基于森林碳汇信息的福建省低碳发展研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低碳发展是适应与减缓全球气候变化、实现人类社会可持续发展的重要理念与行动。森林作为陆地生态系统最主要的碳汇,是低碳发展的重要有机组成部分。估算我国区域尺度森林碳汇信息,进行经济发展与碳收支数量分析和低碳发展评价,有助于深刻认识当前森林碳汇在我国区域低碳发展中的重要作用,对于开展森林“增汇”行动促进区域可持续发展具有重要意义。对此,本论文在低碳发展理念的指导下,以福建省为例开展了以下主要研究:
     (1)森林碳汇估算。采用耦合遥感的过程机理模型BEPS(BorealEcosystem Productivity Simulator)估算福建省森林净初级生产力(NPP)。针对山区地形影响问题,创新性地提出了地形调节植被指数(TAVI)提高BEPS模型估算森林NPP的精度。研究结果表明,福建省森林NPP全年平均值为587.13gC/m2.a,全年累计达到46.77×106tC;福建省森林NPP空间分布与海拔密切相关,并与农民问题联系紧密。
     (2)经济发展与碳收支数量分析。通过对福建省各县市人均GDP与人均森林净生态系统生产力(NEP)、人均能耗碳排放、人均碳平衡量的数量分析,表明福建省大约45%的县市属于“碳汇型发展体”;人均碳平衡量与人均GDP表现为“U曲线发展形态”,而非环境库兹涅茨曲线关系;“U曲线漂移假说”推理认为随着低碳发展的不断推进,“U曲线关系”会向“0碳平衡量——高GDP”方向漂移,并逐步实现地区贫富差距的缩小。
     (3)低碳发展评价。根据低碳发展本质特征,从“经济发展、碳收支与社会和谐”三分量构建福建省低碳发展评价指标体系,采用熵值——模糊层次分析法确定评价指标权重,进行福建省各县市低碳发展评价与排序;提出“效度指数”分析不同评价指标对低碳发展评价结果的“作用力”。结果表明,武夷山市低碳发展指数(LCDI)最高;第三产业比重、人均森林NPP与人均能耗碳排放三项评价指标对福建省低碳发展指数的“作用力”较大。
     (4)森林“增汇”推进低碳发展建议。根据福建省低碳发展分析与评价结果,建议开展森林碳汇生态补偿、发展特色低碳森林产业、淡化“清洁发展机制”下森林碳汇交易等森林“增汇”措施,推进福建省低碳发展。
Low carbon development is the vital strategy to adapt and mitigate globalclimate change, and promote sustainable development of human being society.The forest, as the most important carbon sink, plays an important role in theglobal carbon cycle, and becomes the cost-effective solution to absorb CO2from atmosphere presently. It is valuable to obtain the low carbon developmentinformation before decision-making in regional sustainable development. Then,the forest carbon sink simulation, and low carbon development analysis andassessment in Fujian Province, China were accomplished, under the guidance oflow carbon development concept.
     Firstly, forest net primary productivity (NPP) was simulated by borealecosystem productivity simulator (BEPS) integrated with remote sensinginformation. A novel topography-adjusted vegetation index (TAVI) wasproposed in this study to eliminate the topographic effect in remote sensingimage from rugged terrain, and improve forest NPP simulation accuracy byBEPS. The final simulated result from both BEPS and TAVI showed that theannual average forest NPP of Fujian Province, China was587.13gC/m2.a, andthe annual total forest NPP reaches46.77×106tC. And the spatial analysisindicated the forest NPP is highly correlated with elevation.
     Secondly, scatter plot analysis between economy development and carbonbudget was studied. The analysis results showed that there is “U” curverelationship between per capita carbon balance amount and per capita GDP, butnot environmental Kuznets curve (EKC) relationship. And about45%countiesor cities in Fujian Province belong to “carbon sink development cell”. Moreover,the “U curve drift hypothesis” was put forward, which means the “U” curve maymove to the “0carbon balance amount-high GDP” zone, and the incomedifference between regions may minimize with the progress of regional lowcarbon development.
     Thirdly, the low carbon development assessment index framework wasconstructed according to “economy development, carbon budget and social harmony”3dimensions. Then the low carbon development index (LCDI) ofFujian Province, China was computed with the entropy-fuzzy analytic hierarchyprocess (FAHP) method, and the effect of assessment indices was analyzed also.Assessment results demonstrated that the LCDI was principally determined bythese3indices: percentage of tertiary industry, per capita forest NPP and percapita energy consumption carbon releases; and Wuyishan city get the highestLCDI score.
     Finally, several countermeasures to increase forest carbon sinks in FujianProvince, China were suggested, which includes forest carbon sinks eco-compensation, development of low carbon forest industry and rational treatmentthe forest carbon trade under “clean development mechanism (CDM)”.
引文
[1] Virgilio, N. and S. Marshall. Forest carbon strategies in climate change mitigation:confronting challenges through on the-ground experience. The Nature Conservancy.Arlington, Virginia.2009.
    [2]秦大河.应对全球气候变化防御极端气候灾害.求是杂志,2007(8):51-53.
    [3] Hitz S., Smith J.. Estimating global impacts from climate change. GlobalEnvironmental Change,2004(14):201–218.
    [4]雷Wen,查尔斯A..全球气候变化及其影响.水科学进展,2003,14(5):667-674.
    [5] Intergovernmental Panel on Climate Change (IPCC),2007b. Summary forpolicymakers. In: Climate Change2007: Synthesis Report. Contribution of WorkingGroups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel onClimate Change,[CoreWriting Team, Pachauri, R.K. and Reisinger, A.(Eds.)], Geneva,Switzerland.
    [6] Intergovernmental panel on climate change.大气中二氧化碳、甲烷和氧化亚氮的变化.[2010-6-16].http://www.ipcc.ch/publications_and_data/ar4/wg1/zh/tssts-2-1-1.html
    [7] Department of Trade and Industry (DTI). UK Energy White Paper: Our energy future—creating a low carbon economy. London: TSO,2003.
    [8]庄贵阳.中国经济低碳发展的途径与潜力分析.国际技术经济究,2005,8(3):8-12.
    [9]“2050Japan Low-Carbon Society”Scenario team. Japan Scenarios and Actionstowards Low-Carbon Societies.[EB/OL].[2008-5-28]. http://2050.nies.go.jp/material/2050-LCS-Scenarios-Actions-English-080715.pdf.
    [10]刘志林,戴亦欣,董长贵,等.低碳城市理念与国际经验.城市发展研究,2009,16(6):1-7.
    [11]辛章平,张银太.低碳经济与低碳城市.城市发展研究,2008,15(4):98-102.
    [12]世界自然基金会(WWF).上海、保定入选WWF低碳城市发展项目试点.
    [2008-1-28]. http://www.wwfchina.org/wwfpress/presscenter/pressdetail.shtm?id=613.
    [13]夏堃堡.发展低碳经济,实现城市可持续发展.环境保护,2008(2A):33-35.
    [14]仇保兴.我国城市发展模式转型趋势——低碳生态城市.城市发展研究,2009,16(8):1-6.
    [15]李克欣.低碳城市建设的初步思考.中国科技财富,2009(7):94-99.
    [16]中国投资.城市低碳发展路径实例.[2011-4-14].http://www.chinainvestment.com.cn/WWW/NewsInfo.asp?NewsId=3627
    [17]普雷斯科特.低碳经济遏制全球变暖——英国在行动.环境保护,2007(6A):74-75.
    [18]国家发展和改革委员会能源研究所课题组.中国2050年低碳发展之路——能源需求暨碳排放情景分析.北京:科学出版社,2009.
    [19]新华网.中华人民共和国可再生能源法(全文).[2005-3-1].http://www.china.com.cn/chinese/law/798072.htm
    [20]国务院.国务院关于印发中国应对气候变化国家方案的通知.中华人民共和国国务院公报,2007(20):12-32.
    [21]《气候变化研究进展》编辑部.《中国应对气候变化的政策与行动》白皮书发表.气候变化研究进展,2008,4(6):335.
    [22]新华网.国务院会议研究决定我国控制温室气体排放行动目标.[2009-11-26].http://news.xinhuanet.com/politics/2009-11/26/content_12544697.htm
    [23]中国广播网.政协1号提案:把握机遇走中国特色低碳发展道路.[2008-03-04].http://news.sohu.com/20100304/n270589381.shtml.
    [24]李怒云.中国林业碳汇.北京:中国林业出版社,2007, p6-7.
    [25]陈泮勤,黄耀,于贵瑞.地球系统碳循环.北京:科学出版社,2004, p103-126.
    [26]闫学金,傅国华.海南森林碳汇量初步估算.热带林业,2008,36(2):4-6.
    [27]周国模,吴家森,姜培坤.不同管理模式对毛竹林碳贮量的影响.北京林业大学学报,2006,28(6):51-55.
    [28]尉海东,马祥庆.中亚热带不同发育阶段杉木人工林生态系统碳贮量研究.江西农业大学学报,2006,28(2):239–243.
    [29]郭乐东,周毅钟锡均,等.西江流域桉树生态系统碳贮量与碳汇功能经济价值评价.广东林业科技,2009,25(6):8-13.
    [30]张雄,张合平,刘聪.湖南主要针叶林类型乔木层碳汇功能及其经济价值估算.安徽农学通报,2009,15(10):198-200.
    [31] Lindner M., Karjalainen T.. Carbon inventory methods and carbon mitigationpotentials of forests in Europe: a short review of recent progress. Eur J Forest Res,2007(126):149–156.
    [32]方精云,郭兆迪,朴世龙,等.1981-2000年中国陆地植被碳汇的估算.中国科学D辑:地球科学,2007,37(6):804-812.
    [33] Box E. Estimating the seasonal carbon source-sink geography of a natural, steadystate terrestrial biosphere. Appl, Meteorol,1988(27):1109-1124.
    [34]王玉辉,周广胜,蒋延玲.兴安落叶松林生产力模拟及其生态效益评估.应用生态学报,2001,12(5):648-652.
    [35] Melillo J, McGuire A, Kicklighter D, et al. Global climate change and terrestrial netprimary production. Nature,1993(363):234-340.
    [36] Sellers P, Mintz Y, Sud Y, et al. A simple biosphere model (SiB) for use withingeneral circulation models. Journal of Atmospheric Science,1986(43):505-523.
    [37] Denning A., Collatz G., Zhang C., et al.Simulations of terrestrial carbon metabolismand atmospheric CO2in a general circulation model. Tellus,1996(48B):521-542.
    [38] Hunt J., Piper S., Nemani R., et al. Global net carbon exchange and intra-annualatmospheric CO2concentrations predicted by an ecosystem process model andthree-dimensional atmospheric transport model. Global Biogeochemical Cycles,1996,10(3):431-456.
    [39] Liu J., Chen J., Cihlar J., et al. A process-based boreal ecosystem productivitysimulator using remote sensing inputs. Remote Sensing of Environment,1997,62(2):158-175.
    [40] Chen J., Liu J., Cihlar J., et al., Daily canopy photosynthesis model through temporaland spatial scaling for remote sensing applications. Ecol. Model.,1999(124):99-119.
    [41] Liu J., Chen J., Cihlar J., et al. Net primary productivity mapped for Canada at1-kmresolution. Global Ecology&Biogeography,2002(11):115-129.
    [42] Esser G. Sensitivity of global carbon pools and fluxes to human and potentialclimatic impacts. Tellus,1987(39B):245-260.
    [43] Foley J. An equilibrium model of the terrestrial carbon budget. Tellus,1995(47B):310-319.
    [44] Verseghy D. CLASS: A Canadian land surface scheme for GCMs. I. soil model. Int. J.Climatol.,1991(11):111-133.
    [45] Leemans R, Battjes C, Kreileman E, et al. The land cover and carbon cycleconsequences of large scale utilization of biomass as an energy source. GlobalEnvironmental Change,1996,6(4):335-357.
    [46] Huang Y., Yu Y., Zhang W., et al. Agro-C: A biogeophysical model for simulation thecarbon budget of agroecosystems. Agricultural and Forest Meteorology,2009,1(149):106-129.
    [47]周广胜,张新时.自然植被净第一性生产力模型初探.植物生态学报,1995,19(3):193-200.
    [48]季劲钧.陆地表面物理和生物学过程年变程的模拟.全球变化与我国未来的生存环境(叶笃正主编),北京:气象出版社,1996, p248-258.
    [49]何勇,董文杰,季劲均.基于AVIM的中国陆地生态系统净初级生产力模拟.地球科学进展,2005,20(3):344-349.
    [50]延晓东,赵士洞.温带针阔混交林林分碳贮量动态的模拟模型I.乔木层的碳贮量动态.生态学杂志,1995,14(2):6-12.
    [51] Feng X., Liu G., Chen J., et al. Net primary productivity of china's terrestrialecosystems from a process model driven by remote sensing. Journal of EnvironmentalManagement,2007(85):563–573.
    [52]冯险峰.中国陆地生态系统净初级生产力与净生态系统生产力模拟研究:[博士学位论文].北京:中国科学院地理科学与资源研究所,2004.
    [53]江洪,汪小钦,孙为静.福建省森林生态系统NPP的遥感模拟与分析.地球信息科学学报,2010,12(4):580-586.
    [54]刘志斌,刘茂松,徐驰,等.江阴市植被净初级生产力及碳汇价值分析.南京林业大学学报(自然科学版),2007,31(3):139-142.
    [55]王培娟,孙睿,朱启疆,等.复杂地形条件下提高BEPS模型模拟能力的途径.中国图象图形学报,2006,11(7):1017-1025.
    [56]松下文经,杨翠芬,陈晋,等.广域空间尺度上植被净初级生产力的精确推算.地理学报,2004,59(1):80-87.
    [57]朴世龙,方精云,郭庆华.1982-1999年我国植被净第一性生产力及其时空变化.北京大学学报(自然科学版),2001,37(4):563-568.
    [58]朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力.植物生态学报,2001,25(5):603-608.
    [59]陈利军,刘高焕,励惠国.中国植被净第一性生产力遥感动态监测.遥感学报,2002,6(2):129-135.
    [60]朱文泉,潘耀忠,龙中华,等.基于GIS和RS的区域陆地植被NPP估算——以中国内蒙古为例.遥感学报,2005,9(3):300-307.
    [61] Bradford J., Hicke J., Lauenroth W.. The relative importance of light-use efficiencymodifications from environmental conditions and cultivation for estimation oflarge-scale net primary productivity. Remote Sensing of Environment,2005(96):246–255.
    [62]张杰,潘晓玲,高志强,等.干旱生态系统净初级生产力估算及变化探测.地理学报,2006,61(1):15-25.
    [63]王兆礼,陈晓宏.珠江流域植被净初级生产力及其时空格局.中山大学学报(自然科学版),2006,45(6):106-110.
    [64]卢玲,李新, Frank V..黑河流域植被净初级生产力的遥感估算.中国沙漠,2005,25(6):823-830.
    [65] Kuznets. Economic development and income inequality. American Economic Review,1955(45):1-28.
    [66] Grossman, G., Krueger, A.. Environmental impact of a north American free tradeagreement. NBER Working Paper, No.3914,1991.
    [67] Shafik N, Bandyopadhyay S. Economic growth and environmental quality: timeseries and cross-country evidence. Background Paper for World Development Report1992, World Bank, Washington, DC.1992.
    [68] Dinda S. Environmental Kuznets curve hypothesis: a survey. Ecological Economics,2004(49):431-455.
    [69]陈劭锋,刘扬,邹秀萍,等.二氧化碳排放演变驱动力的理论与实证研究.科学管理研究,2010,28(1):43-48.
    [70]刘扬,陈劭锋,张云芳,等.能源曲线:发达国家的实证分析.中国管理科学,2008,16(专辑):648-653.
    [71] Huang W., Lee G., Wu C.. GHG emissions, GDP growth and the Kyoto Protocol: arevisit of environmental Kuznets curve hypothesis. Energy Policy,2008(36):239-247.
    [72] Galeotti M., Lanza A., Pauli F.. Reassessing the environmental Kuznets curve forCO2emissions: a robustness exercise. Ecological Economics,2006(57):152-163.
    [73]张学刚,钟茂初.环境库兹涅茨曲线再研究—基于政府管制的视角.中南财经政法大学学报,2009(6):40-44.
    [74] Lantz V., Feng Q.. Assessing income, population, and technology impacts onemission in Canada: Where’s the EKC?. Ecological Economics,2006(57):229-238.
    [75]杨万平,袁晓玲.环境库兹涅茨曲线假说在中国的经验研究.长江流域资源与环境,2009,18(8):704-710.
    [76]彭水军,包群.经济增长与环境污染——环境库兹涅兹曲线假说的中国检验.财经问题研究,2006(8):3-17.
    [77]王瑞玲,陈印军.我国“三废”排放的库兹涅茨曲线特征及其成因的灰色关联度分析.中国人口·资源与环境,2005,15(2):42-47.
    [78]田晓四,陈杰,朱诚.南京市经济增长与工业“三废”污染水平计量模型研究.长江流域资源与环境,2007,16(4):410-413.
    [79]张学刚.环境库兹涅茨曲线理论批评综论.中国地质大学学报(社会科学版),2009,9(5):51-56.
    [80]钟茂初,张学刚.环境库兹涅茨曲线理论及研究的批评综论.中国人口·资源与环境,2010,20(2):62-67.
    [81]杨建华.浙江“倒U形曲线”拐点分析.浙江社会科学,2009(7):32-37.
    [82]王家庭,唐袁.我国区域间城市化水平不平衡的测度研究.城市发展研究,2009,16(10):7-12.
    [83]黄一绥,黄玲芬.福建省城市化与工业污染的关系研究.生态环境学报,2009,18(4):1342-1345.
    [84]郝海,踪家峰.系统分析与评价方法.北京:经济科学出版社,2007.
    [85]金菊良,王文圣,洪天求,等.流域水安全智能评价方法的理论基础探讨.水利学报,2006,37(8):918-925.
    [86] Saaty T. The analytic hierarchy process. New York, McGraw Hill,1980, Reprinted byRWS Publication, Pittaburgh,1996.
    [87]邓聚龙.灰色系统理论教程.武汉:华中理工大学出版社,1990.
    [88]刘思峰,党耀国,方志耕等.灰色系统理论及其应用.北京:科学出版社,1991.
    [89]邓乃扬,田英杰.数据挖掘中的新方法——支持向量机.科学出版社,北京:2004.
    [90]王强,沈永平,陈英武.多属性决策的支持向量机方法.系统工程理论与实践,2006(6):54-58.
    [91]张吉军.模糊层次分析法(FAHP).模糊系统与数学,2000,14(2):80-88.
    [92]陈华友,赵佳宝.模糊判断矩阵的相容性研究.运筹与管理.2004,13(1):44-47.
    [93]姬东朝,宋笔锋,喻天翔.模糊层次分析法及其在设计方案选优中的应用.系统工程与电子技术.2006,28(11):1692-1694.
    [94]曾胜,许佳,曾小军.基于模糊层次分析法的水泥混凝土路面板底脱空率的估算.中外公路,2009,29(4):54-57.
    [95]廉士乾,张力.基于模糊层次分析法的组织因素影响度识别.中国安全科学学报,2010,20(1):50-55.
    [96]肖良,夏玉成.改进模糊层次分析法在冲击矿压主控因素研究中的应用.矿业安全与环保,2010,37(1):45-46.
    [97]吕跃进.基于模糊一致矩阵的模糊层次分析法的排序.模糊系统与数学,2002,16(2):79-85.
    [98]张吉军.模糊一致判断矩阵3种排序方法的比较研究.系统工程与电子技术,2003,25(3):1370-1372.
    [99]兰继斌,徐扬,霍良安,等.模糊层次分析法权重研究.系统工程理论与实践,2006(9):107-112.
    [100]贾海林,余明高,崔志恒.基于模糊层次分析法的高校实验室火灾危险性评价.实验室研究与探索,2010,29(2):173-176.
    [101]张志勇,叶传奇,范科峰,等. DRM安全策略的模糊层次分析法效用评估及选取.通信学报,2009,30(10A):126-131
    [102]徐泽水.模糊互补判断矩阵排序的一种算法.系统工程学报,2001,16(4):311-314.
    [103]金菊良,吴开亚,李如忠,等.信息熵与改进模糊层次分析法耦合的区域水安全评价模型.水力发电学报,2007,26(6):61-66.
    [104]王健,肖文杰,王树文,等.用熵权模糊层次分析法的球载雷达模拟训练系统效能评估.电光与控制,2009,16(9):70-73.
    [105]郭鹏,梁燕华,朱煜明.基于组合权法的棕地再开发多层次灰色评价.运筹与管理,2010,19(5):129-134.
    [106]徐小元,黄强,景林艳,等.基于模糊四元联系数的区域水资源承载能力评价方法研究.西北农林科技大学学报(自然科学版),2010,38(3):223-228.
    [107]刘存东,何太蓉,苏维词.基于模糊AHP的长寿湖生态系统健康评价.水生态学杂志.2009,2(6):57-61.
    [108]李晓燕.基于模糊层次分析法的省区低碳经济评价探索.华东经济管理.2010,24(2):24-28.
    [109]傅利平,王中亚.基于模糊层次分析法的企业技术创新能力评价.科技管理研究.2010(3):136-138.
    [110]人民网.福建森林生态服务功能总价值7000多亿.[2010-10-31].http://politics.people.com.cn/GB/14562/13091223.html.
    [111]沈永平. IPCC WGI第四次评估报告关于全球气候变化的科学要点.冰川冻土,2007(29):1.
    [112]王庆一.可再生能源现状、前景与政策.中国电力,2002,35(1):68-73.
    [113]李长江.论可再生能源的开发与利用.生态经济,2002(12):43-46.
    [114]朱俊生.中国新能源和可再生能源发展状况.可再生能源,2003(2):3-8.
    [115]熊焰,王海峰,崔琳,等.我国海洋可再生能源开发利用发展思路研究.海洋技术,2009,28(3):106-108.
    [116]宋昭峥,丁宏霞,孙贵利,等.国外可再生能源发展现状与展望.现代化工,2007,27(5):61-64.
    [117]余寅,唐宏德,郭家宝.中国可再生能源发展前景分析.华东电力,2009,37(8):1306-1308.
    [118]李登伟,张烈辉,郭了萍,等.中国21世纪可替代能源和可再生能源.天然气工程,2006,26(5):124.
    [119] Thomas. Carbon dioxide capture for storage in deep geologic formations-result fromthe CO2capture project I. ELSEVIER, UK,2005.
    [120]曾荣树,孙枢,陈代钊,等.减少二氧化碳向大气层的排放——二氧化碳地下储存研究.中国科学基金,2004(4):196-200.
    [121]刘延锋,李小春,方志明,等.中国天然气田CO2储存容量初步评估.岩土力学,2006,27(12):2277-2281.
    [122]李小春,刘延锋,白冰,等.中国深部咸水含水层CO2储存优先区域选择.岩石力学与工程学报,2006,25(5):963-968.
    [123]黄德中,沈吉宝.建筑节能技术综述.太阳能学报,2007,28(6):682-688.
    [124] Omer A. Focus on low carbon technologies: the positive solution. Renewable andSustainable Energy Reviews.2008(12):2331-2357.
    [125]马林,徐文珍,陈莎,等.城市交通系统的节能降耗技术政策研究.城市发展研究,2009,16(8):18-23.
    [126] Nader S. Paths to a low-carbon economy—the Masdar example. Energy Procedia,2009(1):3951-3958.
    [127]江亿.建筑节能与生活模式.建筑学报,2007(12):11-15.
    [128]林德荣.森林碳汇服务市场化研究:[博士学位论文].北京:中国林业科学研究院,2005.
    [129] Farquhar G., Sharkey T.. Stomatal conductance and photosynthesis. Annual Reviewof Plant Physiology,1982(33):317-345.
    [130] Chen J. Spatial scaling of a remotely sensed surface parameter by contexture.Remote Sensing of Environment,1999(69):30-42.
    [131] Jordan C. Derivation of leaf-area index from quality of light on the forest floor.Ecology,1969(50):663-666.
    [132] Rouse Jr., Haas J., Shell R., et al. Monitoring vegetation systems in the Great Plainswith ERTS. Third earth resources technology satellite-1symposium, Vol.1, pp.309-317,December10-14,1973. Washington, D.C.: NASA Scientific and Technical InformationOffice.
    [133] Huete A., Liu H. An error and sensitivity analysis of the atmospheric-andsoil-correcting variants of the NDVI for the MODIS-EOS. IEEE Transactions onGeoscience and Remote Sensing,1994(32):897-905.
    [134] Kaufman Y., Tanré D. Atmospherically resistant vegetation index(ARVI) forEOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing,1992(30):261-270.
    [135]张仁华,饶农新,廖国男.植被指数的抗大气影响探讨.植物学报,1996,38(1):53-62.
    [136] Huete A. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment,1988(25):295-309.
    [137]田庆久,闵祥军.植被指数研究进展.地球科学进展,1998,13(4):327-333.
    [138]李小文,高峰,王锦地,等.二向性归一化植被指数:概念及应用.自然科学进展,2001,11(8):819-823.
    [139]唐世浩,朱启疆,王锦地,等.三波段梯度差值植被指数的理论基础及其应用.中国科学,2003,33(11):1094-1022.
    [140] Jiang Z., Huete A., Didan K., et al. Development of a two-band enhanced vegetationindex without a blue band. Remote Sensing of Environment,2008(112):3833-3845.
    [141] Teillet P. M., Guindon B., Goodeonugh D. G., On the slope-aspect correction ofmultispectral scanner data. Can. J. Remote Sens.,1982,8(2):1537–1540.
    [142] Riano D, Chuvieco E, Salas J, et al. Assessment of different topographic correctionsin Landsat-TM data for mapping vegetation types. IEEE Transactions on Geoscienceand Remote Sensing,2003,41(5):1056-1061.
    [143]黄微,张良培,李平湘.一种改进的卫星影像地形校正算法.中国图象图形学报,2005,10(9):1124-1128.
    [144]高永年,张万昌.遥感影像地形校正研究进展及其比较实验.地理研究,2008,27(3):467-477.
    [145]鲍晨光,范文义,李明,等.地形校正对森林生物量遥感估测的影响.应用生态学报,2009,20(11):2750-2756.
    [146] Jiang H., Wang X., Wang Q.. Vegetation monitoring in rugged terrain with one noveltopography-adjusted vegetation index (TAVI).20103rd International Congress onImage and Signal Processing (CISP2010), pp.2294-2297. October16,2010.(Accession number:20105213529683)
    [147] Jiang H., Wu B., Wang X.. Developing a novel topography-adjusted vegetationindex (TAVI) for rugged area. Proceedings of the2010IEEE International Geoscienceand Remote Sensing Symposium, pp.2075-2078, July25,2010.(Accession number:20110213559898)
    [148]江洪,汪小钦,吴波,等.地形调节植被指数构建及在植被覆盖度遥感监测中的应用.福州大学学报(自然科学版),2010,38(4):527-532.
    [149] Burgess D., Lewis P., Muller J. Topographic effects in AVHRR NDVI data. RemoteSensing of Environment,1995(54):233-232.
    [150] Deng Y., Chen X., Chuvieco E., et al. Multi-scale linkages between topographicattributes and vegetation indices in a mountainous landscape. Remote Sensing ofEnvironment,2007(111):122-134.
    [151]杨玉盛,陈光水,王义祥,等.格氏栲人工林和杉木人工林碳库及分配.林业科学,2006,42(10):43-47.
    [152]漆良华,刘广路,范少辉,等.不同抚育措施对闽西毛竹林碳密度、碳贮量与碳格局的影响.生态学杂志,2009,28(8):1482-1488.
    [153]周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布.林业科学,2004,40(6):20-24.
    [154]尉海东,马祥庆.不同发育阶段马尾松人工林生态系统碳贮量研究.西北农林科技大学学报(自然科学版),2007,35(1):171-174.
    [155] Williams M., Schwarz P., Law B., et al. An improved analysis of forest carbondynamics using data assimilation. Global Change Biology,2005(11):89–105, doi:10.1111/j.1365-2486.2004.00891.x.
    [156]宋离东,张江山.福建省森林固定CO2价值评估.云南环境科学,2005,24(3):24–26.
    [157]孙瑛,刘呈庆.可持续发管理导论.北京:科学出版社,2003.
    [158]鞠美庭,王勇,孟伟庆,等.生态城市建设的理论与实践.北京:化学工业出版社,2007.
    [159]中国科学院可持续发展战略研究组.2009中国可持续发展战略报告——探索中国特色的低碳道路.北京:科学出版社,2009.
    [160]王雄.赤峰市森林资源——环境——经济复合系统可持续发展动态评价及预警:[博士学位论文].内蒙古:内蒙古农业大学,2007.
    [161]蒋耀.基于综合评价理论的区域可持续发展研究:[博士学位论文].上海:上海交通大学经济与管理学院,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700