hCASK调控p21~(WAF1/CIP1)表达机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烧(创)伤不仅导致机体局部发生一系列病变,同时还可引发不同程度的全身性反应,许多细胞及细胞因子参与,涉及细胞运动、粘附、通讯、增殖和分化等细胞生物学的各个方面。烧伤、创伤后修复是一个错综复杂而有序的过程,损伤后修复的整个过程与细胞信号转导和增殖调控密切相关,而细胞增殖和分化的调控依赖于细胞周期的精密调节,研究细胞增殖和分化的机制对于伤后创面愈合以及预防瘢痕形成具有重要的意义。
     本室研究发现,人钙/钙调蛋白依赖丝氨酸蛋白激酶(hCASK)可以抑制ECV304细胞增殖,而其抑制细胞增殖的作用机制尚不清楚。对此深入探讨将有助于我们正确理解烧(创)伤后机体组织修复、皮肤再生以及瘢痕增生的病理生理现象和发生机理。
     hCASK是一种主要表达于上皮细胞和神经原的多结构域蛋白分子,主要功能是做为支架蛋白质(scaffolds),利用其多蛋白结构域,结合功能相关的蛋白分子,形成的多蛋白复合物,参与构建细胞膜骨架、维持细胞连接,细胞黏附,调节靶蛋白亚细胞定位,参与细胞内外信号转导和基因表达调控等许多重要的细胞生理过程。我们研究发现,人ECV304细胞中hCASK与分化抑制因子1(Id1)存在特异性的相互作用,Id1很可能是CASK的一个下游信号。Id1是bHLH家族的负调控因子,在促进细胞增殖、抑制细胞分化的过程中起重要作用。本室研究发现,强制表达CASK的ECV304细胞增殖缓慢,并且能不同程度地诱导细胞周期相关蛋白p21、p16等表达上调,而外源性siRNA下调CASK表达后,能促进ECV304细胞增殖,而且证实CASK参与细胞增殖调控可能与Id1的功能有关,但其机制尚不清楚。文献报道,某些哺乳动物细胞中,Id1通过负调节bHLH转录因子,抑制p21WAF1/CIP1、p16INK4a基因表达,促进细胞增殖。因此,我们推测,细胞周期抑制因子p21WAF1/CIP1、p16INK4a等很可能是CASK-Id1信号通路的重要效应分子。本项课题研究中,我们在筛选细胞周期相关蛋白的基础上,围绕p21这个关键分子,对CASK-Id1信号通路做了一些相关研究。
     我们首先采用RNA干扰技术(RNAi),应用质粒载体介导的细胞内小干扰RNA(siRNA)表达策略,设计和构建了针对CASK、Id1的siRNA表达质粒,分别转染ECV304细胞,筛选并建立缺陷表达的细胞株,结合前期已经构建的CASK诱导表达
Background
     Burns and trauma can not only lead to a series of pathological changes in the body, but also cause different degrees of systemic responses, including cellular adherence, signal transduction, proliferation and differentiation.Wound repair after burns and trauma is a complicated process, which have close relationship with the regulation of cell proliferation and cellular signal transduction. The cell proliferation and differentiation depends on the regulation of cell cycle. So, the research on the cell proliferation and differentiation is vital for the prevention of scar formation and wound healing.
     hCASK (human calcium/calmodulin-dependent serine protein kinase)is a member of the membrane associated guanylate kinase (MAGUK) family, which is consist of a group of conserved cytoskeletal proteins. CASK, as a scaffolding protein, participates in intracellular signaling pathways. CASK may play an important role in cytoskeleton assembly, signal transduction, cell junction formation, cell proliferation, et al.
     Our previous studies have shown that ECV304 cell proliferation was restrained, and the expression of p21WAF1/CIP1 and p16INK4a were up-regulated by the induction of hCASK.However, the mechanism is not clear.
     Recently, we have confirmed that hCASK bound to Id1 through its GUK domain, and Id1 might be involved in the cell growth mediated by CASK. CASK seemed to be an upstream signal of Id-bHLH pathway that regulated cell cycle and proliferation of ECV304 cells.
     Id1 family of helix-loop-helix(HLH) proteins does not possess a basic DNA binding domain and functions as a dominant-negative regulator of basic DNA proteins through the formation of inactive heterodimers with intact bHLH transcription factors. Id family has been implicated in regulating a variety of cellular processes, including cellular growth, differentiation, apoptosis, senescence, neoplastic transformation, but it is not well elucidated on the upstream signal of Id protein.
引文
1. 黎螯,杨宗城。黎螯烧伤治疗学。上海科学技术出版社,2001:655-658。
    2. 郭振荣,盛志勇。烧伤学临床新视野。清华大学出版社,2005:409-414。
    3. Woods D.F., and Bryant P.J. The Discs-Large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell.1991; 66:451-464.
    4. Songyang Z.,Fanning A.S.,Fu C. et al . Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science.1997;275:73-77.
    5. Anderson J.M. Cell signaling: MAGUK magic. Curr. Biol. 1996;6:382-384.
    6. Dimitratos S.D.,Woods D.F.,Stathakis D.G., et al. Signaling pathways are focused at specialized regions of plasma membrane by scaffolding proteins of the MAGUK family. Bioessays. 1999;21:912-921.
    7. Cho K.O., Hunt,C.A. and Kennedy M.B. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron. 1992;9:929–942.
    8. Tomita S., Nicoll R.A., and Bredt D. PDZ protein interactions regulation glutamate receptor function and plasticity. The Journal of Cell Biology 2001,153:19-23.
    9. Lue R.A., Brandin E., Chan E.P., et al. Two independent domains of hDlg are sufficient for subcellular targeting: the PDZ1-2 conformational unit and an alternatively spliced domain. J Cell Biol 1996, 135: 1125-1137.
    10. Gaudet S., Branton D., and Lue R.A. Characterization of PDZ-binding kinase, a mitotic kinase. Proc. Natl. Acad. Sci. U.S.A. 2000,97: 5167-5172.
    11. Satoh K., Yanal H., Senda T., et al. DAP-1, a novel protein that interacts with the guanylate kinase-like domains of hDLG and PSD-95. Genes Cells 1997;2:415-424.
    12. Fanning A.S., Lapierre L.A., Brecher A.R.,et al. Protein interactions in the tight junction: the role of MAGUK proteins in regulating tight junction organization and function. Curr. Top. Membr.1996;43:211–235.
    13. Bredt D.S. Cell biology. Reeling CASK into the nucleus. Nature.2000;404(6775): 298-302.
    14. Hsueh Y.-P., Wang T.-F., Yang F.-C., Sheng M. Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature. 2000;404:298-302.
    15. Benezra R., Davis R.L., Lockshon D., D.L. Turner, H. Weintraub, The protein Id: a negative regulator of helix-loop-helix DNA binding proteins, Cell.1990;60:49–59.
    16. Zebedee Z., Hara E., Id proteins in cell cycle control and cellular senescence, Oncogene.2002;20: 8317–8325.
    17. Yokota Y., Mori S., Role of Id family proteins in growth control, J. Cell Physiol. 2002;190:21–28.
    18. Massari M.E.,and Murre C., Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms, Mol. Cell. Biol. 2000;20: 429–440.
    19. Murre C, Bain G., v. Dijk M. A.,et al. Structure and function of helix-loop-helix proteins. Biochim. Biophys. Acta.1994;1218:129–135.
    20. Carmeliet P. Controlling the cellular brakes. Nature,1999;401: 657–658.
    21. Jie Qi, Yongyue Su, Rongju Sun, et al. CASK inhibits ECV304 cell growth and interacts with Id1. Biochemical and Biophysical Research Communications, 2005;328:517-521.
    22. Halevy O,Novitch BG, Spicer D, et al. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD .Science,1995;267:1018-1021.
    23. Zhang W,Grasso L,McClain CD, et al. p53-independent induction of WAF1/CIP1 in human leukemia cells is correlated with growth arrest accompanying monocyte/macrophage differentiation. Caner Res.,1995;55:668-674.
    24. Ohtani N, Zebedee Z, Huot TJ, et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature .2001;409: 1067-1070.
    25. Parker SB, Eichele G, Zhang P, et al. p53-Independent Expression of p21Cip1 in Muscle and Other Terminally Differentiating Cells. Science, 1995;267:1024-1027.
    26. Datto MB,Li Y, Panus JF, et al. Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21waf1 through a p53-independent mechanism. Proc.Natl. Acad. Sci. USA. 1995a;92:5545-5549.
    27. Young AJ, Young CE, Jin KH, et al. Transcriptional repression of p21waf1 promoter by hepatitis B virus X protein via a p53-independent pathway. Gene, 2001;275:163-168.
    28. Murre C., McCaw PS., and Baltimore D. A new DNA binding and dimerization motif in immunoglobin enhancer binding, daughterless, MyoD and myc proteins. Cell, 1989;56:777–783.
    29. Prabhu S., Ignatova A., Park S. T. ,et al. Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A and Id proteins. Mol. Cell Biol. 1997;17: 5888-5896.
    30. El-Deiry WS., Tokino T, Velculescu VE,.et al. WAF1, a potenitial mediator of p53 tumor suppression. Cell,1993;75:817-825.
    31. Xiong Y, Hannon GJ, Zhang H, et al. p21waf1 is a universal inhibitor of cyclin kinases. Nature,1993;366:701-704.
    32. Sherr CJ, Roberts JM. CDK inhibitors:positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501-1512.
    33. Sherr CJ. G1 phase progression:cycling on cue. Cell,1994;79:551-555.
    34. Hunter T., and Pines J. Cyclins and Cancer.:Cyclin D and CDK inhibitors come of age. Cell,1994;79:573-582.
    35. Li R, Waga S, Hannon G, et al. Differential effects by the p21 CDK inhibtor on PCNA-dependent DNA replication and repair. Nature(Lond),1994;371:534-537.
    36. Flores-Rozas H, Kelman Z, Dean D, et al. Cdk-interacting protein 1 directly binds with proliferating cell nuclear antigen and inhibitors DNA replication catalyzed by the DNA polymerase delta holoenzyme. Proc.Natl.Acad.Sci. USA,1994;91:8655-8659.
    37. Michieli P, Chedid M, Lin D, et al. Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res.,1994;54:3391-3395.
    38. Dulic V, Kaufman WK, Wilson SJ, et al. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell,1994; 1013-1024.
    39. El-Deiry WS, Harper JW, O’Connor PM, et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cance Res., 1994;54:1169-1174.
    40. Parker SB,Eichele G, Zhang P, et al. p53-independent expression of p21cip1 in muscle and other terminally differentiating cells. Science,1995;267:1024-1027.
    41. Chu, C., Kohtz, D. S. Identification of the E2A Gene Products as Regulatory Targets of the G1 Cyclin-dependent Kinases. J. Biol. Chem. 2001;276: 8524-8534.
    42. Zhang JM, Zhao X, Wei Q ,et al. Coupling of the cell cycle and myogenesis through the cyclin D1-dependent interaction of MyoD with cdk4. EMBO J., 1999;18: 6983- 6993.
    43. Caruana G. Genetic studies define MAGUK proteins as regulators of epithelial cell polarity. Int. J. Dev. Biol.,2002;46:511-518.
    44. Martinez-Estrada, O. M., Villa A., Breviario F., et al. Association of junctional adhesion molecule with calcium/ calmodulin- dependent serine protein kinase (CASK/LIN-2) in human epithelial caco-2 cells. J. Biol. Chem.2001; 276:9291–9296.
    45. Cohen AR, Woods DF, Marfatian SM, et al. Human Cask/Lin-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J Cell Biol.1998; 142:129 –138.
    46. Butz S, Okamoto M, Su¨dhof TC. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell. 1998; 94:773–782.
    47. Kaech, S. M., Whitfield C. W., and Kim S. K.. The LIN-2/LIN-7/ LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell. 1998;94:761–771.
    48. Hsueh, Y. P., Kim E., and Sheng.M. Disulfide-linked head-to-head multimerization in the mechanism of ion channel clustering by PSD-95. Neuron.1997; 18:803–814.
    49. Marfatia S.M., Lue R.A., Branton D.,et al. In vitro binding studies suggest a membrane-associated complex between erythroid p55, protein 4.1, and glycophorin C. J. Biol. Chem. 1994; 269:8631–8634.
    50. Lue R. A., Marfatia S. M., Branton D., et al. Cloning and characterization of hdlg: the human homologue of the Drosophila discs large tumor suppressor binds to protein 4.1. Proc. Natl. Acad. Sci. USA. 1994; 91:9818– 9822.
    51. Marfatia S.M., Lue R.A., Branton D., et al. Identification of the protein 4.1 binding interface on glycophorin C and p55, a homologue of the Drosophila discs-large tumor suppressor protein. J. Biol. Chem. 1995;270: 715–719.
    52. Elledge S.J. Cell cycle checkpoints: preventing an identity crisis. Science 1996;274: 1664–1672.
    53. Harper J.W.,Adami G.R.,Wei N.,et al. The p21 cdk-interacting protein cip1 is a potent inhibitor of G1 cyclindependent kinases. Cell 1993.75:805–816.
    54. Sherr C.J., and Roberts J.M.. Inhibitors of mammalian G1 cyclindependent kinases. Genes Dev. 1995.9:1149–1163.
    55. Garrell, J., and Modolel J.. The Drosophila extramacrochaetae locus, an antagonist of proneural genes that like these genes, encodes a helixloop- helix protein. Cell.1990; 61:39–48.
    56. Murre C., Mccaw P.S., Vaessin H.,et al. Interactions between heterologous helix-loop- helix proteins generate complexes that bind specifically to a common DNA sequence. Cell.1989;58:537–544.
    57. Ellenberger, T., Fass D., Arnaud M., et al. Crystal structure of transcription factor E47: E-box recognition by a basic region helixloop- helix dimer. Genes Dev.1994; 8:970– 980.
    58. Peverali FA, Ramqvist T, Sa.rich R, et al. Regulation of G1 progression by E2A and Id helix–loop–helix proteins. EMBO J., 1994; 13: 4291-4301.
    59. Lassar A. B., Davis R. L., Wright W. E.,et al. Functional activity of myogenic HLH proteins requires heterooligomerization with E12/E47-like proteins in vivo. Cell.1991;66:305-315.
    60. Sorrentino V., Pepperkok R., Davis R.L.,et al. Cell proliferation inhibited by MyoD1 independently of myogenic differentiation. Nature,1990;345:813–815.
    61. Sun XH., and Baltimore D. An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not E12 heterodimers.Cell,1991;64:459–470.
    62. Alani RM, Young AZ, and Shifflett CB. Id1 regulation of cellular senescence through transcriptional repression of p16Ink4a. Proc.Natl. Acad.Sci. USA,2001;98:7812-7816.
    63. Barone V.M., Pepperkok R., Peverali F.A., et al. Id proteins control growth induction in mammalian cells. Proc. Natl. Acad. Sci.USA, 1994;91:4985–4988.
    64. Yates PR, Atherton GT, Deed RW, et al. Id helix-loop-helix proteins inhibit nucleoprotein complex formation by the TCF-ETS domain transcription factors. EMBO J., 1999;18: 968 -976.
    65. Reisman D. and Rotter V. The helix-loop-helix containing transcription factor USF binds to and transactivates the promoter of the p53 tumor suppressor gene. Nucleic. Acids Res. 1993;21(2):345-350.
    66. Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms asequence-specific DNA-binding complex with Myc. Science., 1991;8:251(4998): 1211–1217.
    67. Prendergast GC, Lawe D, Ziff EB. Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell.,1991;3:65(3):395–407.
    1. Anderson J.M. Cell signaling: MAGUK magic. Curr. Biol. 1996;6:382-384.
    2. Dimitratos S.D.,Woods D.F.,Stathakis D.G., et al. Signaling pathways are focused at specialized regions of plasma membrane by scaffolding proteins of the MAGUK family. Bioessays. 1999;21:912-921.
    3. Songyang Z.,Fanning A.S.,Fu C. et al . Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science.1997;275:73-77.
    4. Woods D.F., and Bryant P.J. The Discs-Large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell.1991;66: 451-464.
    5. Marfatia S.M., Morais-Cabtal J.H., Kim A.C., et al. The PDZ domain of human erythrocyte p55 mediates its binding to the cytoplasmic carboxyl terminus of glycophrin C. J. Biol. Chem., 1997;270:715-719.
    6. Lue R.A., Marfatia S.M., Branton D., et al. Cloning and characterization of hdlg: the human homologue of the Drosophila discs large tumor suppressor binds to protein 4.1. Proc. Acad. Sci. USA. 1994,9818-9822.
    7. Woods D. F., and Bryant P. J. ZO-1,Dlg and PSD-95/SAP90: homologous proteins in tight, septate and synaptic junctions. Mech. Dev. 1993;44:85-89.
    8. Rafael J. A., Hutchinson T. L., Lumeng C. N., et al. Localization of Dlg at the neuromuscular junction. NeuroReport. 1998;9:2121-2125.
    9. Kim E., Niethammer M., Rothschild A., et al. Clustering of Shaker-type k+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 1995;378: 85-88.
    10. Pawson T. SH2 and SH3 domain in signal transduction. Adv. Cancer Res. 1994;64: 87-110.
    11. Kim E. S., Naisbitt Y. P., Hseuh A., et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J. Biol. Chem. 1997;136:669-678.
    12. Satoh K., Yanal H., Senda T., et al. DAP-1, a novel protein that interacts with the guanylate kinase-like domains of hDLG and PSD-95. Genes Cells 1997;2:415-424.
    13. Takeuch M. Y., Hata K., Hirao A., et al. SAPAPs: a family of PSD-95/SAP90- associated proteins localized at postsynaptic density. J. Biol. Chem. 1997;272: 11943- 11951.
    14. Hanada T., Lin L., Tibaldi E. V., et al. GAKIN: a novel kinesin-like protein associates with the homologue of the Drosophila Discs Large tumor suppressor in T lymphocytes. J. Biol. Chem. 2000;275:28774-28784.
    15. Kamberov E., Makarova O., Roh M., et al. Molecular cloning and characterization of Pals, proteins associated with mLin-7. J. Biol. Chem. 2000;275:11425-11431.
    16. Doerks T., Bork P., Kamberov E., et al. L27, a novel heterodimerization domain in receptor targeting proteins Lin-2 and Lin-7. Trends Biochem. Sci. 2000;25:317-318.
    17. Gonzalez-Mariscal, L. Betanzos, A. and Avila-Flores, A. MAGUK proteins: structure and role in the junction. Cell &Dev. Bio. 2000;11:315-324.
    18. Tseng T-C., Marfatia S. M., Bryant P. J., et al. VAM-1: a new member of the MAGUK family binds to human Veli-1 through a conserved domain. Biochimicaet Biophysica Acta. 2001;1518: 249-259.
    19. Marfatia S. M., Lue R. A., Branton D.,et al. Chishti A. H. Identification of the protein 4.1 binding interface on glycophorin C and p55, a homologue of the Drosophila discs-large tumor suppressor protein. J. Biol. Chem. 1995;270: 715-719.
    20. Cohen A. R., Woods D. F., Marfatia S. M.,et al. Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelia cells. J. Cell Biol. 1998;142:129-138.
    21. Kamberov E., Makarova O., Roh M., et al. Molecular cloning and characterization of Pals, proteins associated with mLin-7. J. Biol. Chem. 2000;275:11425\11431.
    22. Cho K. O.,Hunt C. A. and Kennedy M. B. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discslarge tumor suppressor protein. Neuron 1992,9:929-942.
    23. Lledo P.M., Zhang X., Südhof T.C., et al. Postsynaptic membrane fusion and long-term potentiation. Science. 1998;279:399–403.
    24. Budnik V, Zhong Y, Wu C-F. Morphological plasticity of motor axon terminals in Drosophila mutants with altered excitability. J Neurosci. 1990;10:3754 –3768.
    25. Kornau H. C., Schenker L. T., Kennedy M. B.,et al. Domain interaction betweenNMDA receptor subunits and the postsynaptic density protein PSD-95. Science 1995,269:1737-1740.
    26. Niethammer M., Kim E. and Sheng M. Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J. Neurosci.1996, 16:2157-2163.
    27. Xu X. Z., Choudhury A., Li X.,et al. Coordination of an array of signaling proteins through homo- and heteromeric interactions between PDZ domains and target proteins. J. Cell Biol.1998, 142:545-555.
    28. Hillier B. J., Christopherson K. S., Prehoda K. E., et al. Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science 1999,284:812-815.
    29. Christopherson K. S., Hillier B. J., Lim W. A., et al. PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J. Biol. Chem.1999,274:27467-27473.
    30. Niethammer M., Valtschanoff J. G., Kapoor T. M., et al. CRIPT, a novel postsynaptic protein that binds to the third PDZ domain of PSD-95/SAP90. Neuron 1998,20: 693-707.
    31. Tsunoda S. and Zuker C. S. The organization of INAD-signaling complexes by a multivalent PDZ domain protein in Drosophila photoreceptor cells ensures sensitivity and speed of signaling. Cell Calcium 1999,26:165-171.
    32. Shieh B. H. and Zhu M. Y. Regulation of the TRP Ca2+ channel by INAD in Drosophila photoreceptors. Neuron 1996,16:991-998.
    33. Chevesich J., Kreuz A. J. and Montell C. Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron 1997,18:95-105.
    34. Tsunoda S., Sun Y., Suzuki E.,et al. Independent anchoring and assembly mechanisms of INAD signaling complexes in Drosophila photoreceptors. J. Neurosci.2001, 21:150-158.
    35. Huber A., Sander P., Gobert A., et al. The transient receptor potential protein (Trp), a putative storeoperated Ca2+ channel essential for phosphoinositide-mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. EMBO J.1996,15:7036-7045.
    36. Scott K. and Zuker C. S. Assembly of the Drosophila phototransduction cascade into a signalling complex shapes elementary responses. Nature 1995;395:805-808.
    37. Kornau H. C., Schenker L. T., Kennedy M. B., wt al.Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 1995;269:1737-1740.
    38. Brenman J. E., Chao D. S., Gee S. H., et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and a1-syntrophin mediated by PDZ domains. Cell 1996;84:757-767.
    39. Naisbitt S., Kim E., Tu J. C., et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 1999;23: 569-582.
    40. El-Husseini A. E., Schnell E., Chetkovich D. M., et al. PSD-95 involvement in maturation of excitatory synapses. Science 2000;290:1364-1368.
    41. Hall R. A., Ostedgaard L. S., Premont R. T., et al. A C-terminal motif found in the b2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc. Natl. Acad. Sci.USA 1998a, 95:8496-8501.
    42. Cao T. T., Deacon H. W., Reczek D., et al. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the b2-adrenergic receptor. Nature 1999, 401:286-290.
    43. Wang S., Yue H., Derin R. B., et al. Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity. Cell 2000, 103:169-179.
    44. Raghuram V., Mak D. D. and Fosket J. K. Regulation of cystic fibrosis transmembrane conductance regulator single-channel gating by bivalent PDZ-domain-mediated interaction. Proc. Natl. Acad. Sci. USA 2001, 98:1300-1305.
    45. Borg J. P., Straight S. W., Kaech S. M., et al. Identification of an evolutionarily conserved heterotrimeric protein complex involved in protein targeting. J. Biol. Chem.1998,273,31633-31636.
    46. Butz S., Okamoto M. and Südhof T. C. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell1998, 94, 773-782.
    47. Kaech S. M., Whitfield C. W., and Kim S. K. The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell 1998, 94: 761-771.
    48. Xu W., Harrison S.C., and Eck M.J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 1997,385:595-601.
    49. Hof P., Pluskey S., Dhe-Paganon S., et al. Crystal. structure of the tyrosine phosphatase SHP-2. Cell 1998, 92: 441-450.
    50. Tavares G.A., Panepucci E. H., and Brunger A.T. Structural characterization of the intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95.Mol. Cell 2001, 8: 1313-1325.
    51. McGee A.W., Dakoji S.R., Olsen O., et al. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. Mol. Cell 2001,8: 1291-1301.
    52. Nix S. L., Chishti A.H., Anderson J. M., et al. HhCASK and hDlg associate in epithelia, and their SH3 and guanylate kinase domains participate in both intramolecular and intermolecular interactions. J. Biol. Chem. 2000, 275: 41192-41200.
    53. Shin H., Hsueh Y.-P., Yang F.-C., et al. An intramolecular interaction between Src homology 3 domain and guanylate kinase-like domain required for channel clustering by postsynaptic density-95/SAP90. J. Neurosci. 2000, 20: 3580-3587.
    54. McGee, A.W., and Bredt, D.S. Identification of an intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. J. Biol. Chem. 1999. 274:17431-17436.
    55. Straight S. W., Karnak D., Borg J.-P., et al. mLin-7 is localized to the basolateral surface of renal epithelia via its NH2 terminus Am J Physiol Renal Physiol, March 1, 2000; 278(3): F464 - 475.
    56. Ide N., Hata Y., Nishioka H.,et al. Localization of membrane-associated guanylate kinase (MAGUK)-1/BAI-associated protein(BAP)-1 at tight junctions of epithelial cells. Oncogene 1999, 18: 7810-7815.
    57. Caruana G. and Bernstein A. Craniofacial dysmorphogensis including cleft palate in mice with an insertional mutation in the discs large gene. Mol. Cell. Bio. 2001, 21:1475-1483.
    58. Michael B.Y. MAGUK SH3 domains-swapped and stranded by their kinases? Structure 2002, 10:3-9.
    59. Ziff E.B. Enlightening the postsynaptic density. Neuron 1997,19: 1163-1174.
    60. Gisele A. T., Ezequlel H. P., and Axel T. B. Structural characterization of the intramolecular interaction between the SH3 and Guanylate kinase domains of PSD-95. Molecular Cell 2001, 8: 1313-1325.
    61. Scannevin R.H., and Huganir R.L. Postsynaptic organization and regulation of excitatory synapses. Nature Reviews 2000,1: 133-141.
    62. Sheng M., and Pak D.T.S. Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu. Rev. Physiol. 2000,62: 755-778.
    63. Tomita S., Nicoll R.A., and Bredt D.S. PDZ protein interactions regulating glutamate receptor function and plasticity. J. Cell Biol. 2001, 153: F19-F23.
    64. Garner C.C., Nash J and Huganir R.L.. PDZ domains in synapse assembly and signaling. Trends Cell Biol. 2000;10:274–280.
    65. Kistner U., Wenzel B.M., Veh R.W., et al. SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. J. Biol. Chem. 1993, 268: 4580-4583.
    66. Xia, J., Chung H.J., Wihler C.,et al. Cerebellar long-term depression requires PKC- regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron. 2000;28:499–510.
    67. Stathakis D.G.,Hoover K.B.,You Z.,et al. Human postsynaptic density-95(PSD-95): location of the gene (DLG4) and possible function in nonneural as well as neural tissues. Genomics 1997, 44: 71-82.
    68. Fanning A.S., and Anderson J.M. Protein modules as organizers of membrane structure. Curr. Opin. Cell Biol. 1999, 11: 432-439.
    69. Scannevin, R.H., and R.L. Huganir. 2000. Postsynaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci. 1:133–141.
    70. Woods D.F., Hough C., Peel D., et al. Dlg protein is required for junction structure, cellpolarity, and proliferation control in Drosophila epithelia. J. Cell Biol. 1996,134: 1469-1482.
    71. Pawson T., and Scott J.D. Signaling through scaffold, anchoring, and adaptor proteins. Science 1997,278: 2075-2080.
    72. Sicheri F., Moarefi I., and Kuriyan J. Crystal structure of the Src family tyrosine kinase Hck. Nature 1997,385:602-609.
    73. Garcia E.P., Mehta S., Blair L.A., et al. SAP90 binds and clusters kainite receptors causing incomplete desensitization. Neuron 1998,21:727-739.
    74. Kistner U., Garner C.C., and Linial M. Nucleotide binding by the synapse associated protein SAP90. FEBS Lett. 1995,359:159-163.
    75. Naisbitt S., Kim E., Weinberg R.J., et al. Characterization of guanylate kinase- associated protein, a postsynaptic density protein at excitatory synapses that interacts directly with postsynaptic density-95/synapse-associated protein 90. J. Neurosci. 1997, 17: 5687-6596.
    76. Takeuchi M., Hata Y., Hirao K., et al. SAPAPs a family of PSD-95/SAP90-associated roteins localized at postsynaptic density. J. Biol. Chem. 1997, 272: 11943-11951.
    77. Deguchi M., Hata Y., Takeuchi M., et al. BEGAIN(brain-enriched guanylate kinase-associated protein), a novel neuronal PSD-95/SAP90-binding protein. J. Biol. Chem. 1998,273:26269-26272.
    78. Pak D.T.S., Yang S., Rudolph-Correia S.,et al. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 2001,31: 289-303.
    79. Brenman J.E., Topinka J.R., Cooper E.C., et al. Localization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1A. J. Neurosci. 1998, 18: 8805-8813.
    80. Dodge K., and Scott J.D. AKAP79 and the evolution of the AKAP model. FEBS Lett. 2000,476: 58-61.
    81. Colledge M., Dean R.A., Scott G.K., et al. Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron 2000,27:107-119.
    82. Colledg M., and Scott J.D. AKAPs: from structure to function. Trends Cell Biol.1999,9:216-221.
    83. Hough C.D., Woods D.F., Park S., et al. Organizing a functional junctional complex requires specific domains of the Drosophila MAGUK discs large. Genes Dev. 1997,11: 3242-3253.
    84. Thomas U., Ebitsch S., Gorczyca M.,et al. Synaptic targeting and localization of Discs-large is a stepwise process controlled by different domains of the protein. Curr. Biol. 2000, 10: 1108-1117.
    85. Cohen A.R., Woods D.F., Marfatia S.M., et al. Human Cask/Lin2 binds syndecan-2 and protein4.1 and localizes to the basolateral membrane of epithelial cells. J. Cell Biol. 1998,142:129-138.
    86. Marfatia S.M., Lue R.A., Branton D., et al. In vitro binding studies suggest a membrane-associated complex between erythroid p55, protein4.1 and glycophorin C. J. Biol. Chem. 1994,269: 8631-8634.
    87. Masuko N., Makino K., Kuwahara H., et al. Interaction of NE-dlg/SAP102, a neuronal and endocrine tissue-specific membrane-associated guanylate kinase protein, with calmodulin and PSD-95/SAP90. J. Biol. Chem. 1999, 274: 5782-5790.
    88. McGee A.W., and Bredt D.S. Identification of an intramolecular interaction between the SH3 and guanylate kinaed domains of PSD-95. J. Biol. Chem. 1999, 274: 17431- 17436.
    89. Shin H., Hsueh Y.-P., Yang F.-C., et al. A intramolecular interaction between Src homology 3 domain and guanylate kinase- like domain require for channel clustering by postsynaptic density-95/SAP90. J. Neurosci. 2000,20: 3580-3587.
    90. Nix S.L., Chisti A.H., Anderson J.M., et al. HCASK and hDlg associate in epithelia, and their Src homology 3 and guanylate kinasee domains participated in both intramolecular and inermolcla Biol. Chem. 2000,275:41192-41200.
    91. Traweger A, Fuchs R, Krizbai IA, et al. The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclera ribonucleoprotein scaffold attachment factor-B. J Biol Chem 2003, 278: 2692-2700.
    92. Stevenson BR, Siliciano JD, Mooseker JD, et al. Identification of ZO-1: a ighmolecular weight polypeptide associated with the tight junction( zonula occludens) in a variety of epithelia. J Cell Biol 1986, 755-766.
    93. Howarth AG, Hughes MR, and Stevenson BR. Detection of the tight junction- associated protein ZO-1 in astrocytes and other nonepithelial cell types. Am J Physiol Cell Physiol 1992, 262: C461-C469.
    94. Itoh M, Nagafuchi A, Yonemura S, et al. The 220-kD protein colocalizing with cadherins in nonepithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol 1993, 121: 491-502.
    95. Willott E, Balda MS, Fanning AS, et al. The tight junction protein ZO-1 is homologous to the Drosophila discs-large tumor suppressor protein of septate junctions. Proc Natl Acad Sci USA 1993, 90: 7834-7838.
    96. Gumbiner B, Lowenkopf T, and Apatira D. Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci USA 1991, 88: 3460-3464.
    97. Giepmans BN and Moolenaar WH. The gap junction protein connexin43 interacts with the second PDZ domains of the zona occludens-1 protein. Curr Biol 1998, 8: 931-934.
    98. Wittchen ES, Haskins J, and Stevenson BR. Protein interactions at the tight junction. Actin has multiple binding partners and ZO-1 forms independent complex with ZO-2 and ZO-3. J Biol Chem 1999, 274: 35179-35185.
    99. Balda MS, Anderson JM, and Matter K. The SH3 domain of the tight junction protein ZO-1 binds to a serine protein kinase that phosphorylates a region C-terminal to this domain. FEBS Lett 1996, 399: 326-332.
    100. Balda MS, Garrett MD, and Matter K. The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol. 2003, 160: 423-432.
    101. Fanning AS, Jameson BJ, Jesaitis LA, et al. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 1998, 273: 29745-29753.
    102. Yamamoto T, Harada N, Kano K, et al. The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J Cell Biol1997, 139: 785-795.
    103. Cordenonsi M, D’Atri F, Hammar E, et al. Cingulin contains globular and coiled-coil domains and interacts with ZO-1,ZO-2,ZO-3 and myosin. J Cell Biol 1999, 147: 1569-1581.
    104. Bazzoni G, Martinez-Estrada OM, Orsenigo F, et al. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin and occluding. J Biol Chem 2000, 275: 20520-20526.
    105. Itoh M, Nagafuchi A, Moroi S, and Tsukita S. Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J Cell Biol 1997, 138: 181-192.
    106. Balda MS and Matter K. The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J 2000, 19: 2024-2033.
    107. Eveline E. S., and Robert D. L. The tight junction: a multifunctional complex. Am J. Physiol. Cell Physiol. 2004,286:1213-1228.
    108. Tomita S., Nicoll R.A., and Bredt D. PDZ protein interactions regulation glutamate receptor function and plasticity. The Journal of Cell Biology 2001,153:19-23.
    109. Lue R.A., Brandin E., Chan E.P., et al. Two independent domains of hDlg are sufficient for subcellular targeting: the PDZ1-2 conformational unit and an alternatively spliced domain. J Cell Biol 1996, 135: 1125-1137.
    110. Gaudet S., Branton D., and Lue R.A. Characterization of PDZ-binding kinase, a mitotic kinase. Proc. Natl. Acad. Sci. U.S.A. 2000,97: 5167-5172.
    111. Ishidate T., Matsumine A., Toyoshima K., and Akiyama T. The APC–hDLG complex negatively regulates cell cycle progression from the G0/G1 to S phase.Oncogene. 2000, 19: 365-372.
    112. Margaret M., Robert H., Dawna E., et al. The distribution and function of alternatively spliced insertions in hDlg. The Journal of Biological Chemistry 2002, pp.277(8): 6406-6412.
    113. Horvitz H. R. and Sulston J. E. Isolation and genetic characterization of cell lineage mutation of the nematode Caenorhabditis elegans. Genetics. 1980, 96: 435-454.
    114. Ferguson M. W. Craniofacial malformations: towards a molecular understanding. Development. 1988, 103(Supp.): 41-60.
    115. Kornfeld K. Vulval development in Caenorthabditis elegans. Trends Genet. 1997, 13: 55-61.
    116. Hoskins R., Hajnal A. F., Harp S. A., and Kim S. K. The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development. 1996, 122: 97-111.
    117. Simske J. S., Kaech S. M., Harp S. A., and Kim S. K. LET-23 receptor localization by the cell junction protein LIN-7 during C.elegans vulval induction. Cell 1996, 85: 195-204.
    118. Whitfield C.W., Benard C., Barnes T., et al. Basolateral localization of the Caenorhabditis elegans epidermal growth factor receptor epithelial cells by the PDZ protein LIN-10. Mol. Biol. Cell 1999, 10: 2087-2100.
    119. Schultz J., Hoffmüller U., Krause G., et al. Specific interactions between the syntrophin PDZ domain and voltage-gated sodium channels. Nat. Struct. Biol.1998a, 5:19-24.
    120. Borg J. P., Straight S. W., Kaech S. M., et al. Identification of an evolutionarily conserved heterotrimeric protein complex involved in protein targeting. J. Biol. Chem. 1998, 273: 31633-31636.
    121. Butz S., Okamoto M., and Sudhof T. C. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 1998, 94: 773-782.
    122. Perego C., Vanonl C., Villa A., et al. PDZ-mediated interactions retain the epithelial GABA transporter on the basolateral surface of polarized epithelial cells. EMBO J. 1999, 18: 2384-2393.
    123. Perego C., Vanoni C., Massari S., et al. Mammalian LIN-7 PDZ proteins associate with β-catenin at the cell-clee junctions of epithelial and neurons. EMBO. J. 2000, 19: 3978-3989.
    124. Reuver S. M. and Gamer C. C. E-cadherin mediated cell adhesion recruits SAP97 intothe cortical cytoskeleton. J. Cell Science. 1998, 111: 1071-1080.
    125. Sun D., Mcalmon K. R., Davies J.A., et al. Simultaneous loss of expression of syndecan-1 and E-cadherin in the embryonic palate during epithelial-mesenchymal transformation. Int. J. Dev. Biol. 1998, 42: 733-736.
    126. Wu H., Reuver S. M., Kuhlendahl S., et al. Subcellular targeting and cytoskeletal attachment of SAP97 to the epithelial lateral membrane. J. Cell Sci. 1998, 111: 2365-2376.
    127. Wu H., Reissner C., Kuhlendahl S., Coblentz B., et al. Intramolecular interactions regulate SAP97 binding to GKAP. EMBO J. 2000, 19: 5740-5751.
    128. Li, P., Kerchner G.A., Sala C., et al. AMPA receptor-PDZ interactions in facilitation of spinal sensory synapses. Nat. Neurosci.1999;2:972–977.
    129. Kim E., Niethammer M., Rothschild A., et al. Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature. 1995;378: 85-88.
    130. Marfatia S. M., Byron O., Campbell G., et al. Human homologue of the Drosophila discs large tumor suppressor protein forms an oligomer in solution. Identification of the self-association site. J. Biol. Chem.2000;275:13759-13770.
    131. Maximov A., Sudhof T. C., and Bezprozvanny I. Association of neuronal calcium channels with modular adaptor proteins. J.Biol. Chem.1999;274:24453-24456.
    132. Borrell-Pages M., Fernandez-Larrea J., Borroto A., et al. The carboxy-terminal cysteine of the tetraspanin L6 antigen is required for its interaction with SITAC, a novel PDZ protein. Mol. Biol. Cell 2000;12:4217-4225.
    133. Stricker N. L., Christopherson K. S., Yi B. A., et al. PDZ domain of neuronal nitric oxide synthase recognizes novel C-terminal peptide sequences. Nat. Biotechnol.1997; 15: 336-342.
    134. Fuh G., Pisabarro M. T., Li Y., et al. Analysis of PDZ domain-ligand interactions using carboxylterminal phage display. J. Biol. Chem 2000;275:21486-21491.
    135. Schneider S., Buchert M., Georgiev O., et al. Mutagenesis and selection of PDZ domains that bind new protein targets (see comments). Nat. Biotechnol.1999;17:170-175.
    136. Georgina C. Genetic studies define MAGUK proteins as regulators of epithelial cell poparity Int. J. Dev. Biol. 2002,46:511-518.
    137. Baruch Z. Harris and Wendell A. Lim. Mechanism and role of PDZ domains in signaling complex assembly. Signal Transduction and Cellular Organization. Journal of Cell Science 2001,114:3219-3231.
    138. Gisele A. T., Ezequlel H. P., and Axel T. B. Structural characterization of the intramolecular interaction between the SH3 and Guanylate kinase domains of PSD-95. Molecular Cell. 2001;8:1313-1325.
    139. McGee A.W., and Bredt D.S. Assembly and plasticity of the glutamatergic postsynaptic specialization. Current Opinion in Neurobiology. 2003;13:1-8.
    140. Itoh M, Furuse M, Morita K, et al. Direct binding of three tight junction-associated MAGUKs,ZO-1,ZO-2 and ZO-3,with the COOH termini of claudins. J Cell Biol. 1999;147:1351-1363.
    141. Hsueh Y.P., Wang, T.F., Yang, F.C., et al. Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature. 2000;404:298-302.
    142. Bredt D.S. Cell biology. Reeling CASK into the nucleus. Nature.2000;404(6775): 298-302.
    1. Fanning A.S., Lapierre L.A., Brecher A.R.,et al. Protein interactions in the tight junction: the role of MAGUK proteins in regulating tight junction organization and function. Curr. Top. Membr.1996;43:211–235.
    2. Cho K.O., Hunt,C.A. and Kennedy M.B. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron. 1992;9:929–942.
    3. Woods D.F., and Bryant P.J. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell. 1991;66: 451–464.
    4. Willott E., Balsa M.S., Fanning A.S.,et al. The tight junction protein ZO-1 is homologous to the Drosophila discs-large tumor suppressor protein of septate junctions. Proc. Natl. Acad. Sci. USA.1993;90:7834–7838.
    5. Doyle D.A., Lee A., Lewis J., et al. Crystal structures of a complexed and peptide-free membrane protein-binding domain: Molecular basis of peptide recognition by PDZ. Cell.1996;85:1067–1076.
    6. Cabral J.H.M., Petosa C., Sutcliffe M., et al. Crystal structure of a PDZ domain. Nature 1996;382:649-652.
    7. Kornau H.C., Schenker L.T., Kennedy M.B., et al. Domain interactions between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science.1995; 269:1737–1740.
    8. Niethammer M., Kim E. and Sheng M. Interaction between the C-terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J. Neurosci. 1996;16:2157–2163.
    9. Hata Y., Butz S., and Sudhof T. C. CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J. Neurosci. 1996;16:2488–2494.
    10. Marfatia S.M., Lue R.A., Branton D., et al. Identification of the protein 4.1 binding interface on glycophorin C and p55, a homologue of the Drosophila discs-large tumor suppressor protein. J. Biol. Chem. 1995;270: 715–719.
    11. Brenman J.E., Chao D.S., Gee S.H., et al. Interaction of nitric oxide synthase with the synaptic density protein PSD-95 and alpha-1 syntrophin mediated by PDZ- motifs. Cell. 1996;84:757-767.
    12. Lahey T, Gorczyca M, Jia XX, et al. The Drosophila tumor suppressor gene dlg is required for normal synaptic bouton structure. Neuron. 1994;13:823– 835.
    13. Guan B., and Gertner G.Z. An Artificial Neural Network with Partitionable Outputs. Computers and Electronics in Agriculture. 1996;16:39-46.
    14. Hoskins R, Hajinal AF, Harp SA, et al. The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development. 1996;122:97–111.
    15. Kim E., Niethammer M., Rothschild A., et al Clustering of Shaker-type K1 channels by direct interaction with the PSD-95/ SAP90 family of membrane-associated guanylate kinases. Nature. 1995;378:85–88.
    16. Brenman J.E., Chao D.S., Gee S.H., et al. Interaction of nitric oxide Synthase with the postsynaptic density protein PSD95 and a1-syntrophin mediated by PDZ domains. Cell. 1996a;84:757–767.
    17. Brenman J.E., Christopherson K.S., Craven S.E., et al. Cloning and characterization of postsynaptic density 93, a nitric oxide synthase interacting protein. J. Neurosci. 1996b;16:7407–7415.
    18. Matsumine A., Ogai A., Senda T., et al. Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science.1996; 272:1020–1023.
    19. Marfatia S.M., Morais-Cabral J.H., A.C. Kim, O. Byron, and A.H. Chishti. The PDZ domain of human erythrocyte p55 mediates its binding to the cytoplasmic carboxyl terminus of glycophorin C. J. Biol. Chem. 1997;272:24191– 24197.
    20. Marfatia S.M., Lue R.A., Branton D.,et al. In vitro binding studies suggest a membrane-associated complex between erythroid p55, protein 4.1, and glycophorin C. J. Biol. Chem. 1994; 269:8631–8634.
    21. Lue R. A., Marfatia S. M., Branton D., et al. Cloning and characterization of hdlg: the human homologue of the Drosophila discs large tumor suppressor binds to protein 4.1. Proc. Natl. Acad. Sci. USA. 1994; 91:9818– 9822.
    22. Balda M.S., Anderson J.M., and Matter K. The SH3 domain of the tight junctionprotein ZO-1 binds to a serine protein kinase that phosphorylates a region COOH-terminal to this domain. FEBS Lett. 1996;399:326–332.
    23. Itoh M., Nagafuchi A., Moroi S., et al. Involvement of ZO-1 in cadherin-based adhesion through its direct binding to (catenin and actin filaments. J. Cell Biol. 1997;138:181–192.
    24. Hoskins, R., Hajnal A.F., Harp S.A., et al. The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development. 1995;122:97–111.
    25. Ferguson, E.L., and Horvitz H.R. Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics. 1985;110:17–72.
    26. Aroia, R.V., Koga M., Mendel J.E.,et al. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature. 1990;348:693–699.
    27. Simske, J. S., Kaech S. M., Harp S. A., et al. LET-23 receptor localization by the cell junction protein LIN-7 during C. elegans vulval induction. Cell.1996; 85: 195–204.
    28. Puschel, A.W., and Betz. H. Neurexins are differentially expressed in the embryonic nervous system of mice. J. Neurosci. 1995;15:2849–2856.
    29. Borg, J. P., Straight S. W., Kaech S. M., et al. Identification of an evolutionarily conserved heterotrimeric protein complex involved in protein targeting. J. Biol. Chem.1998; 273:31633–31636.
    30. Butz S, Okamoto M, Su¨dhof TC. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell. 1998; 94:773–782.
    31. Kaech, S. M., Whitfield C. W., and Kim S. K.. The LIN-2/LIN-7/ LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell. 1998;94:761–771.
    32. Cohen AR, Woods DF, Marfatian SM, et al. Human Cask/Lin-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J Cell Biol.1998; 142:129 –138.
    33. Martinez-Estrada, O. M., Villa A., Breviario F., et al. Association of junctional adhesion molecule with calcium/ calmodulin- dependent serine protein kinase(CASK/LIN-2) in human epithelial caco-2 cells. J. Biol. Chem.2001; 276:9291–9296.
    34. Dimitratos SD, Woods DF, Bryant PJ. Camguk, lin-2 and CASK: novel membrane associated guanylate kinase homologs that also contain CaM kinase domains. Mech Dev. 1997;63:127–130.
    35. Ushkaryov YA, Petrenko AG, Geppert M, et al. Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science. 1992;257:50 –56.
    36. Davletov B.A., Krasnoperov V., Hata Y., et al. High affinity binding of α-latrotoxin to recombinant neurexin Ⅰ α. The Journal of Biological Chemistry. 1995; 270(41): pp. 23903-23905.
    37. Hata Y., Davletov B., Petrenko A.G., et al. Interaction of synaptotagmin with the cytoplasmic domains of neurexins. Neuron. 1993;10(2):307-315.
    38. Ichtchenko K., Hata Y., Nguyen T., et al. Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell. 1995;81(3): 435-443.
    39. Hsueh Y-P, Yang F-C, Kharazia V, et al. Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses. J Cell Biol. 1998;142:139 –151.
    40. Missler M, Fernandez-Chacon R, Sudhof TC. The making of neurexins. J Neurochem. 1998;71:1339 –1347.
    41. Carey D. Syndecans: multifunctional cell-surface co-receptors. Biochem J. 1997; 327:1–16.
    42. Woods A., and Couchman J.R. Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol Biol Cell. 1994;5(2):183–192.
    43. Tsukita, S., and Yonemura S. ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr. Opin. Cell. Biol. 1997;9:70–75.
    44. Hsueh, Y. P., and Sheng M. Requirement of N-terminal cysteines of PSD-95 for PSD-95 multimerization and ternary complex formation, but not for binding to potassium channel Kv1.4. J. Biol. Chem.1999;274:532– 536.
    45. Tabuchi K., Biederer T., Butz S., et al. CASK participates in alternative tripartite complex in which Mint 1 competes for binding with Caskin 1, a novel CASK-bindig protein. The Journal of Neuroscience. 2002;22(11): 4264-4273.
    46. Lee S., Fan S., Makarova O., et al. A novel and conserved protein-protein interaction domain of mammalian Lin-2/CASK binds and recruits SAP97 to the lateral surface of epithelia. Molceular and Cellular Biology. 2002; pp:1778-1791.
    47. Doerks T., P. Bork, E. Kamberov, O. et al. L27, a novel heterodimerization domain in receptor targeting proteins Lin-2 and Lin-7. Trends Biochem. Sci. 2000;25:317–318.
    48. Straight S.W., Chen L., Karnak D., et al. Interaction with mLin-7 alters the targeting of endocytosed transmembrane proteins in mammalian epithelial cells. Mol. Biol. Cell. 2001;12:1329–1340.
    49. Perego, C., Vanoni C., Villa A., et al. PDZ-mediated interactions retain the epithelial GABA transporter on the basolateral surface of polarized epithelial cells. EMBO J. 1999;18:2384–2393.
    50. Straight S.W., Karnak D., Borg J. P., et al. mLin-7 is localized to the basolateral surface of renal epithelia via its NH(2) terminus. Am. J. Physiol. 2000;278:F464–F475.
    51. Hsueh Y.-P., Wang T.-F., Yang F.-C., Sheng M. Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature. 2000;404:298-302.
    52. Hsueh, Y. P., Kim E., and Sheng.M. Disulfide-linked head-to-head multimerization in the mechanism of ion channel clustering by PSD-95. Neuron.1997; 18:803–814.
    53. Bredt D.S. Cell biology. Reeling CASK into the nucleus. Nature.2000;404(6775): 298-302.
    54. Bulfone A., Wang F., Hevner R., et al. An olfactory sensory map develops in the absence of normal projection neurons or GABAergic interactions. Neuron.1998;21: 1273-12382.
    55. Kispert A., Koschorz B., and Herrmann B.G.. The T protein ecoded by Brachyury is a tissue-specific transcription factor. The EMBO Journal.1995;14:pp4763-4772.
    56. D’Arcangelo G., Miao G.G., Chen S.-C., et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature.1995;374:719-723.
    57. Nusse R. A versatile transcriptional effector of Wingless signaling. Cell.1997;89(3): 321-323.
    58. Ringstedt T., Linnarsson S., Wagner J., et al. BDNF regulates reelin expression and cajal-retzius cell development in the cerebral cortex. Neuron.1998;21: 305-315.
    59. Haass C., and De Strooper B. The presenilins in Alzheimer’s disease-proteolysis holds the key. Science. 1999;286:916-919.
    60. Borg J. P., Lopez-Figueroa M. O., M. de Taddeo-Borg, D. E. Kroon, R. S. Turner, S. J. Watson, and B. Margolis. Molecular analysis of the X11-mLin-2/CASK complex in brain. J. Neurosci. 1999;19:1307–1316.
    61. Kim E.,S. Naisbitt Y. Hsueh A. et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J. Cell Biol. 1997;136:669–678.
    1 Murre C., McCaw P.S., Baltimore D., A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins, Cell. 1989; 56: 777–783.
    2 Yokota Y., Id and development, Oncogene. 2001;20:8290–8298.
    3 Massari M.E.,and Murre C., Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms, Mol. Cell. Biol. 2000;20: 429–440.
    4 Campuzano S., Emc, a negative HLH regulator with multiple functions in Drosophila development, Oncogene. 2001;20:299–307.
    5 Atchley W.R., Fitch W.M., A natural classification of the basic helix-loop-helix class of transcription factors, Proc. Natl. Acad. Sci. USA. 1997;94:5172–5176.
    6 Andres-Barquin P.J., Hernandez M.C. Id genes in nervous system development, Histol. Histopathol. 2000;15:603– 618.
    7 Benezra R., Rafii S., Lyden D., The Id proteins and angiogenesis, Oncogene. 2001;20: 8334–8341.
    8 Benezra R. The Id proteins: targets for inhibiting tumor cells and their blood supply, Biochim. Biophys. Acta. 2001;1551: 39–47.
    9 Engel I., Murre C. The function of E- and Id proteins in lymphocyte development, Nat. Rev. Immunol. 2001;1:193–199.
    10 Benezra R. Role of Id proteins in eye and tumor angiogenesis, Trends Cardiovasc. Med. 2001;11:232–241.
    11 Jen Y., Manova,K.,Benezra R. Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis, Dev. Dyn. 1996;207:235–252.
    12 Lyden D., Young A.Z., Zagzag, et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts, Nature. 1999;401:670–677.
    13 Norton J.D., Deed R.W., Craggs G., et al. Id helix-loop-helix proteins in cell growth and differentiation, Trends Cell. Biol. 1998;8:58–65.
    14 Norton J.D. ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis, J. Cell Sci. 2000;22:3897–3905.
    15 Rivera R., Murre C., The regulation and function of the Id proteins in lymphocyte development, Oncogene.2001;20:8308–8316.
    16 Zebedee Z., Hara E., Id proteins in cell cycle control and cellular senescence, Oncogene.2002;20: 8317–8325.
    17 Yokota Y., Mori S., Role of Id family proteins in growth control, J. Cell Physiol. 2002;190:21–28.
    18 Wice B.M., Gordon J.I. Forced expression of Id-1 in the adult mouse small intestinal epithelium is associated with development of adenomas, J. Biol. Chem.1998;273: 25310-25319.
    19 Ehrussi A., Church G.M., Tonegawa S., et al. B lineage— specific interactions of an immunoglobulin enhancer with cellular factors in vivo, Science.1985;227:134–140.
    20 Benezra R., Davis R.L., Lockshon D., D.L. Turner, H. Weintraub, The protein Id: a negative regulator of helix-loop-helix DNA binding proteins, Cell.1990;60:49–59.
    21 Ellis H.M., Spann D.R., Posakony J.W., extramacrochaetae, a negative regulator of sensory organ development in Drosophila, defines a new class of helix-loop-helix proteins, Cell.1990;60:27–38.
    22 Israel M.A., Hernandez M.C., Florio M., et al. Id gene expression as a key mediator of tumor cell biology, Cancer Res. 1999;59:1726S–1730S.
    23 Lasorella A., Uo T., Iavarone A. Id proteins at the cross-road of development and cancer, Oncogene. 2001;20:8326–8333.
    24 Berben, G., Legrain M., Gilliquet V., et al. The yeast regulatory gene PHO4 encodes a helix-loop-helix motif. Yeast.1990;6:451–454.
    25 Hoshizaki, D., Hill J., and Henry S.. The Saccharomyces cerevisiae INO4 gene encodes a small, highly basic protein required for derepression of phospholipid biosynthetic enzymes. J. Biol. Chem. 1990;265:3320–3328.
    26 Nikoloff, D., McGraw P., and Henry S.. The INO2 gene of Saccharomyces cerevisiae encodes a helix-loop-helix protein that is required for activation of phospholipid synthesis. Nucleic Acids Res.1992;20:3253.
    27 Bain, G., Maandag E., Izon D., et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell.1994;79: 885–892.
    28 Lee J. E., Hollenberg S. M., Snider L., D.,et al. Conversion of Xenopus ectoderm into neurons by neuroD, a basic helix-loop-helix protein. Science.1995;268:836–844.
    29 Porcher C., Swat W., Rockwell K., et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell.1996;86:47–57.
    30 Zhuang Y., Soriano P., and Weintraub H.. The helix-loop-helix gene E2A is required for B cell formation. Cell.1994;79:875–884.
    31 Nelsen B., and R. Sen. Regulation of immunoglobulin gene transcription. Int. Rev. Cytol. 1992;133:121–149.
    32 Staudt L., and Lenardo M.. Immunoglobulin gene transcription. Annu. Rev. Immunol. 1991;9:373–398.
    33 Ephrussi, A., Church G. M., Tonegawa S., et al. B-lineagespecific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science.1985;227:134–140.
    34 Nelsen, B., Tian G., Erman B., et al. Regulation of the lymphoid-specific immunoglobulin mu heavy chain gene enhancer by the ETS-domain proteins. Science.1993;261:82–86.
    35 O’Riordan M., and Grosschedl R.. EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Immunity.1997;7:25–36.
    36 Buskin J. N., and Hauschka S. D.. Identification of a myocyte nuclear factor which binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol. Cell. Biol.1989;9:2627–2640.
    37 Gossett, L., Kelvin D., Sternberg E.,et al. A new myocytespecific enhancer binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol. Cell. Biol. 1989;9:5022–5033.
    38 Lassar, A. B., Buskin J. N., Lockshon D., et al. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell.1989;58:823–831.
    39 Whelan J., Cordle S. R., Henderson E., et al. Identification of a pancreatic b-cell insulin gene transcription factor that binds to and appears to activate cell-type-specific gene expression: its possible relationship to other cellular factors that bind to a common insulin gene sequence. Mol. Cell. Biol.1990;10:1564–1572.
    40 Ahmad, Mash-1I. is expressed during ROD photoreceptor differentiation and binds anE-box, E opsin-1 in the rat opsin gene. Brain Res. Dev. Brain Res. 1995;90:184–189.
    41 Bessis A., Salmon A., Zoli M., et al. Promoter elements conferring neuron-specific expression of the beta 2-subunit of the neuronal nicotinic acetylcholine receptor studied in vitro and in transgenic mice. Neuroscience.1995;69:807–819.
    42 Grant A., Jones A., Thomas K., et al. Characterization of the rat hippocalcin gene: the
    59 flanking region directs expression to the hippocampus. Neuroscience.1996; 75: 1099–1115.
    43 Pepitoni, S., Wood I., and N. Buckley. Structure of the m1 muscarinic acetylcholine receptor gene and its promoter. J. Biol. Chem. 1997;272:17112–17117.
    44 Henthorn, P., Kiledjian M., and Kadesch T.. Two distinct transcription factors that bind the immunoglobulin enhancer mE5/ kE2 motif. Science.1990; 247:467–470.
    45 Sun, X.-H., and D. Baltimore. An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell.1991; 64:459–470.
    46 Ferre-D’Amare, A., Prendergast G., E. Ziff, and S. Burley. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature.1993;363:38–45.
    47 Ellenberger, T., Fass D., Arnaud M., et al. Crystal structure of transcription factor E47: E-box recognition by a basic region helixloop- helix dimer. Genes Dev.1994; 8:970–980.
    48 Murre C, Bain G., v. Dijk M. A.,et al. Structure and function of helix-loop-helix proteins. Biochim. Biophys. Acta.1994;1218:129–135.
    49 Murre, C., Mccaw P. S., Vaessin H.,et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell.1989;58:537–544.
    50 Henthorn, P., Stewart C., Kadesch T., et al. The gene encoding human TFE3, a transcription factor that binds the immunoglobulin heavy-chain enhancer, maps to xp11;22. Genomics.1991;11:374–378.
    51 Zhao, Q., Zhou X., and Mattei,et al. TFEC, a basic helix-loop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation. Mol. Cell. Biol. 1993;13:4505–4512.
    52 Ayer D., Kretzner L., and Eisenman R.. Mad: a heterodimeric partner for Max thatantagonizes Myc transcriptional activity. Cell.1993;72:211–222.
    53 Blackwood, E. M., and Eisenman R. N.. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science.1991; 251:1211–1217.
    54 Zervos, A., Gyuris J., and Brent.,et al. Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell.1994;79:388–398.
    55 Ellis, H. M., Spann D. R., and Posakony J. W.. Extramacrochaetae, a negative regulator of sensory organ development in Drosophila, defines a new class of helix-loop-helix proteins. Cell.1990; 61:27–38.
    56 Garrell, J., and Modolel J.. The Drosophila extramacrochaetae locus, an antagonist of proneural genes that like these genes, encodes a helixloop- helix protein. Cell.1990; 61:39–48.
    57 Klambt, C., Knust E., Tietze K., et al. Closely related transcripts encoded by the neurogenic gene complex enhancer of split of Drosophila melanogaster. EMBO J. 1989;8:203–210.
    58 Rushlow, C. A., Hogan A., Pinchin S. M., et al. The Drosophila hairy protein acts in both segmentation and bristle patterning and shows homology to N-myc. EMBO J. 1989;8:3095–3103.
    59 Crews S. Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev. 1998;12:607–620.
    60 Jan Y.N. and Jan, L.Y. HLH protein, fly neurogenesis and vertebrate myogenesis. Cell.1993;75:827-830.
    61 Weintraub H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell. 1993;75(7):1241–1244.
    62 EN Olson and Klein WH. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out Genes Dev. 1994;8: 1-8.
    63 Davis RL, Cheng PF, Lassar AB, et al. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell. 1990; 60(5):733–746.
    64 Ellenberger T, Fass D, Arnaud M et al. Crystal structure of transcription factor E47:E-box recognition by a basic region Helix-loop-Helix dimmer. Genes Dev. 1994; 8:970-980.
    65 Ma PC, RouldMA,Weintraub H and Pabo CO. Crystal Structure of MyoD bHLH Domain Bound to DNA: New Perspectives on DNA Recognition and Transcriptional Activation. Cell.1994;77:451-459.
    66 Henthorn P, Kiledjian M and Kadesch T. Two distinct transcription factors that bind the immunoglobulin enhancer microE5/kappa 2 motif. Science.1990;247:467-470.
    67 Zhang Y, Babin J, Feldhaus AL, et al. HTF4: a new human helix-loop-helix protein. Nucl. Acids Res.1991;19: 4555-4561.
    68 Hu JS, Olson EN and Kingston RE. HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol. Cell. Biol.1992;12:1031-1042.
    69 Skerjanc IS, Truong J, Filion P,et al. A Splice Variant of the ITF-2 Transcript Encodes a Transcription Factor That Inhibits MyoD Activity. J. Biol. Chem.1996;270: 24818-24825.
    70 Lassar A. B., Davis R. L., Wright W. E.,et al. Functional activity of myogenic HLH proteins requires heterooligomerization with E12/E47-like proteins in vivo. Cell.1991; 66:305-315.
    71 Shen CP and Kadesch T. B-cell-specific DNA binding by an E47 homodimer. Mol. Cell. Biol.1995;15:4518-4524.
    72 Ephrussi, A., Church, G. M., Tonegawa, S. et al. B lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science.1985;227:134–140.
    73 Kiledjian M, Su LK and Kadesch T. Identification and characterization of two functional domains within the murine. heavy-chain enhancer. Mol. Cell. Biol.1988; 8:145-152.
    74 Lassar AB, Buskin JN, Lockshon D, et al. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell. 1989; 58(5):823–831.
    75 Klambt C, Knust E, Tietze K,et al. Closely related transcripts encoded by the neurogenic gene complex enhancer of split of Drosophila melanogaster. EMBO J. 1989;8:203-210.
    76 Tietze K, Oellers N and Knust E. Enhancer of split D , a dominant mutation of Drosophila, and its use in the study of functional domains of a helix-loop-helix protein.Proc. Natl. Acad Sci. USA.1992;89: 203-210.
    77 Narumi O, Mori S, Boku S, Tsuji Y, Hashimoto N, Nishikawa, S and Yokota Y. OUT, a Novel Basic Helix-Loop-Helix Transcription Factor with an Id-like Inhibitory Activity. J. Biol. Chem. 2000;275:3510-3521.
    78 Christy BA, Sanders LK, Lau LF, Copeland NG, Jenkins NA, Nathans D. An Id-related helix-loop-helix protein encoded by a growth factor-inducible gene. Proc Natl Acad Sci U S A. 1991;88(5):1815–1819.
    79 Sun XH, Copeland NG, Jenkins NA, Baltimore D. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol. 1991; 11(11):5603–5611.
    80 Biggs J, Murphy EV, Israel MA. A human Id-like helix-loop-helix protein expressed during early development. Proc Natl Acad Sci U S A.1992;89(4):1512–1516.
    81 Ellmeier, W., Aguzzi, A., Kleiner, E., Kurzbauer, R. & Weith, A. Mutually exclusive expression of a helix-loop-helix gene and N-myc in human neuroblastomas and in normal development. Embo J. 1992;11:2563?2571.
    82 Deed R W, Bianchi S M, Atherton G T, Johnston D, Santibanez-Akaref M, Murphy J J, Norton J D. An immediate early gene encodes an Id-like helix-loop-helix protein and is regulated by protein kinase C activation in diverse cell types. Oncogene. 1993;8: 599–607.
    83 Hara E, Yamaguchi T, Nojima H, Ide T, Campisi J, Okayama H, Oda K. Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J Biol Chem 1994, 269:2139–2145.
    84 Riechmann V, Van Cruchten I and Sablitzky F. Nucl. Acids Res.1994;22:749-755.
    85 Pagliuca A, Cannada P, Bartori C, et al. Molecular cloning of Id4, a novel dominant- negative helix-loop-helix human gene on chromosome 6p21.3-p22.Genomics. 1995;27: 200-203.
    86 Hara E, Kato T, Nakada S, et al. Subtractive cDNA cloning using oligo(dT)30-latex and PCR: isolation of cDNA clones specific to undifferentiated human embryonal carcinoma cells. Nucl. Acids Res.1991a;19:7097-7104.
    87 Kreider B, Benezra R, Rovera G ,et al. Inhibition of myeloid differentiation by the helix-loop-helix protein Id. Science.1992;255:1700-1702.
    88 Einarson MB and Chao MV. Regulation of Id1 and its association with basic helix-loop-helix proteins during nerve growth factor-induced differentiation of PC12 cells. Mol. Cell. Biol.1995;15(8): 4175-4183.
    89 Sun XH. Constitutive expression of the Id1 gene impairs mouse B cell development. Cell.1994;79: 893-900.
    90 Jen Y., Weintraub, H. and Benezra, R. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev. 1992;6: 1466-1479.
    91 Shoji W, Yamamoto T and Obinata M. The helix-loop-helix protein Id inhibits differentiation of murine erythroleukemia cells. J Biol Chem.1994;269:5078–5084.
    92 Lister J, Forrester WC and Baron MH. Inhibition of an erythroid differentiation switch by the helix-loop-helix protein Id1. J. Biol. Chem.1995; 270:17939-17946.
    93 Desprez PY, Hara E, Bissell MJ ,et al. Suppression of mammary epithelial cell differentiation by the helix-loophelix protein, Id-1. Molecular and Cellular Biology. 1995;15:3398- 3404.
    94 Desprez PY, Lin CQ, Thomasset N, et al. A novel pathway for mammary epithelial cell invasion induced by the helix-loop-helix protein Id-1. Molecular and Cellular Biology. 1998;18: 4577-4588.
    95 Barone M V, Pepperkok R, Peverali A, et al. Id proteins control growth induction in mammalian cells.Proc Natl Acad Sci U S A. 1994; 24; 91(11): 4985–4988.
    96 Hara E., Hall M., Peters, G.. Cdk2-dependent phosphorylation of Id2 modulates activity of E2A-related transcription factors. EMBO J. 1997;16: 332-342.
    97 Deed R W, Hara E, Atherton G T, et al. Regulation of Id3 cell cycle function by Cdk-2-dependent phosphorylation. Mol Cell Biol. 1997;17:6815–6821.
    98 Bounpheng MA, Dimas JJ, Dodds SG, et al. Degredation of Id proteins by the ubiquitin-proteasome pathway. The FASEB Journal.1999;13:2257-2264.
    99 Weinberg R.A. The retinoblastoma protein and cell cycle control. Cell.1995;81: 323-330.
    100 Mulligan G and Jacks T. The retinoblastoma gene family: cousins with overlapping interests. Trends Genet.1998;14:223-229.
    101 Vooijs M, and Berns A.Developmental defects and tumor predisposition in Rb mutantmice. Oncogene.1999;18:5293-5303.
    102 Sherr CJ. G1 phase progression: cycling on cue. Cell. 1994;79:551-555.
    103 Sherr CJ. Cancer cell cycles. Science. 1996;274:1672-1677.
    104 Sherr CJ and Roberts JM. CDK inhibitors: positive and negative regulators of G1 phase progression. Genes Dev.1999;13:1501-1512.
    105 Harbour JW, Luo RX, Dei Santi A., et al. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 1999;98: 859-869.
    106 Sugimoto M, Nakamura T, Ohtani N,et al. Regulation of CDK4 activity by a novel CDK4 binding protein, p34SEI-1. Genes Dev.1999;13:3027-3033.
    107 Serrano M, Hannon GJ and Beach D. A new regulatory motif. in cell-cycle control causing specific inhibition of cyclin D/. CDK4. Nature.1993;366:704-707.
    108 Ruas M and Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta, 1998;1378:115-177.
    109 Iavarone A, Grag P, Lasorella A,et al. The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev.1994;8: 1270-1284.
    110 Lasorella A, Iavarone A and Israel MA. Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins. Mol. Cell. Biol.1996;16:2570-2578.
    111 Gaubatz S, Lindeman GL, Ishida S, et al. E2F4 and E2F5 play an essential role in pocket protein-medited G1 control. Mol. Cell.2000; 6:729-735.
    112 Hansen K, Farkas T, and Lukas J, et al. Phosphorylation-dependent and -independent functions of p130 cooperate to evoke a sustained G1 block. EMBO J. 2001; 20: 422-432.
    113 Bruce JL, Hurford RK Jr, Classon M, et al. Requirements for cell cycle arrest by p16INK4a. Mol Cell. 2000;6(3): 737-42.
    114 Nevins, JR..Toward an understanding of the functional complexity of the E2F and Retinoblastoma families. Cell Growth and Differentiation.1998; 9: 585–593.
    115 Harbour JW and Dean DC. The Rb/E2F Pathway: Emerging paradigms and expanding roles. Genes Dev. 2000;14: 2393-2409.
    116 Humbert PO, Verona R, Trimarchi JM, et al. E2f3 is critical for normal cellular proliferation. Genes Dev. 2000;14: 690-703.
    117 Lasorella, A., Noseda, M., Beyna, M., et al. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature .2000;407:592-598.
    118 Peverali FA, Ramqvist T, Sa.rich R, et al. Regulation of G1 progression by E2A and Id helix–loop–helix proteins. EMBO J., 1994; 13: 4291-4301.
    119 Prabhu, S., Ignatova, A., Park, S. T. ,et al. Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A and Id proteins. Mol. Cell Biol. 1997;17: 5888-5896.
    120 Halevy O, Novitch BG, Spicer DB, et al. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science.1995; 267:1018-1021.
    121 Parker SB, Eichele G, Zhang P, et al. p53-Independent Expression of p21Cip1 in Muscle and Other Terminally Differentiating Cells. Science, 1995;267:1024-1027.
    122 Chu, C., Kohtz, D. S. Identification of the E2A Gene Products as Regulatory Targets of the G1 Cyclin-dependent Kinases. J. Biol. Chem. 2001;276: 8524-8534.
    123 Zhang JM, Zhao X, Wei Q ,et al. Coupling of the cell cycle and myogenesis through the cyclin D1-dependent interaction of MyoD with cdk4. EMBO J., 1999;18: 6983- 6993.
    124 Yates PR, Atherton GT, Deed RW, et al. Id helix-loop-helix proteins inhibit nucleoprotein complex formation by the TCF-ETS domain transcription factors. EMBO J., 1999;18: 968 -976.
    125 Tournay O and Benezra R. Tournay and R Benezra. Transcription of the dominant-negative helix-loop-helix protein Id1 is regulated by a protein complex containing the immediate-early response gene Egr-1 Mol. Cell. Biol. 1996;16: 2418-2430.
    126 Ohtani N, Zebedee Z, Huot TJ, et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature .2001;409: 1067-1070.
    127 Campisi J, Dimri GP, Hara E. Control of replicative senescence. In: Handbook of the Biology of Aging. Schneider E, Rowe J, eds. Academic Press, New York, 1994;pp: 121-149.
    128 Sherr CJ and DePinho RA. Cellular senescence: mitotic clock or culture shock? Cell, 2000;102: 407-410.
    129 Tang, J., Gordon, G. M., Nickoloff, B. J.,et al. The helix-loop-helix protein id-1 delaysonset of replicative senescence in human endothelial cells. Lab Invest. 2002;82: 1073- 1079.
    130 Mathon NF, Malcolm DS, Harrisingh MC, et al. UVB-induced activation of transcription factor NF-kB and replicative senescence in normal rodent glia. Science, 2001;291: 872-875.
    131 Shay JW and Wright WE. Hayflick, his limit, and cellular ageing. Nature Rev. Mol. Cell Biol.2000; 1: 72-76.
    132 Artandi SE, DePinho RA "Mice without telomerase: what can they teach us about human cancer?" Nat Med. 2000; 6: 8: 852-5.
    133 Wright WE and Shay JW. Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nature Med. 2000; 6: 849-951.
    134 Lundberg AS, Hahn WC, Gupta P and Weinberg RA. Genes involved in senescence and immortalization. Curr. Opin. Cell Biol. 2000; 12: 705-709.
    135 Carnero A, Hudson JD, Price CM, et al. P16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol. 2000; 2:148-55.
    136 Hara E, Smith R, Parry D, et al. Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol. 1996a;16(3): 859-867.
    137 Alcorta DA, Xiong Y, Phelps D, et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA.1996;93:13742-47.
    138 Loughran, O., Malliri, A., Owens, D., et al. Association of CDKN2A/p16INK4a with human head and neck keratinocyte replicative senescence: relationship of dysfunction to immortality and neoplasia. Oncogene. 1996;13: 561-568.
    139 Reznikoff CA, Yeager TR, Belair CD, et al. Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells. Cancer Res. 1996;56: 2886-2890.
    140 McConnell BB, Starborg M, Brookes S, et al. Inhibition of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr Biol. 1998; 8 : 351-354.
    141 Kato D, Miyazawa K, Ruas M, et al. Features of replicative senescence induced by direct addition of antennapedia-p16 INK4A fusion protein to human diploid fibroblasts. FEBS Lett, 1998;427 : 203- 208.
    142 Palmero I, McConnell B, Parry D, et al. Accumulation of p16INK4a in mouse fibroblasts as a function of replicative senescence and not of retinoblastoma gene status. Oncogene 1997; 15:495-503.
    143 Zindy F, Quelle DE, Roussel MF, et al. Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene. 1997; 15:203-211.
    144 Serrano M, Lin AW, McCurrach ME, et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell.1997; 88: 593-602.
    145 Shay, J. W., Pereira-Smith, O. M. and Wright, W. E. A role for both Rb and p53 in the regulation of human cellular senescence. Exp. Cell Res. 1991;196: 33-39.
    146 Hara E, Tsurui H, Shinozaki A, et al. Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1. Biochem. Biophys. Res. Commun. 1991b;179: 528 -534.
    147 Sage J, Mulligan GJ, Attardi LD, et al. "Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization." Genes Dev. 2000; 14: 23: 3037-50.
    148 Dannenberg, J. H., van Rossum, A., Schuijff, L. ,et al. Ablation of the retinoblastoma gene family deregulates G1 control causing immortalization and increased cell turnover under growthrestricting conditions. Genes Dev. 2000;14: 3051–3064.
    149 Peeper DS, Dannenberg J-H, Douma S, et al. Escape from premature senescence is not sufficient for oncogenic transformation by Ras. Nature Cell Biol. 2001;3:198-203.
    150 Alani R, Hassakari J, Grace M, et al. Id proteins in cell cycle control and cellular senescence. Proc. Natl. Acad. Sci. USA, 1999;96: 9637-9641.
    151 Nickoloff, B. J. , Chaturvedi V., Bacon P., et al. Id-1 delays senescence but does not immortalize keratinocytes. J. Biol. Chem. 2000;275: 27501-27504.
    152 Hara, E., Uzman, J. A., Dimri, G. P., et al. The helix-loop-helix protein Id-1 and a retinoblastoma protein binding mutant of SV40 T antigen synergize to reactivate DNAsynthesis in senescent human fibroblasts. Dev. Genet. (Amsterdam), 1996;18: 161–172.
    153 Lin, A. W., Barradas, M., Stone, J. C.,et al. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling, Genes Dev, 1998;19: 3008-19.
    154 Zhu, J., Woods, D., McMahon, M., et al.. Senescence of human fibroblasts induced by oncogenic Raf. Genes & Dev. 1998;12: 2997-3007.
    155 Jacobs JJ, Kieboom K, Marino S, et al. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature.1999; 397:164-168.
    156 Passegue E, Wagner EF. JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. EMBO J. 2000;19:2969-2979.
    157 Dellambra E, Golisano O, Bondanza S, et al. Downregulation of 14-3-3sigma prevents clonal evolution and leads to immortalization of primary human keratinocytes. J Cell Biol. 2000;149:1117–1130.
    158 Yang, X., He Z., . Xin B, et al. LMP1 of Epstein-Barr virus suppresses cellular senescence associated with the inhibition of p16INK4a expression. Oncogene.2000; 19:2002-2013.
    159 Bain G, Cravatt CB, Loomans C, et al. Regulation of the helix-loop-helix proteins, E2A and. Id3, by the Ras-ERK MAPK cascade. Nat Immunol. 2001; 2: 165–71.
    160 Shoji W., Inoue T., Yamamoto T., et al. MIDA1, a Protein Associated with Id, Regulates Cell Growth J. Biol. Chem.1995; 270(42): 24818 - 24825.
    161 Roberts E.C., Deed R.W., Norton,J.D.,et al. Id helix–loop–helix proteins antagonise the activity of Pax transcription factors by inhibiting DNA binding. Mol. Cell. Biol., 2001;21: 524–533.
    162 Nakajima T., Yageta M., Shiotsu K., et al. Suppression of adenovirus E1A-induced apoptosis by mutated p53 is overcome by coexpression with Id proteins. Proc. Natl. Acad. Sci. U. S. A. 1998;95: 10590-10595.
    163 Ruzinova M. B. & Benezra R. Id proteins in development, cell cycle and cancer. Trends Cell Biol. 2003;13: 410-418.
    164 Yan W., Young A.Z., Soares V.C., et al. High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice, Mol. Cell. Biol. 1997;17: 7317– 7327.
    165 Mori S., Nishikawa S. I. & Yokota Y. Lactation defect in mice lacking the helix-loop-helix inhibitor Id2. EMBO J. 2000;19: 5772-5781.
    166 Russell R. G., Lasorella A., Dettin L. E.,et al. Id2 drives differentiation and suppresses tumor formation in the intestinal epithelium. Cancer Res. 2004;64: 7220-7225.
    167 Barone, M. V., Pepperkok, R., Peverali, F. A. & Philipson, L. Id proteins control growth induction in mammalian cells. Proc. Natl Acad. Sci. USA. 1994;91: 4985-4988.
    168 Everly D. N., Jr. Mainou B. A. & Raab-Traub N. Induction of Id1 and Id3 by latent membrane protein 1 of Epstein-Barr virus and regulation of p27/Kip and cyclin-dependent kinase 2 in rodent fibroblast transformation. J. Virol. 2004;78: 13470-13478.
    169 Li H.M., Zhuang ZH, Wang Q., et al. Epstein-Barr virus latent membrane protein 1 (LMP1) upregulates Id1 expression in nasopharyngeal epithelial cells. Oncogene. 2004;23: 4488-4494.
    170 Siegel P. M. & Massague J. Cytostatic and apoptotic actions of TGF-? in homeostasis and cancer. Nature Rev. Cancer. 2003;3: 807-821.
    171 Alani R. M., Young A. Z. & Shifflett C. B. Id1 regulation of cellular senescence through transcriptional repression of p16/Ink4a. Proc. Natl Acad. Sci. USA. 2001;98: 7812-7816.
    172 Zheng W., Wang H., Xue L., et al. Regulation of cellular senescence and p16(INK4a) expression by Id1 and E47 proteins in human diploid fibroblast. J. Biol. Chem. 2004;279: 31524-31532.
    173 Kee Y. & Bronner-Fraser M. To proliferate or to die: role of Id3 in cell cycle progression and survival of neural crest progenitors. Genes Dev. 2005;19: 744-755.
    174 Light W., Vernon A. E., Lasorella A., et al. Xenopus Id3 is required downstream of Myc for the formation of multipotent neural crest progenitor cells. Development. 2005;132: 1831-1841.
    175 Hata K., Yoshimoto T. & Mizuguchi J. CD40 ligand rescues inhibitor of differentiation 3-mediated G1 arrest induced by anti-IgM in WEHI-231 B lymphoma cells. J. Immunol. 2004;173: 2453-2461.
    176 Iavarone, A.. Retinoblastoma promotes definitive erythropoiesis by repressing Id2 in fetal liver macrophages. Natur . 2004;432: 1040-1045.
    177 Toma, J. G., El-Bizri, H., Barnabe-Heider, F.,et al. Evidence that helix-loop-helix proteins collaborate with retinoblastoma tumor suppressor protein to regulate cortical neurogenesis. J. Neurosci. 2000;20: 7648-7656.
    178 Schaefer B.M., Koch J., Wirzbach A.,et al. Expression of the helix-loop-helix protein ID1 in keratinocytes is upregulated by loss of cell-matrix contact, Exp. Cell Res. 2001;266: 250–259.
    179 Langlands K., Down G.A., Kealey T. Id proteins are dynamically expressed in normal epidermis and dysregulated in squamous cell carcinoma, Cancer Res. 2000;60: 5929–5933.
    180 Hu Y.C., Lam K.Y., Law S., et al. Identification of differentially expressed genes in esophageal squamous cell carcinoma (ESCC) by cDNA expression array: overexpression of Fra-1, Neogenin, Id-1, and CDC25B genes in ESCC, Clin. Cancer Res. 2001;7 : 2213–2221.
    181 Rockman S.P., Currie S.A., Ciavarella M., et al. Id2 is a target of the beta-catenin/T cell factor pathway in colon carcinoma, J. Biol. Chem. 2001;276: 45113–45119.
    182 Wilson J.W., Deed R.W., Inoue T.,et al. Expression of Id helix-loop-helix proteins in colorectal adenocarcinoma correlates with p53 expression and mitotic index, Cancer Res. 2001;61: 8803–8810.
    183 Kleef F.J., Ishiwata T., Friess H., et al. The helix-loop-helix protein Id2 is overexpressed in human pancreatic cancer, Cancer Res. 58 (1998) 3769–3772.
    184 Maruyama H., Kleeff J., Wildi S.,et al. Id-1 and Id-2 are overexpressed in pancreatic cancer and in dysplastic lesions in chronic pancreatitis, Am. J. Pathol. 1999;155: 815–822.
    185 Kebebew E., Treseler P.A., Duh Q.Y.,et al. The helix-loophelix transcription factor, Id-1, is overexpressed in medullary thyroid cancer, Surgery. 2000;128: 952–957.
    186 Ouyang X.S., Wang X., D. Lee T., et al.. Upregulation of TRPM-2, MMP-7 and ID-1 during sex hormoneinduced prostate carcinogenesis in the Noble rat, Carcinogenesis. 2001;22: 965–973.
    187 Chetcuti A., S. Margan, S. Mann, et al. Identification of differentially expressed genes in organ-confined prostate cancer by gene expression array, Prostate. 2001;47: 132–140.
    188 Takai N., Miyazaki T., Fujisawa ., et al. Id1 expression is associated with histological grade and invasive behavior in endometrial carcinoma, Cancer Lett. 2001;165 : 185–193.
    189 M. Schindl, Oberhuber G., Obermair A.,et al. Overexpression of Id-1 protein is a marker for unfavorable prognosis in early-stage cervical cancer, Cancer Res. 2001; 61:5703–5706.
    190 C.Q. Lin, Singh J., Murata K.,et al. A role for Id-1 in the aggressive phenotype and steroid hormone response of human breast cancer cells, Cancer Res. 2000; 60: 1332–1340.
    191 Wice B.M., ernal-MizrachiE. B, Permutt M.A.,et al. Glucose and other insulin secretagogues induce, rather than inhibit, expression of Id-1 and Id-3 in pancreatic islet beta cells, Diabetologia. 2001; 44: 453– 463.
    192 M.A. Perez-Moreno, Locascio A., Rodrigo I., et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions, J. Biol. Chem. 2001;276: 27424–27431.
    193 Y. Hegerfeldt, Tusch M., Brocker E.B. P. Friedl, Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies, Cancer Res. 2002;62: 2125–2130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700