淮南煤田岩溶陷落柱(带)特征及形成机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩溶陷落柱作为煤田一种特殊的地质体,不仅影响了煤炭开采过程中巷道布置、巷道稳定性、煤炭开采数量,而且可能引发工作面突水,对井下矿工的生命安全带来严重威胁。对陷落柱特征及形成机理的研究,将有助于煤矿地质工作者对所遇陷落柱做出正确判断,提前做好准备措施,有效防止煤田灾害发生,减少陷落柱可能带来的损失。项目研究具有重要的理论意义和现实意义。
     本文在查阅研究国内外相关文献的基础上,以淮南煤田岩溶陷落柱(带)为研究对象,采用了理论分析和现场应用相结合的研究方法,系统收集并分析了淮南煤田地质资料、水文地质资料、地下水化学特征资料、陷落柱井下揭露资料。通过三维地震资料及陷落柱内部岩石照片,分析了淮南煤田岩溶陷落柱的形态特征及内部充填特征;在分析谢桥矿井下出水点位置及地下水特征资料的基础上,采用GIS软件DTM分析功能和分类主成分分析方法研究了淮南煤田陷落柱的影响范围、影响带内煤系水质、水量、水温的变化特征;并系统总结了淮南煤田岩溶陷落柱(带)三种不同层位含、导水性的差异。在分析淮南煤田岩溶陷落柱特征的基础上结合淮南地质演化过程及地下水活动,研究了煤田陷落柱(带)形成的机理。对淮南矿煤田地质灾害、水害防止工作具有一定参考价值。研究表明:
     (1)淮南岩溶陷落柱(带)平面形态多为长条形,长轴延展方向多是NW-SE,剖面形态上陷落柱表现为上小下大,且多数陷落柱的顶界在基岩面以下;
     (2)淮南煤田岩溶陷落柱(带)基底多发育于寒武纪灰岩,岩层塌陷面积大,围岩裂隙高度发育;
     (3)淮南煤田岩溶陷落柱(带)含、导水性各煤层存在差异,越向下层,含、导水可能性越大,在开采过程中应特别注意,防止突水事故的发生;
     (4)淮南煤田岩溶陷落柱(带)影响范围广,在影响区内下部煤系含水层易受灰岩含水层补给,而上部煤系含水层因曾受过新生界水体混入,水质出现异常,并且局部煤系含水层由于受氧化条件影响,水质特征也发生一定的改变;
     (5)淮南煤田在经历三次地质构造中发育出一系列NW向的张性断层,并在地表水、地下水长期由东南向西北的溶蚀中逐渐形成深至寒武纪灰岩的岩溶洞穴,最终在重力作用下塌陷,形成陷落柱。
Karst collapse column as a special kind of geologic body in coal not only effects roadway arrangement, roadway stability and the quantity of coal mining, but also may because water inrush on coal face, which poses a great threat to the safety of workers. The research on the characteristics and forming mechanism of karst collapse column is helpful for coal geologists to make correct judgement on karst collapse column, and then prepare in advance, to prevent coalfield disasters effectively and reduce the losses from collapse column. Thus this research has important theoretical and practical significance. Based on many relative literature about coalmine karst collapse column, this paper was performed using the theoretical analysis and field application to analyse the date of coalfield-geology, hydrogeology, chemical character and collapse column underground in Huainan which is located in karst collapse column area. According to the 3D seismic data and image in columns, analyse morphological and internal filling characteristics of the karst collapse column. By analysing the data of groundwater chemical and the location of water inrush in Xieqiao mine, combines the DTM Function with principal component analysis of GIS, to study the sphere of influence, the character of water quanlity and quantity, and the temperature changes in the affected zone. And systematic summary of the Huainan karst collapse columns (belts) with three layers of different hydraulic conductivity. By analyzing the characteristic of karst collapse column, combines the geological evolution process with the groundwater activity, to study the forming mechanism of karst collapse column. The analysis above are of important guidance for preventing geology problems. The results of this research are summarized below:
     (1) The plant shapes of the most karst collapse column are elongated, and the general trend in NW-SE, cross sections show small top and big bottom, the top under the bedrock surface for the most karst collapse column;
     (2) Most karst collapse column develop from Cambrian limestone and with large collapsing area, and the adjoining rock crack highly developed;
     (3) The hydraulic conductivity of karst collapse column in each coal is different, and the lower the coal seam, the greater the hydraulic conductivity. It is necessary to pay special attention to it and then prevent water inrush;
     (4) With a wide affection and obvious variation of hydrochemical character in the karst collapse column, only notice the variety of coal water and prepare in advance can we avoid water inrushing;
     (5) A series of extension fault along NW direction developed in Huainan mine field after three tectonic processes(geological structure), then evolve into karst caves extending down to Cambrian limestone because of the long-term corrosion of SE-NW groundwater, finally form the collapse column due to gravity.
引文
[1] Q. Wu, M. Wang, X. Wu . Investigations of groundwater bursting into coal mine seam floors from fault zones[J]. International Journal of Rock Mechanics & Mining Sciences,2004,41:557–571.
    [2] Jincai Zhang, Baohong Shen. Coal mining under aquifers in China: a case study[J]. International Journal of Rock Mechanics & Mining Sciences. 2004, 41: 629–639.
    [3] David Laurence. Optimisation of the mine closure process[J]. Journal of Cleaner Production, 2006, 14:285-298.
    [4] Uszko Marek. Monitoring of methane and rock burst hazards as a condition of safe coal exploitation in the mines of Kompania W?glowa SA[J]. The 6th International Conference on Mining Science & Technology, 2009, 1:54-59.
    [5] Tingxiang Ren, B. Denby, R.N. Singh. Applying knowledge-based expert systems to provide guidance for the safe storage of coal[J]. Mining Science and Technology, 1991, 3: 253-263.
    [6] Dean H. Ambrose, John R. Bartels, August J. Kwitowski. Computer simulations help determine safe vertical boom speeds for roof bolting in underground coal mines[J], Journal of Safety Research, 2005, 4: 387-397.
    [7]张明安,柴学周,张华杰,等.常村矿N2-72工作面胶带巷突水治理方案探讨[J].煤, 2003, 12(3):9-10.
    [8]钟亚军.开滦煤矿防止综合技术研究[M].北京:煤炭工业出版社, 2001.
    [9]白文彪.回采巷道过陷落柱锚网支护技术[J].河北煤炭, 2006, (6):23-24.
    [10]白海波,陈志胜,郑步连,等.奥灰陷落柱特大突水的水源判别及治理[J].煤炭工师, 1998,(6):34-36.
    [11]胡洪涛,郑亚东,刘卫东.不明陷落柱对回采工作面布置的影响[J].中州煤炭, 2007, (2):30-31.
    [12]宋国华.成庄矿3309工作面过陷落柱和绕道及导硐[J].科技情报开发与经济, 2007, (16):237-238.
    [13]李永明,王新志,刘建忠.五阳矿区水害预测及防治[J].煤, 2005, (3): 50-52 .
    [14]南生辉,蒋勤明,郭晓山等.导水岩溶陷落柱堵水塞建造技术[J].煤田地质与探, 2008, (4):29-33.
    [15]刘志军,熊崇山.陷落柱突水机制的数值模拟研究[J].岩石力学与工程报, 2007, (S2): 4013-4018.
    [16]尹尚先,王尚旭,武强.陷落柱突水模式及理论判据[J].岩石力学与工程报, 2004, (6):964-968.
    [17]许进鹏,张乃宏,童世杰.陷落柱防水煤柱留设的探讨[J].煤炭科技, 2002,(3):7-8.
    [18]陈晓国,陈建生,赵苏启.返流注浆治理隐伏陷落柱突水技术[J].煤炭科学技术, 2001, (8): 17-18.
    [19]翟英达.防止岩溶陷落柱突水的煤柱合理尺寸研究[J].太原理工大学学报, 2000, (2):197-199.
    [20]李大敏.张集煤矿隐伏陷落柱突水快速治理[J].煤炭科学技术, 2000, (8):31-33.
    [21]徐宏武,伯志革.矿井无线电波透视技术在任楼矿的应用[J].矿业安全与环保, 2000(27) :66-67.
    [22]赵金贵.西山煤田岩溶陷落柱形态学特征及构造水文演化[D].太原理工大学硕士论文. 2004.5.
    [23]尹尚先,吴文金,李永军,等.华北煤田岩溶陷落柱及其突水研究[M].北京:煤炭工业出版社, 2008.
    [24]杨高峰.马兰矿松散陷落柱特征及对生产危害性分析[J].山西焦煤科技, 2007, (1):26-28.
    [25]尹万才,施龙青,卜昌森.华北煤田陷落柱发育的几何特征[J].山东科技大学学报, 2004.623 (2):23-25.
    [26]张同兴,闫东育,马建民等.煤系地层陷落柱特征与煤层气分布浅析[J].断块油田, 2003, (1):22-24.
    [27]吴基文,严家平,徐冰寒.皖北刘桥一矿岩溶陷落柱特征及成因探讨[J].西安科技学院学报, 1998, (4):315-319.
    [28]郭红玉.太原西山岩溶陷落柱发育时间研究[D].太原理工大学硕士学位论文, 2004.3.
    [29]刘满才,张爱华.谢桥井田2#岩溶陷落柱导水可能性分析[J].安徽科技, 2007, (6):42-43.
    [30]张胜利.太原市南峪煤矿陷落柱导水问题探讨[J].煤, 2006, (3):58-59.
    [31]杨为民,司海宝,吴文金.岩溶陷落柱导水类型及其突水风险预测[J].煤炭工程, 2005 ,(8):60-63.
    [32]焦雪峰.杜儿坪矿矿区陷落柱分布规律浅谈[J].太原科技, 2003, (4):30-32.
    [33]杨肖岩,高红森,郭衍明,等.王庄井田陷落柱分布规律分析[J].矿山压力与顶板管理, 2002, (1):107-108.
    [34]张宝柱,陈振东.华北型煤田岩溶陷落柱分布规律及其水文地质意义[J].阜新矿业学院学报(自然科学版), 1996, (3):295-298.
    [35]樊怀仁,夏玉成,侯恩科,等.矿井陷落柱的分布规律及其预测[J].西安科技学院学报, 1994, (2):190-194.
    [36]褚志忠.西铭井田陷落柱特征研究及分布规律初探[D].太原理工大学硕士论文, 2004,4.
    [37]王一,许保平,郜向贞.阳泉矿区岩溶陷落柱展布特征及分析预测[J].阳煤科技, 2002, (2):12-16.
    [38]王乃堂.肥城煤田岩溶陷落柱发育及开采前预测[J].山东煤炭科技, 1999, (2):13-15.
    [39]喻佑顺,刘金涛,王柱等.直流电测深法在煤矿陷落柱探测中的应用实例[J].资源环境与工程, 2007 ,(6):736-738.
    [40]常海雷,尹斌,庞志军.陷落柱探测技术在王坡煤矿的应用[J].煤矿开采, 2007, (4):18-19.
    [41]李耀华,杨怀敏.电透视技术在煤矿井下陷落柱探测中的应用[J].采矿技术, 2007, (2):81-82.
    [42]李海良,程志忠.谢桥井田岩溶陷落柱探测浅析[J].西部探矿工程, 2007, (4):105-106.
    [43]张时元,程建远,何又欣,等.三维地震在陷落柱探测中的应用[J].中国煤田地质, 1997, (S1):29-32.
    [44]徐卫国,赵桂荣.华北煤矿区岩溶陷落柱形成机理与突水的探讨[J].水文地质工程地质, 1990, (6) :41– 43.
    [45]王锐.论华北地区岩溶陷落柱的形成[J ].水文地质工程地质, 1982, (1) :37 - 44.
    [46] MARTINEZJ D , JOHNSON K S , NEAL J T. Sinkholes in evaporaterocks[J]. American Scientist, 1998, 86 :39 -52.
    [47] HATZOR Y H , TALESNICK M, TSESARSKY M. Continuous and discontinuous stability analysis of the bell - shaped caverns at Bet Gu2vrin , Israel [J]. Int J Rock Mechanical Min Science , 2002 ,39 (7) :867– 886.
    [48] PALMER A N. Origin and morphology of limestone caves [J]. Geo2logical Society of America Bull , 1991(103) :1-21.
    [49]尹尚先,武强,王尚旭.华北煤矿区岩溶陷落柱特征及成因探讨[J].岩石力学与工程学报, 2004, 23 (1) :120– 123.
    [50]董雾.数字高程模型在陷落柱林三维空间形态表达和剥蚀回溯中的应用[D].太原理工大学硕士学位论文, 2003,5.
    [51]盛业华,郭达志. GIS支持下矿区岩溶陷落柱的综合探测技术[J].中国安全科学学报, 1998, 8(4):22-25.
    [52]郭达志,盛业华,金学林等.矿区岩溶陷落柱探测中遥感与地理信息系统技术的应用研究[J].测绘学报, 1994, (2),113-119.
    [53]刘海生,周荣福,郭志达,等.基于GIS复合分析的煤矿顶板水害预测研究[J].中国矿业大学学报, 2005(1), 112-116.
    [54]刘海生,魏小刚,李海涛,等.基于ArcSDE的西山煤田陷落柱数据库开发与应用[J].科技情报开发与经济, 2007, (14):202-204.
    [55]刘登宪,李永军.淮南寒武纪岩溶陷落柱特征及导水性分析[J].中国煤田地质, 2006, 18(1):38-40.
    [56]张炳光.对淮南矿区地质构造特点的认识[J].淮南煤矿科技, 1981:1-12.
    [57]任纪舜,张正坤,牛宝贵,等.论秦岭造山带—中朝与扬子陆块的拼合过程[A].见:秦岭造山带学术会议论文集[C],西安:西北大学出版社, 1991, 99-110.
    [58]张泓,郑玉柱,郑高升,等.安徽淮南煤田阜凤推覆体之下的伸展构造及其形成机制[J].煤田地质与勘探, 2003 ,31(3):1-4.
    [59]李定龙,周治安,王桂梁.马家沟灰岩岩溶研究中的若干问题探讨[J].地质科技情报, 1997, 16(1):23-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700