天然染料超临界CO_2萃取染色一步法技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界CO_2具有良好的溶解扩散性能,使得其可代替水作为染色介质,由于它具有节能、节水、工艺流程短等特点,已成为国内外染整行业的研究热点。目前,对超临界染色技术的研究仅限于使用化学染料的阶段,为实现天然纤维的良好染色效果,人们不得不使用各种改性方法,以增加染料与纤维之间的亲和性。这种研究的负面影响是:一方面增加了成本;另一方面,使得原本绿色环保的超临界染色工艺,在改性时产生污染。为了开发无污染、低能耗的“生态绿色”生产工艺,本文采用天然姜黄为染料,在超临界CO_2染色装置中完成萃取—染色一步法工艺。
     论文阐述了超临界CO_2的性质、热力学原理和传质机理,提出了超临界CO_2萃取—染色一步法工艺技术,建立了天然姜黄收缩核模型,从分子水平分析了天然姜黄素的晶体结构以及姜黄素与天然纤维的结合性能。由于姜黄素的分子较小,分子极性小,在超临界CO_2中溶解度较大,可得到较好的分散性能,实现了萃取—染色一步法。
     采用正交试验和单因素试验分析的方法,对天然纤维织物和化学纤维织物进行超临界CO_2萃取—染色一步法实验。对超临界萃取染色工艺对染色颜色特征值的影响进行了研究,确定了最优染色条件。结果表明:在萃取染色一步法工艺中,姜黄粒度(φ)大小影响甚大,随粒度减小,色差增大、得色增深、固着率增加,姜黄粒度为0.5mm色差和固着率均最大;采用内染、外染结合的工艺,可提高织物匀染性,缩短染色时间;染色效果化学纤维优于蛋白质纤维和纤维素纤维,缠绕织物染色形式优于层放织物。毛织物最优工艺为:姜黄粒度φ=0.5mm、27Mpa、80℃、50min;棉织物最优工艺为:姜黄粒度φ=0.5mm、27Mpa、100℃、50min;PET织物最优工艺为:姜黄粒度φ=0.5mm、27Mpa、80℃、50min。
     超临界CO_2萃取染色一步法工艺具有上染时间短、织物匀染性好、色牢度优的特点,为天然染料应用于超临界CO_2染色工艺技术的研究提供了理论基础。
The fine performance of supercfitical CO_2 on dissolution and diffusion make it substitutefor water as dyeing medium. As a result of its characteristic such as the conservation of energyand water and the short technical process, the research of supercritical CO_2 dyeing technologyhas become a hot spot in domestic and foreign dyeing and finishing industry. Currently, theresearch of supereritical CO_2 dyeing technology was restricted in the application stage ofchemical dyestuffs. Kinds of finishing methods have to be utilized to make natural fibersachieve the good dyeing effect, by dint of the improvement of compatibility between dyestuffsand fibers. However, the negative influence of this kind of research is: on the one hand,finishing increases the costs; the other, supercfitical dyeing process is originally green, butpollution may be caused by finishing. To the development of "eco-green" technology withnon-pollution and low-energy-consumption, the curcuma is adopted as dye in this paper, and theone step extracting-dyeing technology has been carried out in supercritical CO_2 dyeinginstrument.
     The nature, thermodynamic principles and mass transfer mechanism of the supercfiticalCO_2 are elaborated. The one step extracting-dyeing technology in supercritical CO_2 has beenproposed. The shrinking core model of natural curcuma is established. The crystal structure andbinding characteristic with natural fibers of natural curcumin are analyzed from the molecularlevel. The curcumin obtains good performance of solubility and dispersibility in supercriticalCO_2, because its molecule size and molecule polarity is both small. Therefore the one stepextracting-dyeing technology has been achieved.
     The the one step extracting-dyeing technology in supercritical CO_2 experiments aredesigned and implemented on natural fiber fabrics and chemical fiber fabrics throughorthogonal experiments and single factor experiments. The optimal dyeing parameters havebeen determined by the study of the influence of supercfitical CO_2 extracting-dyeing craft ondyeing-color eigenvalues. The results indicate that, in extracting-dyeing one-stage craft, theparticle size of eurcuma is an important influencing factor. The chromatic aberration, hue and fixing rate increased along with the reducing of particle size of curcuma. The maximum valuesof the chromatic aberration and fixing rate are obtained when the particle size of curcuma is0.5mm. The level dyeing property is improved and the dyeing time is reduced by applying theassociative craft of inside dyeing and outside dyeing. The dyeing effect of chemical fibers isbetter than that of protein fibers and cellulose fibers, and the dyeing form of winding fabricsurpasses that of stacking. The optimal dyeing craft for wool fabric is as follows: the diameterof the curcuma particle is 0.5mm, the pressure is 27MPa, the temperature is 80℃and thedyeing time is 50min. The optimal dying craft for cotton fabric is that 0.5mm, 27MPa, 100℃and 50min. The optimal dying craft for PET fabric is that 0.5mm, 27MPa, 80℃and 50min.
     The the one step extracting-dyeing technology in supercfitical CO_2 has many superiorcharacteristic, such as short dyeing time and excellent levelness and color fastness. Therationale has been provided for applying the natural dyestuff to the supercritical CO_2 dyeingcraft technology research.
引文
[1] 李志军,杨东辉,陈金珠,等.超临界流体技术的应用及研究进展[J].化工生产与技术.2006,13(3):29~32.
    [2] 邓一民.天然植物染料在真丝绸上的应用[J].四川丝绸,2003(4):23~26.
    [3] 陈杰译.植物染料在羊毛织物上的染色[J].国外丝绸,2001(1):27~32.
    [4] 汪苏南,李云明.天然色素在纯棉织物上的应用[J].印染,1998(11):15~17.
    [5] 温志坚,毛景文.超临界流体的研究进展及其对成矿地球化学研究的启示[J].地质评论.2002,48(1):106~112.
    [6] 郎庆勇,魏建谟.超临界流体萃取技术的应用及展望[J].岩矿测试.1998,17(3).
    [7] Krukonis V, Brunner G, Perrut M. Industrial Operations with Supercritical Fluid: Current Processes and Perspectives on the Future[J]. Proceedings of the Third Int. Symposium on Supercritical Fluids. Strasbourg, France,October 1994: 1~22.
    [8] 高彦详,B.simandi.食用天然色素超临界二氧化碳的研究[J].中国食品添加剂,1995,(2):13~17.
    [9] G. A. Spanos, H.Chen,S. J. Schwartz. Supercritical CO_2 Extraction of β-Carotene from Sweet Potatoes [J]. Journal of Food Science, 1993, 4 (58) : 817~820.
    [10] P. J. Vega, M. O. Balaban, C. A. Sims, et al. Supercritical carbon dioxide extraction efficiency for carotenes from carrots by RSM[J]. Journal of Food Science,1996, 61(4): 757~759, 765.
    [11] M. D. Maciassanchez, C. Mantell, M. Rodriguez, et al. Supercritical fluid extraction of carotenoids and chlorophylla from Nannochloropsis gad itana [J]. Journal of food engineering.2005, 66:245~251.
    [12] M.Jaren-galan, U.Nienaber, J.Steven. Schwartz Pap rika (Capsicum annuum) Oleoresin Extraction with supercdtical carbon dioxide [J]. Journal of agrocultural and food chemistry, 1999, 47:3558~3564.
    [13] H. G. Daooda, V. Illesb, M. H. Gnayfeeda, et al. Extraction of pungent spice paprika by supercritical carbon dioxide and subcritical propane[J]. Journal of Supercritical Fluids.2002,23:143~152.
    [14] 朱凯,程康华,毛连山.超临界二氧化碳精制辣椒红色素的研究[J].化工时刊,2004,18(12):25~27.
    [15] 林涛,夏远景,孟庭宇,等.超临界CO_2萃取辣椒油实验研究[J].应用化工,2005,34(9):584~586.
    [16] 孙庆杰,丁霄霖.超临界CO_2萃取番茄红素的初步研究[J].食品与发酵工业,1998,(1):20~24.
    [17] Q. j. Sun, X.. L. Ding. Supercritical CO_2 extraction of lycopene from tomato skin[J]. Food and Fermentation Industries, 1998, 24, (1): 3~6.
    [18] 孙庆杰,丁霄林.超临界萃取番茄红赢的初步研究[J].食品与发醇工业.1999,24(1):3~6.
    [19] Enzo Cadoni, M. Rita De Giorgi, Elena Medda, et al. Supercritical CO_2 extraction of lycopene and β-carotene from ripe tomatoes[J]. Dyes and Pigments 2000, 44: 27~32.
    [20] N. L. Rozzi, R. K. Singh, R. A. Vierling, et al. Supercritical fluid extraction of lycopene from tomato processingbyp roducts[J]. Journal of Agricultural & Food Chemistry, 2002, 50,(9): 2638~2643.
    [21] Inakuma, T. Yasumoto, M. Koguchi, et al. Effect of drying methods on extraction of lycopene in tomato skin with supercritical carbon dioxide[J]. Journal of the Japanese Society for Food Science & Technology-Nippon Shokuhin Kagaku Kogaku Kaishi,1998, 45, (12): 740~743.
    [22] M. Ollanketo, K. Hartonen, M. L. Riekkola, et al. Supercritical carbon dioxide extraction of lycopene in tomato skins[J]. European Food Research & Technology, 2001; 212, (5): 561~565.
    [23] 袁永俊,李培骏,芮光伟,等.番茄红素的超临界二氧化碳萃取研究[J].西华大学学报(自然科学版),2005,24(4):10~12.
    [24] T. Baysal, S. Ersus, D. A. J.Starmans. Supercritical CO_2 extraction of [β]-carotene and lycopene from tomato pastewaste[J]. Journal of Agricultural & Food Chemistry, 2000,48,(11) : 5507~5511.
    [25] Giuseppe Vasapollo, Luigia Longoa, Leonardo Rescio,et al. Innovative supercritical CO_2 extraction of lycopene from tomato in the presence of vegetable oil as co- solvent[J]. Journal of Supercritical Fluids, 2004, 29: 87~96.
    [26] 高德勇,林春绵.超临界CO_2萃取可可脂与可可色素的试验研究[J].食品与发酵工业,1995,(3):16~20.
    [27] 潘国石,李端,叶文才,等.紫苏有效成分提取及生产工艺探讨[J].现代中药研究与实践,2003,17(2):39~40.
    [28] 吴朝霞,孟宪军,李兴霞,等.超临界萃取葡萄籽油及原花青素(OPC's)的初步探讨[J].食品科技,2005,(7):47~49.
    [29] 宿树兰,吴启南,欧阳臻,等.超临界CO_2萃取测定姜黄中姜黄素的实验研究[J].中国中药杂志,2004,29(9):857~860.
    [30] B. Gopalan, M. Goto, A. Kodama, et al. Supercritical carbon dioxide extraction of turmeric (Curcuma longa) [J]. Journal of Agricultural & Food Chemistry, 2000, 48 (6): 2189~2192.
    [31] G. Began, M.Goto, A. Kodama, et al. Response surfaces of total oil yield of turmeric (Curcuma longa) in supercritical carbon dioxide[J]. Food Research International, 2000, 33(5) : 341~345.
    [32] 杨承鸿,向智敏,姚煜东,等.姜黄超临界提取物的高效液相色谱分析[J].分析测试学报,2005,24(2):86~88.
    [33] 梁瑞红,谢明勇,施玉峰.紫草色素超临界萃取与有机溶剂萃取之比较[J].食品科学,2004,25(3):130~132.
    [34] 邵伟,唐明,熊泽.超临界CO_2萃取红曲色素的研究[J].中国发酵,2005,(7):22~25.
    [35] 樊镇棣,邓丹雯,余小林,等.SFE-CO_2萃取柑桔果皮精油的实验研究[J].食品科技,2006,10:293~295.
    [36] 李国章,于华忠,卜晓英,等.桑椹籽中黄酮的CO_2超临界流体萃取及抑菌作用研究[J].现代食品科技,2006,22(2):86~88.
    [37] 张敏,郑铁松,张羽.CO_2超临界流体萃取莲子心油最佳工艺条件的研究[J].食品科学,2006,27(10):319~322.
    [38] 王振宇,周芳.超临界CO_2提取大果沙棘油的工艺研究[J].食品研究与开发.2006,27(11):90~92.
    [39] 魏福祥,曲恩超.超临界CO_2从苹果渣中萃取苹果多酚的工艺研究[J].食品研究与开发,2006,27(7):60~63.
    [40] 王化田,龚刚明.高山红景天超临界CO_2萃取工艺的初步研究[J].食品科技2006,10:92~94.
    [41] K. P. Johnston, M. J. Clarke, et al. Water-in-Carbon Dioxide Microemulsions: An Environment for Hydrophiles Including Proteins[J]. Science,1996,21:624.
    [42] Ryoji Noyori. Pursuing practical elegance in chemical synthesis [J]. Chem Commun (Camb), 2005, (14):1807~1811.
    [43] P. G. Jessop, T. Ikariya, R. Noyori. The Selectivity for Hydrogenation or Hydroformylation of Olefins by Hydridopentacarbonylmanganese(I)in Supercritical Carbon Dioxide[J]. Organmetallics, 1995, 34: 1~9.
    [44] P. G. Jessop, T. Ikariya, R. Noyori._Homogeneous Catalytic Hydrogenation of Supercritical Carbon Dioxide. Nature, 1994, 368: 31~233.
    [45] P. G. Jessop, T. Ikariya, R. Noyori._Homogeneous Catalysis in Supercritical Fluids. Chem. Rev., 1999, 99: 475~493.
    [46] P. G. Jessop, F Joo, C-C Tai._Recent Advances in the Homogeneous Hydrogenation of Carbon Dioxide. Coord[J]. Chem. Rev., 2004, 248: 2425~2442.
    [47] S. Jaaskelainen, M. Haukka. Appl. Catal., A, 2003, 247(1): 95~100.
    [48] Andreas Bosmann, Giancarlo Francio, Edo Janssen, et al. Activation, Tuning, and Immobilization of Homogeneous Catalysts in an Ionic Liquid/Compressed CO_2 Continuous-Flow System[J]. Angewandte Chemie International Edition, 2001, 40(14): 2697~2699.
    [49] D. Bonafoux, Z. H. Hua, B. H. Wang, et al. Design and synthesis of new fluorinated ligands for the rhodium-catalyzed hydroformylation of alkenes in supercritical CO_2 and fluorous solvents[J]. Journal of Fluorine Chemistry, 2001, 112(1): 101~108.
    [50] J I Dongfeng, DO Herui, LU Xiaobing, HE Ren, HUAN G Xianning ZHAO Weisheng. Activation of CO_2 and Synthesis of Ethylene Carbonate[J].分子催化, 1999, 13(2): 140~142.
    [51] 吕小兵,张华,何仁.超临界条件下碳酸乙烯酯的均相催化合成[J].高等学校化学学报,2002,23(12):2309~2312.
    [52] 季东锋,窦和瑞,吕小兵.CO_2的催化活化及其碳酸乙烯酯的合成(英文)[J].分子催化.1999(2):140~142.
    [53] 冯豫川,陈敏,赵焱,等.CO_2超临界流体作反应物用于皮革脱灰的研究[J].四川联合大学学报(工程科学版),1999,3(3):37~42.
    [54] 廖隆理,冯豫川,李志强.CO_2超临界流体无污染制革技术研究(Ⅰ):超临界流体的基本原理及应用[J].中国皮革,1998,27(4):3~5.
    [55] 廖隆理,冯豫川,陈敏,等.CO_2超临界流体无污染制革技术研究(Ⅱ):CO_2超临界流体清洁化制革的可行性探索[J].中国皮革,1999,28(9):14~16.
    [56] 张伟娟,冯豫川,廖隆理,等.二氧化碳超临界流体代替作介质铬鞣及其机理的研究(Ⅰ)[J].皮革科学与工程,2003,13(4):8~11.
    [57] 开吴珍.“超临界流体染色”技术进展及其原理[J].纺织信息周刊.2005,255(15):15.
    [58] M. J. Drews, C. Jordan. The Effect of Supercritical CO_2 Dyeing Condition on the Morphological of Polyester Fibers[J]. T.C.C., 1998, 30(6):13~20.
    [59] W. A. Hendrix, Progress in Supercritical CO2 Dyeing[J]. J. Ind. Text. 2001, 31(1):43.
    [60] E. Bach, E. Cleve, E. Schollmeyer, et al. and Koerner, Experience with the Uhde CO2-Dyeing Plant on Technical Scale. Part1: Optimization Steps of the Pilot Plant and First Dyeing Results[J]. Melliand Int.1998, 3:192.
    [61] D. Knittel, W. Saus and E. Schollmeyer. Application of Supercritical Carbon Dioxide in Finishing Processes[J]. J. Text. Inst, 1993(84):534~552.
    [62] D. Knittel, H. J. Bushmann. Recovery of Wool Grease by Scouring of Raw Wool with Liquid Supercritical Carbon Dioxide[J]. Textilveredlung, 1991, 26(6): 192~194.
    [63] W. Sans, D. Knittel, E. Schollmeyer. Water-free Dyeing of Synthetic Material-dyeing in Supercritical Carbon Dioxide[J]. International Textile Bulletin, 1993, 39(1):20~22.
    [64] 胡望明,冯耀声,楼凡.织物的介质染色初探[J].印染,1995,21(5):12~14.
    [65] M. J. Drews, C. Jordan. The Effect of Supercritical CO_2 Dyeing Conditions on the Morphology of Polyester Fibers[J]. Textile Chemist and Colorist, 1998(6):13~20.
    [66] J. von Schnitzler, R. Eggers. Mass Transfer in Polymers in A Supercritical CO_2-atmosphere[J]. Journal of Supercritical Fluids. 1999(16): 81~92.
    [67] 崛照夫.超临界二酸化炭素流体中染色[J].加工技术,2000(9):12~17.
    [68] 崛照夫.超临界二酸化炭素流体中染色[J].加工技术,2000(10):57~60.
    [69] S. K. Liao, Y. G. Ho, P. S. Chang. Dyeing of Nylon66 with a Disperse-reactive Dye Using Supercritical Carbon-dioxide as the Transport Medium[J]. JSDC, 2000(12): 403~407.
    [70] M. Rita De Giorgi, En,zo Cadoni, Debora Maricca, et al. Dyeing Polyester Fibres with Disperse Dyes in Supercritical CO_2[J]. Dyes and Pigments, 2000(45): 75~79.
    [71] Y.Kawahara等著,吴霞玲译,宋心远校.聚对苯二甲酸乙二醇酯纤维在超临界二氧化碳中的染色行为[J].国外纺织技术,2002,10:13~15.
    [72] Jae Woock Lee, Min Woo Park, Hyo Kwang Bae. Measurement and Correlation of Dye Solubility in Supercritical Carbon Dioxide[J]. Fluid Phase Equilibria, 2001, 179: 387~394.
    [73] Min-Woo Park, Hyo Kwang Bae. Dye Distribution in Supercritical Dyeing with Carbon-dioxide[J]. Journal of Supercritical Fluids. 2002(22): 65~73.
    [74] B. Gebel, W. Saus, D. Knittel, et al. Dyeing Natural Fibers with Disperse Dyes in Supercritical Carbon-dioxide[J]. Textile Res. J. 1994(7):371~374.
    [75] A. S. Ozcan, A. A. Clifford, K. D. Bratle, et al. Dyeing of Modified Cotton Fibers with Disperse Dyes from Supercritical Carbon-dioxide[J]. JSDC,1998(5/6):169~173.
    [76] A. S. Ozcan, A. A. Clifford, K. D. Bratle, et al. Dyeing of Cotton Fibres with Disperse Dyes from Supercritical Carbon Dioxide[J]. Dyes and Pigments, 1998, 36(2): 103~110.
    [77] Pier Luigi, Beltrame, Antonella Castelli, et al. Dyeing of Cotton in Supercritical Carbon Dioxide[J]. Dyes and Pigments, 1998, 39(4):335~340.
    [78] 杉浦和明.超临界二酸化炭素流体用无水染色方法[J].加工技术,1999(4):54~61.
    [79] A. Schmidt, E. Bach, E. Schollmeyer. Damage to Natural and Synthetic Fibers Treated in Supercritical Carbon Dioxide at 300 bar and Temperatures up to 160~C[J]. Textile Research Journal, 2002, 72(11):1023~1032.
    [80] A. Schmidt, E. Bach, E. Schollmeyer. The Dyeing of Natural Fibres with Reactive Disperse Dyes in Supercritical Carbon Dioxide[J]. Dyes and Pigments.2003, 56:27~35.
    [81] Shingo Maeda, Setsuaki Hongyou, Katsushi Kunitou. Dyeing Cellulose Fibers with Reactive Disperse Dyes in Supercritical Carbon Dioxide[J]. Textile Research Journal, 2002, 72(3):240~244.
    [82] 文会兵,戴瑾瑾.超临界CO_2分散染料染聚乳酸纤维的研究[J].印染,2006,23:11~13.
    [83] 廖隆理,冯豫川,陈敏,等.CO_2超临界流体介质中无污染制革技术研究(Ⅱ):CO_2超临界流体介质中的皮革染色研究[J].皮革科学与工程,1999,9(4):6~12.
    [84] 郑来久,刘晶,马东霞.纤维素纤维超临界CO_2染色机理研究[J].纺织学报 2004,25(2):11~13.
    [85] 马东霞,郑来久.超临界CO_2无水染色技术研究[J].印染助剂.2004,31(5):45~48.
    [86] 马东霞,郑来久,贾春学.麻织物超临界二氧化碳无水染色探讨[J].纺织导报.2005(1):51~54.
    [87] 马东霞,郑来久.天然纤维超临界CO_2染色工艺技术研究[J].上海纺织科技.2005,33(3):13~16.
    [88] 刘志伟,郑来久.羊毛织物超临界二氧化碳染色的研究[J].毛纺科技.2005(3):9~12.
    [89] 刘志伟,郑来久.丝织物超临界二氧化碳染色的机理探讨[J].丝绸.2005(10):25~27.
    [90] 刘志伟,郑来久.羊毛等离子体改性对超临界CO_2染色效果的影响[J].印染.2005(20):7~9.
    [91] 郑来久,刘志伟,季婷,等.超临界CO_2染色技术[J].化学工程.2006,34(9):71~74.
    [92] 刘元.二氧化碳超临界流体萃取概述[J].化工之友,2006,8:32~34.
    [93] 松田知子.超临界CO_2中酵素反应有用物质合成[J].THE CHEMICAL TIME,2005,196(3):813.
    [94] Hale S J. Supercritical fluid carbon dioxide cleaning of plutonium parts[R]. LA-UR-93-3103, 1993.
    [95] Craig M V, Tayor L S, Rubin J B. Supercritical fluid carbon dioxide cleaning of nuclear weapon components[R]. LA-UR-97-4420, 1997.
    [96] 张镜澄.超临界流体萃取.北京:化学工业出版社,2000.
    [97] F. Lavanchy, S. Fortini, T. Meyer. A new tool for the study of polymerization under supercritical conditions[J]. Chimia, 2002, 56:126~131.
    [98] 吴卫生,马紫峰,王大璞.超临界流体技术发展动态[J].化学工程,2000,28(5):45~49.
    [99] 郭继志,袁渭康.初议超临界条件下的化学反应[J].化工进展,2000(3):8~13.
    [100] 廖传华,黄振仁.超临CO_2流体萃取技术—工艺开发及其应用[J].北京:化学工业出版社,2004,15~17.
    [101] 陈维杻.超临界流体萃取的原理和应用[M].北京:化学工业出版社,1998.
    [102] 朱廷风,廖传华.超临界CO_2萃取过程的数学模拟[J].过滤与分析,2003,13(4):5~8.
    [103] 朱自强.超临界流体技术、原理和应用[M].北京:化学工业出版社,2000.
    [104] C. Roy, M. Goto. Supereritical fluid extraction oils from ginger root [J]. Ind Eng Chem Res,1996, 35: 607~611.
    [105] 银建中,原华山,李志义等.超临界流体萃取固态物料的动力学模型[J].化学工业与工程技术,2001,22(5):14~18.
    [106] Schollmeyer E, Knittel D, Buschmann H-J, et al. Farbecerfahren. Dyeing Process[P]. DE 3906724 A1, D 06 P1/100; Germany: 13.09.1990.
    [107] 汪群拥,尹占兰.超临界流体二氧化碳——溶剂绿色化.现代物理知识,总96期,16,(6):35~37.
    [108] M. C. RANCE, E. L. Cussler. Fast fluxes with supercritieal solvents[J] . AIChE J, 1974, 20 (2): 353~356.
    [109] 周秋宝,余志成.姜黄染料在毛织物染色中的应用[J].毛纺科技,2003(4):25~28.
    [110 顾军,韩香,顾欣.姜黄素的基础药理作用[J].天津药学,2000,12(2):5~6.
    [111] 林明霞,吴坚,赵明.羊毛织物的天然植物染料姜黄染色研究[J].印染,2004(10):4~7.
    [112] JEN-KUN LIN, SHOEI-YN, LIN-SHIAU. Mechanisms of Cancer Chemoprevention by Curcumin. Proc. Natl. Sci. Count. ROC(B). 2001. 25(2): 59~66.
    [113] CAC Araujo, LL Leon. Biological Activities of Curcuma longa L.[J]Mem Inst Oswaldo Cruz, Rio de Janeiro, 2001, 96(5): 723~728.
    [114] Lin J K, Shin C A. Inhibitory effect of curcumin on xanthine dehydrogenase/oxidase by phoro12122myristate2132acetate in NIH3T3 cells[J]. Carinogenesis, 1994, 15(8): 1717~1721.
    [115] Kunchandy E, Rao MNA. Oxygen radical scavenging acticity of Curcumin[J]. Int J Pharm, 1990,58(3): 237~240.
    [116] Gupta PK, Balasubrahmanyam L. The turmeric effect. World Patent Inormation.1998, 20: 185~191.
    [117] Berovic M, Habijanic J, Zore I, et al. Submerged cultivation of Ganoderma lucidum biomass and immunostimulatory effects of fungal polysaccharides[J]. J Biotechnol, 2003,103: 77-86.
    [118] Wei-Feng Chen, Shui-Ling Deng. Curcumin and its analogues as potentinhibitots of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the4-hydroxy-3-methoxyphenyl groups[J]. Free Radical Biology & Medicine, 2005, 9: 1~10.
    [119] 樊书旗,张保军,李春林.天然姜黄素及其在果蔬饮料中的应用[J].中国食品添加剂,2002(5):57~59,78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700