石灰—电絮凝耦合技术处理含重金属高酸铅锌冶炼废水的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅锌冶炼工业是有色金属行业中的高污染行业,除铅锌冶炼过程中提炼得到的少量金属之外,还包括其他有色金属,一般含有铅、锌、铬、铜、砷、汞、氟、氰等。由冶炼过程决定了铅锌冶炼废水具有水量大、重金属离子种类多、水质复杂多变、酸度大、污染强度大等特点。这些成分到环境中不易降解,只能通过另外的形式停留在环境中,不但造成金属资源的浪费,同时影响生态环境和人类健康,而铅锌冶炼又是有色金属冶炼行业的重要组成部分,是污染物产生的主要源头之一,因此,对铅锌冶炼行业的污水进行治理尤为重要。目前处理重金属铅锌冶炼废水的主要方法为化学沉淀中和法,尤其以中和沉淀法应用较为普遍。但是由于中和石灰法存在着种种缺陷,如出水重金属离子浓度较高、产生渣量大、脱水困难、二次污染等缺点。正是由于这些限制因素制约了其在铅锌冶炼废水中的应用,而电絮凝法具有重金属去除率高,产生渣量少且可以回收,沉淀絮凝脱水效果好等优点弥补了石灰中和法的缺陷。本文就是基于这一思路,用石灰电絮凝耦合技术处理重金属铅锌冶炼废水,并针对蒙自矿冶有限责任公司的实际需求进行工艺技术改造,石灰电絮凝耦合技术在技改中得到成功应用,主要内容如下:
     (1)通过石灰中和法、电絮凝法、石灰电絮凝法处理重金属效果比较和成本分析得到结论如下,石灰中和法在pH=10,搅拌反应时间为30min,搅拌强度为250r/min,并加入一定量的絮凝剂FeCl3得到最佳实验条件。电絮凝法在pH=9,极板电压为5V,极板间距为0.8cm,电解时间为40min,并进行pH=9的曝气处理得到最佳实验条件。石灰电絮凝法在pH=8,极板电压为2V,极板间距为1.2cm,电解时间为30min得到最佳实验条件。通过对这三种方法的最佳实验条件下,得到的三种方法的最佳处理效果的对比分析,得出石灰电絮凝法具有最佳的处理效果。通过对比三种方法的能耗、药品成本、设备成本,得出石灰电絮凝法具有较明显的成本优势。
     (2)从配位化学角度分析得到pH对Cu2+、Zn2+、Cd2+、Pb2+羟基离子形态的影响和pH值对Cu(OH)2、Zn(OH)2、Cd(OH)2、Pb(OH)2溶解度的影响。从电絮凝对重金属离子去除机理分析得到主要通过电荷中和作用、网捕作用和卷扫作用去除。并且简要分析了在极板阴极的重金属析出顺序和理论分析。
     (3)通过对蒙自矿冶有限责任公司的处理工艺改造,分析改造前后的出水处理效果,得到通过石灰电絮凝工艺改造后并后续加深度处理的出水能够达到地表水Ⅲ类标准,出水全部回用于生产。石灰电絮凝耦合工艺已成功应用于工程,对解决实际问题具有重要意义。
     总之,论文用石灰电絮凝耦合技术处理重金属铅锌冶炼废水是一种有效的处理方法并在蒙自矿冶有限责任公司技术改造上已得到成功应用,为解决冶炼废水处理提供了一种新方法、新手段和新思路。
Lead and zinc smelting industry is the high-polluting industries in non-ferrous metal industry,in addition to the lead and zinc smelting process to extract a small amount of metal, also including other non-ferrous metals, generally contain lead, zinc, chromium, copper, arsenic, mercury, fluoride, cyanide and so on. From the smelting process deciding lead and zinc smelting waste water with a large amount of water, many kinds of heavy metal ions, complex and changing water quality, high acidity, and pollution intensity feature. These components into the environment is not easy degradation, but can only stay another form in the environment, not only cause metal wastage of resources,but also affecting the ecological environment and human health. Lead and zinc smelting is an important part of the non-ferrous metal smelting industry, it is a major source of pollutants therefore,to treat lead and zinc smelting industry sewage is particularly important. Currently,the main method to deal with the heavy metals lead and zinc smelting waste water is chemical precipitation, particularly the application of neutralization sedimentation method is more common.Because of the existence of various defects in lime neutralization, such as higher concentration of heavy metal ions, resulting in large amount of slag,dewatering difficulties, produce secondary pollution, and other shortcomings. It is because of these constraints restrict its application in lead and zinc smelting waste water, electricflocculation method has high removal rate of heavy metal, resulting slag is less and can be recycled, good effect of precipitation flocculation dehydration and other advantages. This article is based on this idea, with lime electroflocculation coupled technology dealing with the heavy metals lead and zinc smelting waste water, to technological innovation, for the actual needs of the process in Mengzi Mining Co., Ltd. lime electroflocculation coupling technology has been successfully applied in the technological transformation, the main content is as follows:
     (1) By the effect of heavy metal removal rate and cost analysis with lime neutralization,electricflocculation,lime neutralization-electricflocculation method,the conclusions are as follows:At pH is10, stirring reaction time is30min, mixing intensity for250r/min, and a certain amount of flocculant FeCl3lime neutralization method reach best experimental conditions. At pH is9, the plate voltage is5V, the plate spacing is0.8cm, the electrolysis time of40minutes, and pH=9aeration treatment, electricflocculation method reach best experimental conditions. At pH is8, the plate voltage is2V, the plate spacing is1.2cm, the electrolysis time of30min neutralization-electricflocculation reach best experimental conditions. Through the three methods under best of the experimental conditions, the comparative analysis of the three ways to get the best treatment effect to get the best treatment of three ways and then comparative analysis, obtained the lime-electroflocculation has the best treatment effect,by contrast three methods of energy consumption, drug costs, equipment costs,obtained the lime electroflocculation method has a distinct cost advantage.
     (2) Analysis of the coordination chemistry point of view that pH effect on Cu2+, Zn2+, Cd2+, Pb2+hydroxyl ion form and effect of pH on the solubility of Cu(OH)2, Zn(OH)2, Cd(OH)2, Pb(OH)2. Removal mechanism of heavy metal ions from the electrolyticflocculation obtained mainly by charge neutralization effect and the role of the netting effect and the volume swept effect. And a brief analysis of the precipitation sequence of the heavy metal on plate cathode and theoretical analysis.
     (3) Through transformation of the treatment process in Mengzi Mining Co., Ltd, analysis the treatment effect of before and after the transformation,.through the transformation by lime-electricflocculation process, and follow-up and depth of processing,water can reach the surface water III standard, All the back water for the production.Lime-electricflocculation coupled technology have been successfully used in engineering, to solve practical problems has a great significance.
     In short, the paper with lime-electroflocculation coupled technology to deal with the heavy metals lead and zinc smelting waste water is an effective approach and by technological transformation has been successfully applied in Mengzi Mining Co., Ltd. Provides a new approach, new tools and new ideas to solve the smelting wastewater treatment.
引文
[1]张景来,王剑波,常冠钦等.冶金工业污水处理技术及工程实例[M].北京:化学工业出版社,2003.
    [2]边立槐,翟茹岭.冶金废水悬浮物分析中需要注意的几个问题[J].天津冶金,2006,4:49.
    [3]钱小青,葛丽英,赵由才.冶金废水处理与利用[M].北京:冶金工业出版社,2008.
    [4]SADOWSKI. Effect of biosorption of Pb(II),Cu(II) and Cd(II) on the zetapotential and flocculation of nodardiase [J], Minerals Engineering,2001,14:547-550.
    [5]H.wang, Shy-Jye, Lu Wen-Jang. Ion exchange in serrifluidized bed[J]. Industrial Engineering Chemistry Research,1995,34:1434-1437.
    [6]杨晓松,刘峰彪.高密度泥浆法处理铅锌冶炼综合废水[J].有色金属,2009,61:166-169.
    [7]明亮,张铭发.纳滤工艺对铅锌冶炼工业废水的回用处理[J].水处理技术,2010,36:110-113.
    [8]余勇,铅锌冶炼厂硫酸污水的处理工艺探讨[J].湖南有色金属,2001,17:39-40.
    [9]张铭发,明亮.铅锌冶炼废水深度处理试验研究[J].有色冶金设计与研究,2009,3:16-18.
    [10]张圣南.,铅锌冶炼烟气制酸净化工艺的污酸处理[J].技术与装备,2010,4:44-45
    [11]李迪汉,魏文武铅锌冶炼工业废水处理概况及发展动向研究[C].锌加压浸出工艺与装备国产化及液态铅渣直接还原专题研讨会论文集湖南114-118
    [12]张金成.,西北铅锌冶炼厂锌浸生艺的研究[J].甘肃有色金属,1998,3:2-8.
    [13]马进.,西北铅锌冶炼厂锌系统投产10周年回顾与展望[J].有色冶炼,2002,1:1-4.
    [14]邵霞,雷兆敏.真空掏槽在西北铅锌冶炼厂锌电解的应用与实践[J].甘肃冶金,30:87-89.
    [15]付丰连,物理化学法处理重金属废水的研究进展[J].广东化工2010,4 115-117
    [16]鲁栋梁,夏璐,温堡林,铁氧体法处理含铜、锌、镉重金属废水的实验研究[J].金属矿山2009,2 153-155
    [17]来风习,王九思,杨玉华铁氧体法处理重金属废水研究[J].甘肃联合大学学报2006,664-67
    [18]梁慧锋,生物吸附法处理重金属废水的研究[J].产业与企业2001,3119-122
    [19]邹照华,何素芳,韩彩芸等重金属废水处理技术研究进展[J].水处理技术2010,617-20
    [20]张建梅,重金属废水处理技术研究进展(综述)[J].西安联合大学学报2003,456-60
    [21]张永锋,许振良重金属废水处理最新进展[J].工业水处理2003,614-18
    [22]任洪强,陈坚,伦世仪,重金属生物吸附剂的应用研究现状[J].生物技术2000,233-36
    [23]邱珉.,铁碳微电解催化还原法处理铜冶炼废水中重金属离子的研究[D].云南:昆明理工大学硕士学位论文,2009.
    [24]罗发生,铁碳微电解絮凝耦合法处理铅锌冶炼废水的研究[D].云南:昆明理工大学硕士学位论文,2011
    [25]张宏伟,贾小慧.石灰法处理铅锌冶炼污水的工艺参数研究[J].有色冶金设计与研究,2008,29:30-32.
    [26]李迪汉.,铅锌冶炼烟气制酸废水处理工艺研究[J].湖南有色金属,2005,21:30-32.
    [27]黄婧,刘现荣.铁氧体法在废水处理中的应用.西南给排水[J],2004,26:20-21.
    [28]鲁栋梁,夏璐,温堡林.铁氧体法处理含铜、锌、镉重金属废水的实验研究[J].金属矿山,2009,392:153-156.
    [29]孟详和.,重金属废水处理[M].北京:化学工业出版社,2000.
    [30]张永锋,许振良.重金属废水处理最新进展[J].工业水处理,2003,23:1-4.
    [31]张建梅.,重金属废水处理技术研究进展(综述)[J].西安联合大学学报,2003,2:55-59.
    [32]严刚石灰混凝法处理重金属废水的实验研究[J].青海大学学报2009,413-17
    [33]Zhu Hong-tuo,wang Jun.Applicalion of a chip in treatment of wastewacer containing heavy metals[J].Industrial SafbtyaIld Dust Connol,2005,31(8):6-8.
    [34]Dabrowski A, Hubicki Z, Podkoseielny P. Selective removal of the heavy metal ions from waters and industrial wastewaters by ions exchange method[J]. Chmisphere,2004,56: 91-106.
    [35]Cordon Mc Kay, John F Porter. Equilibrium Parameters for the sorption of copper. Cadmium and zinc ions onto Peat Chem[J]. Tech.Biotechnol,1997,69:309-320.
    [36]Shukla S R, Jawed M. Column studies on metal ion removal by dyedcelluloic materials[J]. J. Appl. Polymer Sci.,1992,44:903-910.
    [37]李昌耀,胡敏捷,吴洪锋等石灰法处理磷化废水的试验研究[J].能源环境保护2006,12 26-29
    [38]谢红斌,分段中和法处理重金属废水的研究及应用[J].湖南有色金属2003,8 35-38
    [39]王学锋,朱桂芬,张会勇粉煤灰和石灰对土壤重金属污染的影响河[J].南师范大学学报2004.8133-136
    [40]李雪玲,刘俊峰,李培元石灰沉淀法除氟的应用[J].水处理技术2000,12359-361[J].
    [41]彭长宏,颜蓉,唐谟堂等石灰处理共沉淀废水的研究[J]工.业水处理2002,5 20-23
    [42]尔丽珠,石灰法处理高浓度含磷废水技术[J].电镀与精饰2008,5 39-41
    [43]张勇,张丽彬石灰法在处理金属表面磷化废水中的应用[J].工业安全与环保2006,3 28-31
    [44]董婧蒙,王里奥钟山等石灰石与石灰联合处理高浓度含磷废水[J].环境科学与管理2010,4 74-78
    [45]巫瑞中,石灰一铁盐法处理含重金属及砷[J].工业废水[J].江西理工大学学报2006,6 58-62
    [46]郑晨,石灰在处理水库水中的助凝作用水处理技术2009.7 64-67
    [47]李定龙,姜晟 重金属废水处理的方案比较研究[J].工业安全与环,2005,12 18-21
    [48]王琴,孙根行电化学法处理废水研究进展[J].电镀与环保2011,37-10
    [49]程青,电絮凝技术的应用有[J].色冶金设计[J].与研究2004,1267-69
    [50]张莹,龚泰石 电絮凝技术的应用与发展安全与环境工程2009,138-42
    [51]Giller KE, Witer E, McGrath S P. Toxicity of heavymetals to macroorganisms and microbial processes in agricultural soils:a review[J]. Soil Biology and Biochemistry,1998, 30:1389-1414
    [52]Baryla A,Laborde C,Montillet J L,TriantaPhylides C,Chagvardief P. Evaluation of lipid peroxidation as atoxicity bioassay for plants exposed to copper [J]. Environmental Pollution, 2000,109:131-135.
    [53]z.SADOWSKI.Effect of biosorption of Pb(II),Cu(II) and Cd(II) on the zetapotential and flocculation of nodardiase [J],Minerals Engineering,2001,14(5):547-550.
    [54]Dabrowski A, Hubicki Z, Podkoseielny P. Selective removal of the heavy metal ions from waters and industrial wastewaters by ions exchange method[J].Chmisphere,2004(56): 91-106.
    [55]Cordon Mc Kay,John F Porter.Equilibrium Parameters for the sorption of copper. Cadmium and zinc ions onto Peat Chem[J].Tech.Biotechnol,1997,69:309-320.
    [56]F A Lopez, M I Mamn. Removal of copper ions from aqueous solutions by a steel-making by-product[J]. Wafer Research,2003,37:3883-3890.
    [57]冯俊生,许锡炜,汪一丰电絮凝技术在废水处理中的应用[J].环境科学与技术2008,887-89
    [58]孙境蔚,电絮凝技术在废水处理中的应用[J].泉州师范学院学报2006,11 55-59
    [59]陈寒秋,电絮凝技术在锌冶炼废水处理中的应用[J].环境保护2010,325-28
    [60]El El-Shafey, CoxM, Pichugin A, et al. Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqueous solution[J]. Journal of Chemical Technology and Biotechnology,2002,77(4):429-436.
    [61]Perales-Perez, Oscar Tohji, Kazuyuki Umetsu, et al. Theory and practice of the removal of heavy-metal ions by their precipitation as ferrite-type compounds from aqueous solution at ambient temperature[J]. Metallurgical Review of MMIJ,2001,17 (2):137-179.
    [62]Lou Jie-Chung,Chang Chien—Kuei.Completely treating heavy metal laboratory waste liquid by an improved ferrite process[J].Separation and Purification Technology,2007,57: 513-518.
    [63]Smith B F,Robison T W. Water-soluble polymers for recovery of metal ions from aqueous streams[P]. US 5766478,1998.
    [64]Demmin T R.Uhnch K D.Timothy R.Electrochemical treatment of textile wastewater[C] AATCC.Book of Paper,1998.
    [65]Matis K A,Treatment of induslrial liquid waste by electroflation[J].Wat Pollut Control,1980,19(2).
    [66]马前,张小龙国内外重金属废水处理新技术的研究进展[J].环境工程学报2007,710-14
    [67]余志,范跃华水处理电絮凝技术的应用与发展[J].环保技术2006,325-27
    [68]黄芬,涡流电凝聚接触过滤一体化净水器处理生活污水的研究[D].湖北武汉科技大学硕士学位论文2007
    [69]ShermanM,JohnG,ThomasE.Remediation of Cr(VI) and Pb(II)aqucous solutions using supported,nanoscale zero-value lron[J].Environment science & Technology,2000,34(12): 2564-2569.
    [70]DavidW.B., et al. In situ remediation of Cr (VI) contami-nated ground water using permeable reactive walls:Labora-tory studies[J]. Environ. Sci.& Technol.,1997,31 (23):3348-3357.
    [71]Ahmet Sar, Mustaffa Tuzen. Biosorption of As(III) and As(V) from aqueous solution by macrofungus (Inonotus hispidus) biomass:Equilibrirm and kinetic studies[J]. Journal of Hazardous Materials,2009,164:1372-1378.
    [72]王云燕,柴立元,王庆伟,舒余德.重金属离子(Zn2+,Cu2+,Cd2+,Pb2+)-水系羟合配离子配位平衡研究[J].中国有色金属学报,2008,6(18):183-191.
    [73]常皓,柴立元,周敏.Cu2+-H2O系羟合配离子配位平衡研究[J].矿冶工程2007,27(6):37-40.
    [74]DingwangChen,K.RayAjay. Removal of toxic metal ionsfrom wastewater by semiconductor pho cocatalysis [J].Chemical Engineering science,2002,56:1561-1570.
    [75]柴立元;常皓;王云燕等Cd~(2+)-H_2O系羟合配离子配位平衡[J].中国有色金属学报2007,3156-159
    [76]Drasa P. Siantar et al. Treatment of 1,2-dibromo-3-chloropropane and niprate-contaminated water with zero-valent iron or hydrogen/palladium catalysts[J]. Wat.Res,1996,30 (10):2315-2322
    [77]Fengjunli.Treatmet of Wastewater Containing Hexavalent Chromium by Catalytic Iron Inner Electrolysis[J].Tcchnology of water Treatmcnt,2005,3(17):42-45.
    [78]仲维卓,罗豪甦,赫崇君等枝晶结晶形貌形成机理[C].第14届全国晶体生长与材料学术会议论文集,2006.
    [79]载树桂,环境化学[M].高等教育出版社,1995.
    [80]程爱华,王林红水处理中电化学方法及其组合工艺的开发与应用[J].西安建筑科技大学学报,2006,38(6):1-5.
    [81]贾建丽,何绪文,车冉等.电解法去除高浓度氨氮废水工艺研究[J].九江学院学报,2009,(6):53-56.
    [82]陈贺添,徐勇军,陈发枝采用电解工艺处理皮革废水的研究[J].化工技术与开发,2010,39(10):47-48.
    [83]刘立新,赵晓非,胡仪等.电化学絮凝与化学絮凝法联合处理油田污水的实验分析[J].大庆石油学院学报,2009,2:49-51.
    [84]乐波,麻敏华,陶媛等直流电絮凝法处理印染废水的研究[J].高电压技术,2005,31(10):49-51.
    [85]崔晏,电絮凝/活性炭吸附法处理感光废水的研究[D].重庆大学硕士学位论文,重庆,2005
    [86]李杰,电絮凝法处理毛毯印染废水的研究[D].合肥工业大学硕士学位论文,安徽,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700