[Conclusions]1. Establishment of model of experimental SAP in ratsEstablish the rat model of SAP by injection of 1 ml of 3.8% sodium taurocholate beneath the pancreatic capsule. The mortality rate was stable within one week. And the method could establish SAP model with good reproducibility. The model resembles the natural course of human SAP and will be valuable for evaluating therapeutic study on SAP.2. The influence of different nutritional support with compound lactobacilli on intestinal barrier function of severe acute pancreatitis in rats and its mechanism(1) EEN with compound lactobacilli can significantly benefit the intestinal barrier function, decreasing the occurrence of bacterial translocation and endotoxin translocation;(2) The mechanisms of positive of EEN with compound lactobacilli on the intestmal barrier function may through improving synthesis of intestinal mucous protein, decreasing the apoptosis of the epithelial cell, improving the expression of occludin protein in intestinal epithelial tight junction, and enhancing the
    immunology barrier function of intestine by improving the excretion of the slgA.(3) The mechanisms of positive of TPN with compound lactobacilli on the intestinal barrier function may through the same mechanism of EEN(4) EEN is superior in benefiting intestinal barrier function to TPN.3. The effect of different nutritional support with compound lactobacilli on cytokines balance of SAP in serum(1) EEN with compound lactobacilli can significantly benefit cytokines balance of SAP in serum.(2) TPN with compound lactobacilli can significantly benefit cytokines balance of SAP in serum.(3) EEN is superior in benefiting cytokines balance to TPN.
引文
[1] Vege SS, Baron TH. Management of pancreatic necrosis in severe acute pancreas-titis[J]. Clin Gastroenterol Hepatol, 2005, 3(2):192-196.
    [2] Hirata K. Essential therapeutic strategies for acute pancreatitis--guidelines for initial treatment and their significance[J]. Nippon Rinsho, 2004, 62(11):2049-2056.
    [3] Flint R, Windsor J, Bonham M. Trends in the management of severe acute pancreatitis: interventions and outcome[J]. ANZ J Surg, 2004, May, 74(5):335-342.
    [4] Kifistioglu I, Teitelbaum DH. Alteration of the intestinal intraepithelial lympho- cytes during total parenteral nutrition[J]. J Surg Res, 1998, 79(1):91-96.
    [5] Salvino R, Ghanta R, Seidner DL, et al. Liver failure is uncommon in adults receiving long-term parenteral nutrition[J]. JPEN J Parenter Enteral Nutr, 2006, 30(3):202-208.
    [6] Dahl PE, Karlsen BH, Kristiansen KA, et al. Prevention of catheter thrombosis increases survival, but does not modify lung injury in rats receiving long-term parenteral nutrition[J]. Scand J Clin Lab Invest, 2004, 64(8):737-744.
    [7] Buchman AL. Complications of long-term home total parenteral nutrition: their identification, prevention and treatment[J]. Dig Dis Sci, 2001, 46(1): 1-18.
    [8] Raimondo M, Scolapio JS. What route to feed patients with severe acute pancreatitis: vein, jejunum, or stomach[J]? Am J Gastroenterol, 2005, 100(2): 440-441.
    [9] McClave SA, Chang WK, Dhaliwal R, et al. Nutrition support in acute pancreatitis: a systematic review of the literature[J]. JPENJ Parenter Enteral Nutr, 2006, 30(2): 143-156.
    [10] Deitch EA, Xu D, Kaise VL. Role of the gut in the development of injury- and shock induced SIRS and MODS: the gut-lymph hypothesis, a review[J]. Front Biosci, 2006, 11:520-528.
    [11] Schmidt J, Rattner DW, Lewand rowski K, et al. A better model of acute pancreatitis for evaluayinh therapy[J]. Ann Surg, 1992, 215(1):44-56.
    [12] Aho HJ, Koskensalo SM, Nevalainen TJ. Experimental pancreatitis in the rats: sodium taurocholate-induced acute hemorrhagic pancreatitis[J]. Scand J Gastroenterol, 1980, 15(4):411-416.
    [13] Foitzik T, Hotz HG, Eibl G, et al. Experimental models of acute pancreatictis: are they suitable for evaluating therapy[J]? Int J Colorectal Dis, 2000, 15(3):127-135.
    [14] Rattner DW. Experimental models of acute pancreatitis and their relevance to human disease[J]. Scand J Gastroenterol Suppl, 1996, 219:6-9.
    [15] Lampel M, Kern HE Acute interstitial pancreatitis in the rat induced by excessive dose of a pancreatic secretagogue[J]. Virchows Arch, 1977, 373: 397.
    [16] Jaworek J, Jachimczak B, Bonior J, et al. Protective role of endogenous nitric oxide (NO) in lipopolysaccharideinduced pancreatitic damage(a new experim-ental model of acute pancreatitis[J]. J Physiol Pharmacol, 2000, 51(1):85-102.
    [17] 金畅,李继承.雨蛙素联合脂多糖致小鼠重症急性胰腺炎模型[J].中国医学科学院学报,2002,24(4):393-397.
    [18] Ramos O Jr, Leitao OR, Repka JC, et al. Experimental acute pancreatitis induced by L-arginine: a histological and biochemical evaluation[J]. Arq Gastroenterol, 2005, 42(1):55-59.
    [19] 谷俊朝,秦兆寅,王宇.急性坏死性胰腺炎合并多器官损害动物模型的建立[J].中华实验外科杂志,1998,15(5):395.
    [20] 王单松,靳大勇,吴肇汉.急性出血坏死型胰腺炎大鼠模型[J].上海实验动物科学,2002,22(1):24-26.
    [21] Wittmann T, Roka R, Palagyi P, et al.Continous enteral feedinghas an attenuating effect on the exocrine pancreas in rats[J]. Pancreas, 2001, 23(3):329-334.
    [22] R. Gupta, K. Patel, P.C.Calder, et al. A randomised clinical trial to assess the effect to total enteral and total parenteral nutritional support on metabolic, inflammatory and oxidative marker in patients with predicted severe acute pancreatitis (APACHE Ⅱ≥6)[J]. Pancreatology, 2003, 3(5): 406-413.
    [23] Eckerwall G, Andersson R. Early enteral nutrition in severe acute pancreatitis: a way of providing nutrients, gut barrier protection, immunomodulation, or all of them[J]? Scand J Gastroenterol, 2001, 36(5):449-458.
    [24] Chen J, Wang XP, Liu P, et al. Effects of continuous early enteral nutrition on the gut barrier function in dogs with acute necrotizing pancreatitis[J]. Zhonghua Yi Xue Za Zhi, 2004, 84(20):1726-1731.
    [25] Fang Y, Brent E Probiotic bacterium prevents cytokine-induced apoptosls in intestinal epithelial cellsl[J]. Biol Chem, 2002, 227(52):50959-50965.
    [26] Madsen K. Probiotics and the immune response[J]. J Clin Gastroenterol, 2006, 40(3):232-234.
    [27] 姚咏明,田惠民,王亚平,等.过氯酸新法预处理血浆定量检测微量内毒素的鲎试验方法及其应用[J].上海医学检验杂志,1993,8(1):31-33.
    [28] 黎君友,于燕,郝军,等.分光光度计法测定血和小肠组织二胺氧化酶活性 [J].Amino Acids & Biotic resources,1996,18(4):28-30.
    [29] Ammori BJ, Fitzgerald P, Hawkey P, et al. The early increase in intestinal permeability and systemic endotoxin exposure in patients with severe acute pancreatitis is not associated with systemic bacterial translocation: molecular investigation of microbial DNA in the blood[J]. Pancreas, 2003, 26:18-22.
    [30] Penalva JC, Martinez J, Laveda R, et al. A study of intestinal permeability in relation to the inflammatory response and plasma endocab IgM levels in patients with acute pancreatitis[J]. J Clin Gastroenterol 2004;38: 512-517.
    [31] Rahman SH, Ammori B J, Holmfield J, et al. Intestinal hypoperfusion contributes to gut barrier failure in severe acute pancreatitis[J]. Gastrointest Surg, 2003, 7:26-35.
    [32] Chang JX, Chen S, Ma LP, et al. Functional and morphological changes of the gut barrier during the restitution process after hemorrhagic shock[J]. Worm J Gastroenterol[J], 2005, 11:5485-5491.
    [33] Fukuyama K, Iwakiri R, Noda T, et al. Apoptosis induced by ischemia-reperfusion and fasting in gastric mucosa compared to small intestinal mucosa in rats[J]. Dig Dis Sci, 2001, 46:545-549.
    [34] Lobo DN, Memon MA, Alison SP, et al. Evolution of nutritional support in acute pancreatitis[J]. Br J Surg, 2000, 87(6):695-707.
    [35] Avgerinos C, Delis S, Rizos S, et al.Nutritional support in acute pancreatitis[J]. Dig Dis, 2003, 21(3):214-219.
    [36] Boelens PG, Houdijk AP, Haarman HJ, et al. Glutamine-enriched enteral nutrition decreases infectious complications in trauma patients[J]. Am J Clin Nutr. 2002 Jul, 76(1):253-254.
    [37] Hosokawa M, Tsukada H, Fukuda F, et al. Therapeutic effect of basic fibroblast growth factor on experimental pancreatitis in rat[J]. Pancreas, 2000, 20(4): 373-377.
    [38] Alah A, Belagyi T, Issekutz A, et al. Randomized clinical trial of specific lactobacillus and fibre supplement to early enteral nutrition in patients with acute pancreatitis[J]. Br J Surg, 2002, 89:1103-1107.
    [39] Jickerson RN, Vehe KL, Mullen JL, et al. Resting energy expenditure in patients with pancreatitis[J]. Crit Care Med, 1991, 19:484-490.
    [40] Houffard YH, Delafosse BX, Annat GJ, et al. Energy expenditure during severe acute pancreatitis[J]. J Parenter Enteral Nutr, 1989, 13:26-29.
    [41] Shaw JHF, Wolfe RR. Glucose, fatty acid, and urea kinetics in patients with severe pancreatitis. The response to substrate infusion and total parenteral nutrition[J]. Ann Surg, 1986, 204:665-672.
    [42] Helton WS. Intravenous nutrition in patients with acute pancreatitis. In: Clinical nutrition: Parenteral nutrition. JLRombeau(ed). Philadelpgia: WB Saunder, 1990, 442-461.
    [43] 秦环龙,苏震东,胡雷光,等.早期经空肠营养对急性胰腺炎肠源性激素分泌及效应的影响[J].肠外与肠内营养,2002,9(4):193-197.
    [44] Abou AS, Keefes OJ. Nutrition in acute pancreatitis[J]. J Clin Gastroenterol, 2001, 32(3):203-209.
    [45] MacFie J.Enteral versus parenteral nutrition: the signigicance of bacterial translocation and gut-barrier function[J]. Nutrition, 2000, 16:606-611.
    [46] Abou AS, O'Keefe SJ. Nutrition support during acute pancreatifis[J]. Nutrition, 2002, 18(11-12):938-945.
    [47] Shea JC, Bishop MD, Parker EM, et al. An enteral therapy containing medium-chain triglycerides and hydrolyzed peptides reduces postprandial pain associated with chronic pancreatitis[J]. Pancreatology, 2003, 3(1):36-40.
    [48] Stonge MP, Lamarche B, Mauger JE Consumption of a functional oil rich in phytosterols and medium-chain triglyceride oil improves plasma lipid profiles in men[J]. Nutrition, 2003, 133(6):1815-1820.
    [49] Donaghue KC, Pena MM, Chan AKF, et al. Beneficial effects of increasing monounsaturated fat intake in adolescents with type 1 diabetes[J]. Diabe Res Clin Pract, 2000, 48:193-199.
    [50] Guamer F, Malagelada JR. Gut flora in health and disease[J]. Lancet, 2003, 361(9356):512-519.
    [51] FullerR. Probiotics in man and animals[J]. J Appl Baeteriol, 1989, 66(5):365-378
    [52] Schrezenmeir J, de Verse M. Probiotics, prebiotics, and synbiotics-approaching a definition[J]. Am J ClinNutr, 2001, 73(s):361-364.
    [53] Reiner W, Heiko CR. Bacterial translocation in the gut[J]. Best Practice & Research Clinical Gastroenterology, 2003, 17(3):397-425.
    [54] Abou-AssiS. O' keefeSJ. Nutrition in acute pancreatitis[J]. J Clin Gastroenterol, 2001, 32(3):203.
    [55] Bhatia M, Wong FL, Cao Y, et al. Pathophysiology of acute pancreatitis[J]. Panc-reatology, 2005, 5(2-3):132-144.
    [56] Runkel N, Moody FG, Smith GS, et al. The role of the gut in the developmengof sepsisin acute panceatitis[J]. J SurgRes, 1991, 51(1):18-23.
    [57] Ljungdahl M, Lundholm M, Katouli M, et al. Bacterial translocation in experimental shock is dependent on the strains in the intestinal flora[J]. Scand J Gastroentol, 2000, 35: 389-397.
    [58] Alakomi HL, Skytta E, Saarela M, et al. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane[J]. Appl Environ Microbiol, 2000, 66(5):2001-2005.
    [59] Alvarez, Olmos MI, Oberhelman RA. Probiotic agents and infectious disease: a modem perspective on a traditional thempy[J]. Clin Infect Dis, 2001, 32(11):1567-1576.
    [60] Windsor JA, Fearon KC, Ross JA, et al. Role of serum endotox in core antibody levels in predicting the development of MOF in acute pacreatits[J]. Br J Surg, 1999, 80(8):1042.
    [61] MacFie J. Enteral versus parenteral nutrition: the significance of bacterial translocation and gut-barrier function[J]. Nutrition, 2000, 16:606-611.
    [62] Makhijia R, Kinganorth AN. Cytokine storm in acute pancreatitis[J]. J hepato-biliary Pancr Sury, 2002, 9:401-404.
    [63] Rabeneck L, Feinstein A, Horwitz RL, et al. A new clinical prognostic staging system for acute pancreatitis[J]. Am J Med, 1993, 95(1):61-70.
    [64] Hanx, Fink MP, Yang R, et al. Increased iNOs activity is assential for intestinal epithelial tight junction dysfunction in endotoxeric mice[J]. Shock, 2004, 21:261-270.
    [65] Thompson JS, Lok GD. The effect of the route of nutrient delivery on gut structure and diamine oxidase levels[J]. JPEN, 1987, 11:28-32.
    [66] Luk GD,Bayless TM., Baylin SB. Diamine oxidase (histaminase): a circulating marker for rat intestinal mucosal maturation and integrity[J]. J Clin Invest, 1980, 66: 60-70.
    [67] Tsunooka N, Maeyama K, Hamada Y, et al. Bacterial translocation secondary to small intestinal mucosal ischemia during cardiopulmonary bypass. Measurement by diamine oxidase and peptidoglycan[J]. Eur J Cardiothorac Surg, 2004, 25(2): 275-280.
    [68] Liboshi Y, R Nezu, M. Kennedy. Totoal parenteral nutrition decrease luminal muscus gel and increased per meablity of small intestine[J]. Int J Radiat Biol. 1990, 58(6):925.
    [69] Peter AH, Philip J, Ansariv BJ, et al. Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis [J]. Cell Science, 1994, 107: 3569-3577.
    [70] Potten C S, Booth C, Pritchard D M. The intestinal epithelial stem cell: the mucosal governor [J]. Int J Exp Pathol, 1997, 78 (4):219-243.
    [71] Takeyama Y. Significance of apoptotic cell death in systemic complications with severe acute pancreatitis[J]. J Gastroenterol, 2005, 40:1-10.
    [72] Kim JM, Eckmann L, Savidge TC, et al. Apoptosis of human intestinalepithelial cells after bacterial invasion[J]. J Clin Invest,1998, 102: 1815-1823.
    [73] Yang RC, Jao HC, Huang LJ, et al. The essential role of PKCalpha in the protective effect of heat-shock pretreatment on TNFalpha-induced apoptosis in hepatic epithelial cell line[J].Exp Cell Res, 2004, 296(2):276-284.
    [74] Lesur O, Brisebois M, Thibodeau A, et al. Role of IFN-gamma and IL-2 in rat lung epithelial cell migration and apoptosis after oxidant injury[J]. Am J Physiol Lung Cell Mol Physiol. 2004 Jan, 286(1):4-14.
    [75] Berkes J, Viswanathan VK, Sarkovic SD, et al. Intestinal epithelial responses to enteric pathogens: elect on the tight junction barrier, ion transport, and irflammation[J].Gut, 2003, 52:439-451.
    [76] X Han, MP Fink, RL Delude. Proinflam matory cytokines cause NO-dependent and-independent changes in expression and localization of tight junction proteins in intestinal epithelial cells[J]. Shock, 2003, 19(3):229-237.
    [77] Brandtzaeg P, Halstensen TS, Kett K, et al. Immunobiology and immuno-pathology of human gut mucosa: humoral immunity and intraepithelial lymph-ocytes[J]. Gastroenterology, 1989, 97:1562-1584.
    [78] Suzuki K, Meek B, Boi Y, et al. Aberrant expansion of segmented silamentous bacteria in IgA-deficient gut[J]. Proc Natl Acad Sci, 2004, 101(7):1981-1986.
    [79] Bollinger RR, Everett ML, Palestrant D, et al. Human secretory immunoglobulin A may contribute to biofilm formation in the gut[J]. Immunology, 2003, 109(4): 580-587.
    [80] Tanaka S, Miura S, Tashiro H, et al. Morphological alteration of gut-associated lymphoid tissue after long-term total parenteral nutrition in rats[J]. Cell Tissue Res, 1991, 266:29-36.
    [81] Macpherson AJ, Gatto D, Sainsbury E, et al. A primitive T cell independent mecbanism of intestinal mucosa IgA responses to commensal bacteria[J]. Science, 2000, 288(5474):2222-2226.
    [82] Saluja AK, Steer ML. Pathophysiology of pancreatitis: role of cytokines and other mediators of inflammation[J]. Digestion,1999, 60(Suppl):27-33.
    [83] Chen CC, Wang SS, Lee FY, et al. Proinflammatory cytokines in early assessment of the prognosis of acute pancreatitis[J]. Am J Gastroenterol, 1999, 94:213-218.
    [84] Bhatia M, Brady M, Shokuhi S, et al. Inflammatory mediators in acute pancreatitis [J]. J Pathol, 2000, 190(2):117-125.
    [85] 李晓辉,熊炯祈,王春友,等.不同类型早期肠管营养对重症急性胰腺炎大鼠细胞因子平衡和免疫状态的影响[J].华中科技大学学报,2004,33(2):222-225.
    [86] Powell JJ, Murchison JT, Fearon KCH, et al. Randomized controlled trial of the effect of early enteral nutrition on markers of the inflammatory response in predicted severe pancreatitis[J]. Bri J Surg, 2000, 87:1375-1381.
    [87] Locascio M, Holgado AP, Perdigon G, et al. Enteric bifidobacteria: isolation from human infants and challenge studies in mice[J]. Can J Microbiol, 2001, 47 (11):1048-1052.
    [88] 尚东,关凤林,陈海龙,等.急性胰腺炎时促炎症因子和抗炎症因子的变化及其意义[J].中华普通外科杂志,2002,7(4):226-7.
    [89] Masamune A, Shimosegawa T. Anti-cytokine therapy for severe acute pancreas-titis[J]. Nippon Rinsho. 2004, 62(11):2116-21.
    [90] Granger J, Remick D. Acute pancreatitis: models, markers, and mediators[J]. Shock, 2005, 24 Suppl 1:45-51.
    [91] Rebecca M. Minter, Maria A. Ferry, Michelle E, et al. Adenoviral Delivery of Human and Viral IL-10 in Murine Sepsis[J]. The Journal of Immunology, 2001, 167:1053-1059.
    [92] Smits HH, Engering A, van der Kleij D, et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin[J]. J Allergy Clin Immuno, 2005, 15(6):1260-1267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700