太原市西峪煤矿二水平采煤矿井涌水数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井涌水量是指在矿山建设和生产过程中单位时间流入矿井的水量。它是矿山设计部门确定排水设备和制定防治水措施的主要依据,也是确定矿床水文地质条件复杂程度的指标之一。矿井涌水是生产和建设中要重点解决的问题,矿井涌水量预测的准确与否对于防止矿井突水、淹井等事故,保障矿山生产安全,降低生产成本有重要意义。本文在了解国内外涌水量预测的基础上,以太原市西峪煤矿为研究区探讨了涌水量预测问题。
     本文研究对象西峪煤矿是山西省的主要煤矿之一,位于太原市西南边山,形状呈菱形,面积约10.5km2。一水平和二水平上组煤层已经开采完,现在全面开采二水平中下组煤层。二水平标高+650m,开采深度多在+700m标高以下,开采的最低标高在+430m左右。奥陶系峰峰组含水层为第一个间接底板充水的主要含水层,峰峰组的水量大且不易疏干,而奥陶系峰峰组岩溶水静水位标高高于二水平的水平标高,因此二水平开采属带压开采,二水平中下组煤层具有潜在的危险性。特别在水文地质条件比较复杂,断裂构造发育部位,属间接底板岩溶裂隙含水层充水的水文地质条件中等-复杂类型。因此为了保证采煤工作的顺利进行,要预测峰峰组正常涌水量,制定合理的水防治措施,防止突水事故的发生。
     本文通过分析研究区域的水文、气象、地形地貌以及水文地质等条件,对水文地质条件进行概化,参数分区,利用Visual Modflow软件建立数学模型;并且根据抽水试验的资料对模型进行参数修正和识别校验,以确认数学模型与实际模型等价相似,保证模型的可用性和计算的准确性;根据已知的水文地质条件对奥陶系峰峰组涌水量采用数值模拟法进行预测。
     本文利用研究区临界突水系数,求出安全疏干水位并且通过不断改变涌水量大小,使地下水位保持在安全疏干水位之下,此时的涌水量即为所求。通过涌水量的调试预测达到安全疏干水头的时间以及达到疏干水头时在丰水年、平水年和枯水年条件下的不同涌水量。
Mine discharge is the inflow water of unit time flowing into mine during the process of mine production and mine construction. It is the main gist of determining the drainage facilities and prophylactico therapeutic measures of water for department of mine designing and is also one of the key indexes to estimate the complexity of hydrogeology condition. Mine discharge is the keystone safety to solve in mining production and mine construction. Forecasted the mine discharge exactly have important meaning for preventing mine water inrush,mine flooded and other malignant mine accidents. It also has important meaning for reducing production cost and ensuring safe production. The paper discussd the matter with the study area of Xiyu mine in Taiyuan according to realize the internal and overseas forecasting mine discharge.
     The paper’s study object Xiyu coal mine is one of the main mine in Shanxi, located the southwest of Taiyuan, it’s acreage about 10.5 km2. The upside coal measures of level one and level two had been mined, now mine the midst and underside roundly. The level two’s water table is 650m, the depth mostly under 700m, the lowest is about 430m. Ordovician’s water is the main water of the first indirect soleplate overflow, fengfeng’s water is not easy to discharge, and it’s static state water level also higher than level two. The exploitation of level two is under press, the mine of midst and underside has the danger of overflow. Especially at the place of complex condition and rupture. It’s the type of midding-complex. Therefore forecast the mine discharge of fengfeng to ensure mine work can process successfully, set down the measure logically to prevent the overflow.
     The paper analysed the hydrology, weather, landform and physiognomy, analysed hydrogeology condition, ploted parameter, established mathematical model by Visual Modflow. Checked parameter and model based on data of pump test, to make sure the mathematical model and real model conformed, advanced usability and veracity. Adopt the numerical simulation to forecast the mine discharge .
     Gain the safe water level by excess modulus, charge mine discharge make sure that the water table under safe water level. Forcast the mine discharge in normal rainfall, more rainfall and less rainfall when they are under safe water table.
引文
[1]《采矿手册》,冶金工业出版社, 1991.
    [2]郑世书,胡友彪等.专门水文地质学[M].中国矿业大学出版社, 1999.
    [3]钟亚平.开滦煤矿防治水综合技术研究[M].北京:煤炭工业出版社, 2001.
    [4]孙抦正.地下水流的数学模型和数值方法[M].地质出版社, 1981.
    [5]邵爱军.煤矿地下水与底板突水[M].地震出版社. 2001-06.
    [6]房佩贤,卫中鼎,廖资生.专门水文地质学[M].地质出版社. 2002.
    [7]丁继红,周德亮,马出忠.国外地下水模拟软件的发展现状与趋势[J].勘察科学技术, 2002(1).
    [8]李兴高,刘维宁.隧道渗涌水量的随机模型预测[J].中国安全科学学报, 2002, 12(4): 63-67.
    [9]武强,董东林,石占华等.可视化地下水模拟评价新型软件系统(Visual Modflow)与矿井防治水[J].煤炭科学技术, 2000, 28(2): 21-23 .
    [10]彭涛,詹松.三维地下水数值模拟方法在基坑涌水量预测中的应用——以广州地铁某基坑为例[J].工程勘察, 2005, 33(3): 20-23.
    [11]薛禹群,吴吉春.地下水数值模拟在我国——回顾与展望[J].水文地质工程地质, 1997, 41(4): 21-24.
    [12]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社, 1998.
    [13] Borja R I. Free boundary,fluid flow,and seepage forces in excavations[J]. Journal of Geotechnical Engineering, 1992, 118(1): 125-145.
    [14] Ou C Y, Asce A M, Chiou D C, et al. Three-dimensional finite element analysis of deep excavations[J]. Journal of Geotechnical Engineering, 1996, 122(5): 337-345.
    [15] Sharif N H, Wiberg N E, Levenstam M. Free surface flow through rock-fill dams analyzed by FEM with level set approach[J]. Computaional Mechanics, 2001, 27(3): 233-243.
    [16] Lee K K, Leap D I. Simulation of a free-surface and seepage face using boundary-fitted coordinate system method[J]. Journal of Hydrology, 1997, 196(1-4): 297-309.
    [17]骆祖江,付延玲.模型技术在地下水系统动态预测中的应用[J].工程勘察, 1997, 5: 29-33.
    [18]骆祖江,刘昌军,翟成松,等.深基坑降水疏干过程中三位渗流场数值模拟研究[J].水文地质工程地质, 2005, 32(205): 48-53.
    [19]张有天,张武功.半无限域渗流问题的边界元法[J].水力学报, 1981, 4: 8-17.
    [20] Brebia C A. The Boundary Element Method for Engineer[M]. London: Pentech Press, 1978.
    [22]周玉新,周志芳.有限分析法在排土场渗流分析中的应用[J].金属矿山, 2001, 10: 18-21.
    [22]周志芳,李艳.复杂岩体地下水运动问题的有限分析法[J].水科学进展, 1997, 8(3): 240-246.
    [23] Nilson Guiguer Waterloo Hydroglogic Viual Mod-flow User’s Manual, Ontario, Canada: Waterloo Hydr-ogeologic, lin, 2004.
    [24]薛禹群.地下水动力学[M].北京:地质出版社, 1997.
    [25]傅莉.三门峡铝土矿地下水数值模拟[D].同济大学硕士学位论文, 2009.
    [26]刘国,毛邦燕,许模,等.合山煤田矿井涌水量的数值模拟探讨[J].地质与勘探; 2007, 7: 98-103.
    [27]郭卫星,卢国平. MODFLOW三维有限差分法地下水流模型[M].南京大学地球科学系, 1998: 58-69.
    [28]武强,董东林等.水资源评价的可视化专业软件与应用潜力[J].水文地质工程地质, 1999, 26(5): 21-23.
    [29] Roberte M. Determiniation of Transmissivity from Specific Capacity Test in Karst Qquifer[J]. Groundwater, 1997,35(5):739-742.
    [30]宋西平,寇广潮.地下水数值模拟面参数和水文参数研究的重要性[J].地下水, 2001, 23(2): 62-54.
    [31]魏加华,陈良程,张远东,等.地下水数值模型三维可视化研究[J].煤田地质与勘探, 2003, 31(4): 33-36.
    [32] Boswell J S, Olyphant G A. Modeling the hydrologic response of groundwater dominated wetlands to transient boundary conditions: Implications for wetland restoration[J]. Journal of Hydrology, 2007, 332(3-4): 467-476.
    [33]郑红梅,刘明柱. Visualmodflow在天津市地下水数值模拟中的应用[J].华北水利水电学院学报, 2007, 28(2): 8-1l.
    [34]刘正林.灰色系统理论在煤矿水害防治决策中的应用前景[J].矿井地质, 1990.
    [35]陈崇希.“防止模拟失真,提高仿真性”是数值模拟的核心[J].水文地质工程地, 2003, 47 (2): 1-5.
    [36] Keith B, Andrew B. The future of distributed models: Model calibration and uncertainty prediction[J]. Hydrological Processes, 1992, 6(3): 279-298.
    [37]蒋玲.和县龙塘沿铁矿矿坑涌水量预测研究[D].合肥工业大学硕士学位论文, 2009.
    [38]张笨臣,刘喜信,孙传斌.矿坑涌水量预测的影响因素分析[J].吉林地质, 2006, 25(1): 58-61.
    [39] Tsou M S, Whittemore D O. User Interface for Ground-Water Modeling: ArcView Extension[J]. Journal of Hydrologic Engineering, 2001, 6(3): 251-258.
    [40]中国矿业大学.煤矿水防治技术[EB/OL]. http://www.chinasafety.gov.cn/zhuantibaodao/2004-04/14/content_4755.htm
    [41]刘其声.关于突水系数的讨论[J].煤田地质与勘探, 2009, 37(4): 34-37.
    [42]煤炭工业部.煤矿防治水工作条例[M].北京:煤炭工业出版社, 1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700