植物生长调节剂对铜绿微囊藻(Microcystis aeruginosa)生长特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以铜绿微囊藻(Microcystis aeruginosa)为材料,研究了不同植物生长调节剂(NAA、GA3、KT和ABA)对其生长特性的影响。研究发现不同植物生长调节剂对铜绿微囊藻的生长特性具有不同的影响:当培养液中加入生长素NAA的浓度为0.1—15 mg·L-1时,铜绿微囊藻的生物量及总的叶绿素a含量均有所增加,尤其以3mg·L-1的NAA处理效果最为明显,过高和过低浓度的NAA也促进铜绿微囊藻的生长,但效果不显著。GA3浓度在0.01—10 mg·L-范围内对铜绿微囊藻的生长和繁殖均有明显的促进作用,且随着浓度的增大作用增强,但是当浓度达到20 mg·L-1时则抑制铜绿微囊藻的生长,在开始试验的第2天就出现藻细胞黄化沉底的现象。当细胞分裂素KT的浓度在0.02—0.5mg·L-1浓度范围内时表现为延缓微囊藻细胞的生长,对照组的微囊藻细胞在培养的第7天就能进入对数生长期,而该浓度范围内处理的微囊藻细胞则在培养的第11或12天才进入对数生长期,通过测定单位干重藻细胞磷吸收量表明:在该浓度范围内,随着浓度的增加,藻细胞对磷元素的吸收量下降。当KT的处理浓度达到2.5 mg·L-1则表现为抑制铜绿微囊藻的生长,且随着浓度的增大,抑制作用愈明显,如12.5 mg·L-1和25 mg·L-1两个处理组的微囊藻细胞在培养的第2天就出现黄化沉底现象,在培养的第9天藻细胞就已全部死亡。一定浓度的ABA(0.1—1 mg·L-1)对总的叶绿素a含量、单位干重藻细胞磷吸收量和藻细胞生物量均有不同程度的促进作用,且随着浓度的增加,促进作用愈明显,但是当浓度达到5 mg·L-1则显著抑制铜绿微囊藻的生长,在开始培养的第2天,藻细胞开始出现黄化沉底的现象。
     试验中还对0.5 mg·L-1KT、1 mg·L-1ABA和对照组等三种处理的微囊藻细胞进行了透射电镜观察,研究发现正常铜绿微囊藻细胞一般为圆形和椭圆形,细胞内没有成形的核膜和核仁,只在细胞内存在着核区样的结构,细胞内色素以类囊体的形式附着在片层结构上,排列清晰、均匀。而0.5 mg·L-'KT处理的微囊藻细胞则表现为类囊体杂乱的分布在细胞质内,色素体含量减少,细胞核区面积减小;1mg·L-1ABA处理的微囊藻细胞则表现为色素体分布更加均匀,类囊体条数增加,所占面积增大,伸向核区,同时核区面积也增大。
The effects of plant growth regulators (NAA、GA3、KT and ABA) on the growth characteristics of Microcystis aeruginosa was studied in this paper.
     The results indicated that different plant growth regulators had different effect on the growth of M.aeruginosa. Both the total chla contents and the cell biomass of M.aeruginosa treated with NAA (0.1—15 mg·L-1), were higher than that of the control, especialy at the concentration of 3 mg—L-1. GA3(0.01—10 mg·L-1) accelerated the total Chla contents and the cell biomass of M.aeruginosa, but higher concentrations decreased the cell biomass. For example, the cells treated by 20 mg·L-1 GA3 tended to be death at the second day of the culture time. KT(0.02—0.5mg·L-1) delaied the growth of M.aeruginosa. The cells treated with KT went in its exponential phase at the eleventh or twelvth day of the culture, which is needed only 7 days for the normal cells. It was also found that the ability of phosphorus absorption had been inhibited at these concentrations. KT at the concentration of 2.5 mg·L-1 inhibited the growth of M.aeruginosa, and the higher concentration the larger inhibition effect. KT at the concentrations of 12.5 mg·L-1 and 25 mg·L-1 decreased cell biomass and the content of Chla obviously. ABA(0.1—1 mg·L-1) accelerated the total Chla contents, the content of phosphorus absorption and the biomass, but ABA at hihger concentrations may inhibit the growth of M.aeruginosa., for example,when treated with the concentration of 5 mg·L-1, the cell tended to death at the second day of the culture time.
     According to the analysis of transmission electron microscopy, we found that the cell structure treated with 0.5 mg·L-1 (KT) had less thylakoid and smaller nucleus area than that of control,while the cell that treated with 1 mg·L-1 (ABA) had more thylakoid and larger nucleus area than that of the control.
引文
[1]胡鸿钧,李尧英.中国淡水藻类[M].上海:上海科学技术出版社,1980:123-128
    [2]黄琪琐.水生动物疾病学[M].上海:上海科学技术出版社,1993:274-275
    [3]杨苏,陈朝银,赵声兰,牛耀辉,李立.滇池蓝藻资源综合利用的研究进展[J].云南化工,2006,33(3):49-53
    [4]沈国兴,严国安,彭金良.农药对藻类的生态毒学研究Ⅱ[J].环境科学进展,1999,7(6):131-140
    [5]孙成渤.水生生物学[M].北京:中国农业出版社,2004:14-18
    [6]OECD. Eutrophication of waters.Monitoring, Assessment and Control. Final Report, OECD Cooperative Program on Monitoring of Inland Waters (Eutrophication Control), Environment Directorate[C]. OECD, Paris,1982:154-162
    [7]Huang Y P. Contamination and control of aquatic environment in Lake Taihu[M]. Beijing: Science Press,2001:84-89
    [8]Jiang Y, Ji B, Wang R N, Wong M H. Statistical study on the effects of environmental factors on the growth and microcystins production of bloom-forming cyanobacterium-Microcystis aeruginosa[J]. Harmful Alage,2008,7(2):127-136
    [9]Zhang M, Kong F X, Tian X, Zhou Y, Cao H S, Pen X. Biochemical, morphological, and genetic variations in Microcystis aeruginosa due to colony disaggregation[J]. World Journal Microbiol Biotechnol,2007,33:663-670
    [10]Dokulil M T, Teuber K.Cyanobacterial dominance in eutrophic lakes:Causes Consequences Solutions[J]. Journal of Lake Science,1998,10:357-370
    [11]Dokulil M, Chen W, Cai Q. Anthropogenic impacts to large lakes in china: the TaiHu example[J]. Aquatic Ecosystem Health and Management,2000,3:81-94
    [12]Tilzer M M, Geller W. Global water supply and threats to global water supply, in: Sund H. Environmental protection and lake ecoststem[M]. Beijing: China Science & Technology Press, 1993:61-66
    [13]Jin X C, Chu Z S, Yi W L, Hu X Z. Influence of phosphorus on Microcystis growth and the changes of other environmental factors[J]. Environment Science China,2005,17 (6):937-941
    [14]Kim H R, Kim C K, Ahn T S, Yoo S A, Lee D. Effects of temperature and light on microcystin synthetase gene transcription in Microcystis aeruginosa[J]. Key Engineering Materials,2005, 277-279
    [15]Zhou M M, Zhou B X, Xie W J, Jiang J H, Cai W M. Effects of nutrients on Microcystis growth more easily forming bloom[J]. Journal of Environment and Science in China,2004,16: 934-937
    [16]Ahn C Y, Park D K, Kim H S, Chung A S, Ou H M. K:Fe ratio as an indicator of cyanobacterial bloom in a eutrophic lake[J]. Journal of Microbiology and Biotechnology, 2004,14:290-296
    [17]Jin X C. Analysis of eutrophicaiton state and trend for lakes in China[J]. Journal of Liminol, 2003,62:60-66
    [18]Chen Y W, Gao X Y. Study on variations in spatial and temporal distribution of Microcystisin North west Taihu Lake and its relations with light and temperature in ecology of Taihu Lake[J]. China Meteorological Press,1998:142-148
    [19]Hua J B, Zong Z X. Experimental research on formation of alage bloom in Yanghe reservoir[J]. Universitatis Pekinesis(Acta. Scientiarum Naturalium),1994,30:476-484
    [20]Paerl H W, Tucker J, Bland P T. Carotenoid enhancement and its role in maintaining blue-green(Microcystis aeruginosa) blooms[J]. Limnol of Oceanogr,1983,28:847-857
    [21]李小龙,耿亚红,李夜光,胡鸿钧.从光合作用特性看铜绿微囊藻(Microcystis aeruginosa)的竞争优势[J].武汉植物科学研究,2006,24(3):225-230
    [22]沈英嘉,陈德辉.不同光照周期对铜绿微囊藻和绿色微囊藻生长的影响[J].湖泊科学,2004,16(3):285-288
    [23]Oliver R L, Ganf G G. Fresh water blooms, in: Whitton, B.A and M.Pottseds. The Ecology of Cyanobacteria, The Nether lands[M]. Kluwer Academic Publishers,2000:149-194
    [24]Vander Westhuizen A J, Eloff J N. Effect of Temperature and Light on the Toxicity and Growth of the Blue-green Algae Microcystis aeruginosa(UV-600)[J]. Planta,1985,163:55-59
    [25]Zhang Y L, Qin B Q, Chen W M. Analysis on distribution and variation of Beam attenuation coefficient of Taihu Lake's water[J]. Analysis in water science,2003,48:1822-1831
    [26]余博识,吴中兴,朱梦灵,吴幸强,彭欣,覃家理,李任辉.水果湖湾蓝藻水华的形成及其对东湖影响的评价[J].水生生物学报,2008,32(2):286-289
    [27]Jacoby J M, Collier D C, Welch E B, Hardy F J, Crayton M. Environmental factors associated with a toxic bloom of Microcystis aeruginosa[J]. Canadian Journal of Fishment Aquatic Science,2000,57:231-240
    [28]Watanabe M F, Oishi S. Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions[J]. Applied and Environment Microbiology, 1985,49:1342-1344
    [29]雷腊梅,宋立荣,欧丹云,韩博平.营养条件对水华蓝藻铜绿微囊藻的胞外多糖产生
    的影响[J].中山大学学报,2007,46(3):84-87
    [30]康瑞娟,蔡昭铃,施定基.蓝藻培养体系中光强衰减的研究[J].水生生物学报,2002,26(3):310-313
    [31]Qin B Q, Hu W P, Gao G. Driving mechanism of sediment resuspension and conceptual pattern of internal release in Taihu Lake[J]. Chinese Science Bulletin,2003,48:1822-1831
    [32]Fan C X, Zhang L, Qin B Q. Estimation of dynamic release of phosphorus from suspended particles under wave in Lake Taihu[J]. Resources and Environment in the Yangtze Basin, 2003,33:760-768
    [33]Steinberg C E, Wand Hartmann H M. Plank tonic bloom forming cyanobacteria and the eutrophication of lake and rivers[J]. Fresh Water Biology,1988,20:279-287
    [34]Schindler D W. Evolution of phosphorus limitation in lakes[J]. Science,1977,19(5):260-262
    [35]Simth V H. Low nitrogen to phosphorus ratios favor dominance by blue-green alage in lake phtoplankton[J]. Science,1983,22(1):669-671
    [36]Xie L, Xie P, Li S. The low TN:TP ratio, acause or a result of Microcystis blooms? [J]. Water Research,2003,37:2073-2080
    [37]Sas H. Lakerestoration and reduction of nutrient loading: ecpectations, experiences, extra polations[M]. St Augustin: Academia Verlag Richarz,1989,19-24
    [38]张玮,林一群,郭定芳,付君君,赵以军.不同氮、磷浓度对铜绿微囊藻生长、光合及产毒的影响[J].水生生物学报,2006,30(3):318-322
    [39]Qin B Q, Hu W P, Gao G. Driving mechanism of sediment resuspension and conceptual pattern of internal release in Taihu Lake[J]. Chinese Science Bulletin,2003,48:1822-1831
    [40]王晓蓉,华兆哲,徐菱.环境条件变化对太湖沉积物磷释放影响[J].环境化学,1996,15(1):15-19
    [41]易文利,金相灿,储昭升,胡小贞,马祖友,王国栋,张叔英.不同质量浓度的磷对铜绿微囊藻生长及细胞内磷的影响[J].环境科学研究,2004,17:58-61
    [42]Smith A J. Synthesis of metabolic intermediates. in:The Biology of Blue-Green Alage[M]. Oxford:Blackwell,1973,1-38
    [43]Pearce J, Carr N G. The incorporation and metabolism of glucose by Anabaena variabilis[J]. Journal of General Microbiology,1969,54:451-462
    [44]Droop M R. Heterotrophy of carbon[M]. Califormia:University of California Press,1984: 530-559
    [45]Smith A J. Modes of cyanobacterial carbon metabolism[M]. London Blackwell Scientific Publications,1982:47-85
    [46]Perona E. Alteration of dingitrogen fixing and metabolism in cyanobacterium Anbaena PCC7119 by phosphamidon[J]. Environment and Botany,1991,31(4):479-488
    [47]Chen F, Zhang Y M, Guo S Y. Growth and phycocyanin formation of Spirulina platensis in photoheter to rophicculture[J]. Biotechnology Lerrers,1999,18(5):603-608
    [48]Zhang Y M, Chen F, Guo S Y. The growth and phycocyanincontent of Spirulina platensis on different carbon sources in mixtrophic culture[J]. Journal of South China University of Technology,1996,24(6):130-133
    [49]Tian S Z, Liu Z, Weng J H. Growth of Ghlorella vulgaris in cultures with low cincentration dimethoate as source of phosphorus[J]. Chemosphere,1997,35(11):2713-2718
    [50]赵以军,王旭,谢青,程凯,李玉元,吴红艳,赵进.滇池蓝藻“水华”微囊藻毒素的分离和鉴定[J].华中师范大学学报(自然科学版),1999,33(2):250-254
    [51]韩博平,韩志国,付翔.藻类光合作用机理与模型[M].北京:科学出版社,2000:172-178
    [52]潘瑞炽,王小菁,李娘辉.植物生理学(第四版)[M].北京:高等教育出版社,2001:55-58
    [53]王兆新,袁峻峰.三种有机物对铜绿微囊藻异养生长的影响[J].上海师范大学学报(自然科学版),2001,30(1):97-98
    [54]Perona E. Alteration of dingitrogen fixing and metabolism in cyanobacterium Anabaena PCC7119 by phosphamidon[J]. Environment and Botany,1991,31(4):479-488
    [55]Chen F, Zhang Y M, Guo S Y. Growth and phycocyanin formation of Spirulina platensis in photoheter of rophicculture[J]. Biotechnology Letters,1996,18(5):603-608
    [56]Zhang Y M, Chen F, Guo S Y. The growth and phycocyanincontent of Spirulina platensis on different carbon sources in mixotrophic culture[J]. Journal of Southe China University of Technology,1996,24(6):130-133
    [57]武维华.植物生理学[M].北京:科学出版社,2003:89-92
    [58]Gravel V, Antoun H, Tweddell R J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possble role of indole acetic acid(IAA)[J]. Soil Biochemistry,2007,39(8):1968-1977
    [59]Dharmasiri N. Auxin action in a Cell-Free System[J]. Current Biology,2003,13(16): 1418-1422
    [60]Yi K W. Effects of light on the hormonal regulation of VR-ACS6 truncated promoter in transgenic tovacco[J]. Plant Physiology and Biochemistry,2003,41(4):331-335
    [61]Boeuf G. Effect of NAA on the development, apoplastic peroxidase activities, and peroxidase isoenzymes in chicory root explants[J]. Journal of Plant Physiology,2001,15(8):963-969
    [62]Jacobs W P. A search for some angiosperm hormones and their metabolites in Caulerpa paspaloides(Chlorophyta) [J]. Journal Physiology,1993,29:595-600
    [63]Nowak J. Auxin induced stress tolerance in alage[J]. Environmental Pollution,1988,51: 213-218
    [64]李合生.现代植物生理学[M].高等教育出版社,2002:121-124
    [65]Addicott F T. Abscisic acid: A new for abscesin Ⅱ(dormin)[J]. Science,1968,159:1493-1498
    [66]Cooke T J. Evolutionary patterns in auxin action[J]. Plant Molecular Biology,2002,49(6):3-4
    [67]俞叔文.植物生理与分子生物学.第二版[M].北京:科学出版社,1998:211-213
    [68]Maillard P. Determination of an ethylene biosynthesis pathway in the unicellular green alga, Haematococcus pluvialis. Relationship between growth and ethylene production[J]. Journal of Applied Phycology,1993,5:93-98
    [69]Waaland S D. Control of the processes leading to cell fusion in alage:a glycoprotien hormone from red algae. In Bopp, M.[Ed.], Plant Growth Substances[M]. Springer-verlag, Berlin,1985: 257-262
    [70]Bradley P M. Plant hormones do have a role in controlling growth and development in alage[J]. Journal of Phycology,1991,27:317-321
    [71]Sakamoto B, Nagai H, Hokama Y. Stimulators of Gambierdiscustoxicous(Dinophyceae) growth:the possible rote of growth enhancer[J]. Phycologia,1996,35(4):350-355
    [72]Hubick K T, Reid D M. A rapid method for the extraction and abscisic acid from plant tissue[J]. Plant Physiology,1980,65:523-525
    [73]Khadri M, Tejera N A, Lluch C. Sodium chlorde-ABA interaction in two common bean(Phaseolus vulgaris) cultivars differing in salinity tolerance[J]. Environmental and Experimental Botany,2007,60(2):211-218
    [74]Tong S h. Ectopic overexpression of wheat TaSrg6 gene confers water stress tolerance in Arabidopsis[J]. Plant Science,2007,172(6):1079-1086
    [75]Hartung W, Jiang F. Long distance signalling of abscisic acid(ABA) and ABA-redistribution within the plant[J]. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2007,146(4):235-239
    [76]Rancic D, Quarrie S P, Dodd I. Transport of growth regulators to developing xylem tissues: Plant ABA status inpacts on hydraulic conductance by modifying xylem vessel development[J]. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2007,146(4):240-247
    [77]Bueno P. Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2-cell culture[J]. Plant Science,1998,138:27-34
    [78]Jiang M, Zhang J. Effect of abscisic acid on active oxygen species,antioxidative defense system and oxidative damage in leaves of maize seedings[J]. Plant and Cell Physiology,2001, 42:1265-1272
    [79]Smet I D. A novel role for abscisic acid emerges from underground[J]. Trends in Plant Science, 2006,11(9):434-439
    [80]Wan X P, Li L. Regulation of ABA level and water-stress tolerence of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene[J]. Biochemical and Biophysical Research Communications,2006,347(4):1030-1038
    [81]Provasoli. Vitamins and growth regulators. In Algal Physiology and Biochemistry[M]. Blackwell Scientific Publication, Oxford,1974:125-129
    [82]Cooke T J C. Evolutionary patterns in auxin action[J]. Plant Molecular Biology,2002,49(6): 3-4
    [83]Vanden D T. Acetabularia mediterranea and ethylene:Production in relation with development, circadian rthyrhms in emission, and response to exterance in alage[J]. Journal of Plant Physiology,19888,133:635-639
    [84]Nowak J. Auxin induced stress tolerance in alage[J]. Environment Pollution,1988,51: 213-218
    [85]Kim J. Effect of plant hormone on the regulation of Mygaropsis myagroides[J]. Bulletin of Korean Fishment Society,1985,18:271-277
    [86]Dawes C J, Indole-3-acetic acid in the green algal coenocyte Caulerpa prolifera (Chlorophyceae, Siphonales) [J]. Phycologia,1971,10:375-379
    [87]Yokoya N S. Effects of environmental factors and plant growth regulators on growth of the red alga Gracilaria vermiculophylla from Shikoku Island, Japan[J]. Hydrobiologia,1999,398-399
    [88]Vance B D. Phytohormone effects on cell division in Chlorella pyrenoidosa Chick (TX-7-11-05)(Chlorellaceae)[J]. Journal of Plant Growth Regulation,1987,5:169-173
    [89]Czerpak R, Bajguz A. Effect of auxin and cytokinin on protein and saccharides ecxtracellular excretion in Chlorella pyrenoidosa[J]. Polish Archives Hydrobiology,1993,40:249-254
    [90]Czerpak R, Krotke A, Mical A. Comparison of stimulatory effect of auxins and cytolinins on protein, saccharides and chlorophlls content in Chlorella pyrenoidosa[J]. Chick Polish Archives, Hydrobiology,1999,46:71-82
    [91]Prasad P V D. Effect of some growth substances on three freshwater green algae[J]. Cryptogamie Algologie,1982,4:315-321
    [92]Dibb-Fuller J E, Morris D A. Studies on the evoltion of auxin carriers and phytotropin receptors: Transmembrane auxin transport in unicellular and multicellular Chlorophyta[J]. Planta,1992,186:219-226
    [93]Mazur H, Konop A, Synak R. Indole-3-acetic acid in the culture medium of two axenic green microalgae[J]. Journal of Applied Phycology,2001,13:35-42
    [94]侯和胜,吴超元.藻类中植物激素的研究进展[J].海洋科学集刊,1998,40:167-176
    [95]Jacobs W P. Effects of gibberellic acid on the rhizome and rhizoids of the algal coenocyte, Caulerpa prolifera, in culture, Ann[J]. Bot. N. S.1983,52:39-41
    [96]Borowczak, E. R. Polymorphic behavior of Ulva lactuca(Chlorophyta) in axenic culture[J]. Journal of Phycologial.1977,13:133-140
    [97]Sivasankari S. Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis[J]. Bioresource Technology,2006,97(14):1745-1751
    [98]Haisel D. Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration[J]. Photosynthetica,2006,44(4):606-614
    [99]Savoure A. Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic atress in Arabidopsis thaliana[J]. Molecular and General Genetics MGGG,1997,254(1):104-109
    [100]Pospisilova J. Interactions between abscisic acid and cytokinkins during water stress and subsequent rehydration[J]. Biologia Plantarum,2005,49(4):533-540
    [101]Yoshida K. Induction of tolerance to oxidative stress in the green alga, Chlamydomona reinhardtii, by abscisic acid[J]. Plant, Cell and Environment,2003,26:451-457
    [102]Swiatek A. Differential effect of jasmonic acid and abscisic on cell cycle progression in tobacco BY-2 cell [J]. Plant Physiology,2002,128:201-211
    [103]李宗霆,周燮.植物激素及其免疫检测技术[M].江苏:江苏科技出版社,1996:451-452
    [104]胡敏.植物生长调节剂的应用[J].天津农林科技,2005,184(2):39-40.
    [105]Pardhasaradhi P. Protection against the photo-iduced in activation of the photosystem II complex by abscisic acid[J]. Plant, Cell and Environment,2000,23:711-718
    [106]王长海.海洋生化工程概论[M].北京:化学工业出版社,2004:41-44
    [107]Mazur H, Konop A, Synak R. Indole-3-acetic acid in the culture medium of two axenic green microalage[J]. Journal of Applied Phycology,2001,13:32-35
    [108]韩丽君.海藻中植物生长素组成的初步研究[J].海洋科学,2002,27(3):70-72
    [109]孙杰.两种海藻提取物的化学成分和生物活性及机制的研究[D].四川:四川大学,2006
    [110]黄翔鹊,李长玲,刘洪军,刘楚吾.植物生长调节剂对波吉卵囊藻生长的影响[J].海洋湖沼通报,2002,3:46-51
    [111]杨胜勇,王明学,匡亮.植物生长调节剂2,4-D对两种绿藻生长的影响[J].淡水渔业,2005,35(6):28-30
    [112]马为民,钱志萍,孙莉,王全喜.绿色微囊藻的混合营养生长[J].植物研究,2002,22(2):241-244
    [113]王长海.海洋生化工程概论[M].北京:化学工业出版社:2004,89-93
    [114]哈成勇.《天然产物化学与应用》[M].北京:化学工业出版社,2003:76-81
    [115]谢群,王明学,闫洪海,高红梅.三十烷醇对3种单细胞藻类生长的影响[J].华中农业大学学报,2006,25(3):286-290
    [116]史成颖,菜为荣,甘旭华,汪本凡.6种植物生长调节剂对钝顶螺旋藻生长的影响[J].安徽农业大学学报,2004,31(1):26-30
    [117]李雅娟,刘淑范,李梅.3种植物生长激素对2种底栖硅藻生长速率的影响[J].中国水产科学,2002,9(1):18-22
    [118]Pan X, Chang F, Kang L, Liu Y, Li G, Li D. Effects of gibberellin A3 on growth and microcystin production in Microcystis aeruginosa (cyanophyta)[J]. Journal of Plant Physiology,2008,165:1691-1697
    [119]张余霞,张玲,高兴,王立新,陆长梅,吴国荣.水稻(Oryza sativa L.)秸秆浸提液对铜绿微囊藻(Microcystis aeruginosa)的抑制作用[J].湖泊科学,2007,19(4):479-484
    [120]张胜花,葛芳洁,王洪强,胡陈燕,吴振斌.不同氮磷营养条件下铜绿微囊藻(Microcystis aeruginosa)对正磷酸盐的蓄积效果[J].长江流域资源与环境,2008,17(6):19-24
    [121]Fujii H, Verslues P E, Zhu J. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis[J]. Plant Cell.2007,19:485-494
    [122]李小路,潘慧云,徐洁,鲜啟鸣,高士祥,尹大强,邹慧仙.外源脱落酸提高金鱼藻抗铜绿微囊藻胁迫能力的研究[J].环境农业科学学报.2008,27(5):1980-1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700