纯铝粉体与水反应产氢及其相关影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al与水反应产氢的技术具有常温常压下产氢、产氢量高(1kg Al产生0.11kg氢)、反应的副产物(AlOOH或Al(OH)_3)为化学中性、对环境无污染等特点。Al与水反应的副产物可以通过拜耳过程(Hall-Heroult process)还原成金属Al作循环使用或直接用于生产耐火材料和高铝水泥等。Al的价格相对低廉、在地壳中储量丰富(8.1%)。这些优点使得Al-水反应成为一种很有潜力的原位制氢技术,可以为便携式或千瓦级燃料电池提供氢源。近年来,Al-水反应产氢技术已取得了很大进展,各种Al的活化方法相继出现。同时,Al的产氢性能受到很多因素的影响,如反应温度、Al的形貌及颗粒大小、活化方法、水型及水质、搅拌速率、Al与水的质量比等。本文主要研究了纯Al粉体与水反应产氢的规律及其影响因素,具体研究内容如下:
     1、纯Al粉体在常压下与水反应产氢规律的研究
     研究了纯Al粉体在常压下与去离子水反应产氢的特性。结果表明,纳米及微米级纯Al粉体可以在常压下温水中与去离子水反应并产生氢气,纯Al粉体与水反应产氢的动力学规律可以用收缩核模型进行分析:在反应的初始阶段,Al与水反应产氢的速率由表面反应控制;随着反应的进行,表面的副产物越来越多,阻碍了水分子向内输运,这时Al与水反应产氢的速率由水分子在产物层中的扩散来控制。Al与水反应的活化能计算表明,活化能随着Al粉体粒径的增加而增加;当Al粉体的粒径从98.38nm增加到24.94μm时,反应的活化能从64.2kJ/mol增加到88.7kJ/mol。X-射线衍射(XRD)分析表明,Al与水反应产氢的副产物为AlOOH、Al(OH)_3或两者的混合物,主要由反应的温度决定。
     2、纯Al粉体和表面改性Al粉体与水反应产氢动力学差异的研究
     应用陶瓷材料的制备方法(混合、干燥、压片、高温真空热处理、粉碎和过筛等)制备得到γ-Al2O3表面改性的活化Al粉体,研究了纯Al粉体和改性Al粉体在相同条件下的反应动力学差异。结果表明,纯Al粉体和改性Al粉体与水反应产氢性能的差异主要体现在反应的初始阶段;改性Al粉体与水反应的诱导时间比纯Al粉与水反应的诱导时间短得多。这是因为改性Al颗粒表面的钝化膜为松散的γ-Al_2O_3相,具有较低的拉伸强度,从而使得Al颗粒表面层的Al:Al_2O_3界面上的H_2气泡具有较低的临界破裂气压。
     3、氧化物催化作用下Al与水反应产氢的研究
     研究了纯Al粉体在含有Al(OH)_3、γ-Al_2O_3、α-Al_2O_3或TiO_2粉体的悬浮液中的产氢特性。结果表明,上述氧化物或氢氧化铝悬浮颗粒的存在极大地促进了Al与水的反应产氢,缩短了反应的诱导时间。XRD分析结果显示,氧化物或氢氧化物在反应前后并没有发生变化,说明这些氧化物或氢氧化物只是充当Al-水反应的催化剂。机理分析表明,水分子在氧化物和氢氧化物表面会加速解离,从而有效促进了Al颗粒表面钝化层的水合过程,加速了Al-水反应。
     4、水中微量物质对Al与水反应产氢性能影响的研究
     研究了纯Al粉体在去离子水、蒸馏水、自来水及海水中的产氢特性,分析了以上水中的主要阴离子、阳离子和有机物。结果表明,水型对Al-水反应产氢有很大的影响。自来水和海水中的微量F-离子和微量有机酸离子对Al-水反应有明显的抑制作用,而其它阳离子和阴离子对Al-水反应的影响可以忽略不计。机理分析显示,F-离子和有机酸离子会与Al颗粒表面的铝醇基形成稳定的络合物,从而延缓了Al颗粒表面钝化膜的水合过程,抑制了Al-水反应。
     5、初始气压对Al与水反应产氢性能影响的研究
     研究了初始气压对Al与水反应产氢性能的影响。结果表明,Al与水反应的动力学与初始气压密切相关:反应的诱导时间随着初始气压从大气压开始降低而降低,然后达到一个最低值,最后随着初始气压的进一步降低而增加。机理分析表明,当初始气压接近水的饱和蒸气压时,诱导时间最短;当初始气压低于饱和蒸气压时,水沸腾,一些水蒸气泡经过或吸附在Al颗粒表面,阻碍了Al表面氧化膜的水合过程,从而增加了Al与水反应的诱导时间。
Metal Al is a new hydrogen-generation material, which can continuously reactwith water and generate hydrogen under ambient condition. Al is the most abundantmetal in the earth’s crust, and has a relative low cost. Meanwhile, the reactionbyproduct of Al with water is bayerite or boehmite, which is environmentally benignand can be reduced to metal Al for recycle by a Hall-Heroult process or used to makerefractory and calcium aluminate cement.1kg Al reacts with water to generate asmuch as0.11kg H_2, making it a very promising in-situ hydrogen-generation materialfor portable and kW-grade fuel cells. The research on Al-water reaction to generatehydrogen has been an active area in the past few years, and various activationmethods for pure Al were developed. The hydrogen-generation performance ofAl-water reaction depends on many factors such as the reaction temperature, Alparticle size and morphology, activation method, water quality and type, stirring rate,Al to water weight ratio, etc. In this thesis, the hydrogen-generation performance bythe reaction of pure Al powder with water was investigated systematically, and therelated influencing factors were analyzed as well, which includes
     1. Hydrogen generation by pure Al powder with water under ambient condition
     Different size Al powders were used to react with deionized water, and theirhydrogen generation performance was investigated systematically. The results showedthat both nano-and micro-sized Al powders could react with water and generatehydrogen under atmospheric pressure at mild temperature. A shrinking core modelwas used to analyze the reaction progress, indicating that the Al-water reaction iscontrolled by the surface chemical reaction at the initial stage, and then by the H_2Omolecule diffusion in the byproduct layer afterwards. Because the byproduct layerbecomes thick with the reaction progress, impeding the transport of water moleculestowards inner Al. The activation energy of Al-water reaction increased from64.2kJ/mol to88.7kJ/mol with increasing the Al particle size from98.38nm to24.94μm. X-ray analyses revealed that the reaction byproducts are bayerite, boehmite or amixture of them, depending on the reaction temperature.
     2. Dynamics difference between pure Al and modified Al powders with water
     -Al_2O_3modified Al powder was prepared by a ceramic processing procedure.The dynamics difference between the reaction of pure Al and γ-Al_2O_3modified Alpowders with water under the same condition was investigated. The results showedthat the reaction difference between two types of Al powders is just at the initial stage.The reaction induction time of modified Al powder with water is obviously shorterthan that of pure Al powder. This difference probably originates from a lower tensilestrength of the Al surface passive oxide films on modified Al particles, leading to alower critical breakage gas pressure in H_2bubbles at Al:Al_2O_3interface.
     3. Catalysis of oxides in hydrogen generation by the reaction of Al with water
     Hydrogen generation by the reaction of pure Al powder in Al(OH)_3,-Al_2O_3,α-Al_2O_3, or TiO_2suspensions was investigated. The results showed that the reactionof Al powder with water is promoted and the reaction induction time decreasesgreatly by the above hydroxide and oxides. X-ray diffraction analyses revealed thatthe hydroxide and oxide phases have no any change during the Al-water reaction,indicating that they are just as catalysts to assist the reaction of Al with water. Amechanism analysis revealed that hydroxide and oxides could dissociate watermolecules and promote the hydration of the passive oxide film on Al particlesurfaces, leading to the decrease in the induction time.
     4. Effect of trace species in water on the reaction of Al with water
     Hydrogen generation by the reaction of pure Al powder with deionized water,distilled water, tap water and sea water was investigated systematically. The anions,cations and organic substance in the above water were analyzed in detail. The resultsshowed that the water type has a significant impact on Al-water reaction. The traceorganic acids and trace F-ions, rather than other cations and anions, play a key role in the reaction dynamics of Al with water. The mechanism analyses revealed that theorganic acids and F-ions form stable complexes with aluminol groups on Al particlesurfaces, impeding the hydration process of Al surface oxide film and retarding thereaction of Al with water.
     5. Effect of initial pressure on the reaction of Al with water
     The effect of initial gas pressure on Al-water reaction dynamics wasinvestigated systematically. It was found that there is a non-monotonic correlationbetween the initial pressure and the induction time for the beginning of Al-waterreaction. The induction time decreases with decreasing the initial pressure at the firststage, then reaches a minimum, and finally increases with further decreasing theinitial pressure. The mechanism analyses revealed that the special vacuum pressurecorresponding to the minimum induction time is close to the saturated vapor pressure,below which there are some vapor bubbles passing or adsorbing on Al particlesurfaces due to boiling, retarding the hydration process of Al surface oxide film andincreasing the reaction induction time.
引文
【1】. Qadrdan M., Saboohi Y., Shayegan J., A Model for Investigation of OptimalHydrogen Pathway and Evaluation of Environmental Impacts of Hydrogen SupplySystem [J]. International Journal of Hydrogen Energy, Vol.33, No.24,2008, pp.7314-7325.
    【2】. Nowotny J., Veziroglu T. N., Impact of Hydrogen on the Environment [J].International Journal of Hydrogen Energy, Vol.36, No.20,2011, pp.13218-13224.
    【3】. Tromp T. K., Shia R. L., Allen M., Eiler J. M., Yung Y. L., Potential EnvironmentalImpact of a Hydrogen Economy on the Stratosphere [J]. Science, Vol.300, No.5626,2003, pp.1740-1742.
    【4】. Mazloomi K., Gomes C., Hydrogen as an Energy Carrier: Prospects and Challenges[J]. Renewable and Sustainable Energy Reviews, Vol.16, No.5,2003, pp.3024-3033.
    【5】. Ewan B. C. R., Allen R. W. K., A figure of Merit Assessment of the Routes toHydrogen [J]. International Journal of Hydrogen Energy, Vol.30, No.24,2005, pp.809-819.
    【6】. Züttel A., Materials for Hydrogen Storage [J]. Materials Today, Vol.6, No.9,2003,pp.24-33.
    【7】. Schlapbach L., Züttel A., Hydrogen-Storage Materials for Mobile Applications [J].Nature, Vol.414, No.6861,2001, pp.353-358.
    【8】.范美强,徐芬,孙立贤,铝-碱溶液水解制氢技术研究[J]。电源技术研究与设计,Vol.33, No.6,2009, pp.493-496.
    【9】. Zhao Y. Z., Liu G. S., Liu Y. L., Zheng J. Y., Chen Y. H., Zhao L., Guo J. X., He Y.T., Numerical Study on Fast Filling of70MPa Type Ⅲ Cylinder for HydrogenVehicle [J]. International Journal of Hydrogen Energy, Vol.37, No.22,2012, pp.17517-17522.
    【10】.许炜,陶占良,陈军,储氢研究进展[J]。化学进展,Vol.18, No.2-3,2006, pp.200-210.
    【11】.杨志冠,储氢研究进展概况[J]。江西科学,Vol.23, No.2,2005, pp.191-196.
    【12】.黄红霞,黄可龙,刘素琴,储氢技术及其关键材料研究进展[J]。化工新型材料,Vol.36, No.11,2008, pp.27-29.
    【13】. Sakintuna B., Darkrim F. L., Hirscher M., Metal Hydride Materials for SolidHydrogen Storage: a Review [J]. International Journal of Hydrogen Energy, Vol.32,No.9,2007, pp.1021-1140.
    【14】. Dai H. B., Gao L. L., Liang Y., Kang X. D., Wang P., Promoted Hydrogen Generationfrom Ammonia Borane Aqueous Solution Using Cobalt-Molybdenum-Boron/NickelFoam Catalyst [J]. Journal of Power Sources, Vol.195,2010, pp.307-312.
    【15】. Narusawa K., Hayashida M., Kamiya Y., Roppongi H., Kurashima D., WakabayashiK., Deterioration in Fuel Cell Performance Resulting from Hydrogen Fuel ContainingImpurities: Poisoning Effects by CO, CH4, HCHO and HCOOH [J]. JSAE Review,Vol.24, No.1,2003, pp.41-46.
    【16】. Loffler D. G., McDermott S. D., Renn C. N., Activity and Durability of Water-GasShift Catalysts Used for the Steam Reforming of Methanol [J]. Journal of PowerSources, Vol.114,2003, pp.15-20.
    【17】. Sohn J. M., Byun Y. C., Cho J. Y., Choe J., Song K. H., Development of theIntegrated Methanol Fuel Processor Using Micro-Channel Patterned Devices and ItsPerformance for Steam Reforming of Methanol [J]. International Journal of HydrogenEnergy, Vol.32, No.18,2007, pp.5103-5108.
    【18】. Peppley B. A., Amphlett J. C., Kearns L. M., Mann R. F., Methanol-Steam Reformingon Cu/ZnO/Al2O3. Part1: the Reaction Network [J]. Applied Catalysis A: General,Vol.179, No.1-2,1999, pp.21-29.
    【19】. Gu W. D., Yan Z. Y., Research on Non-Grid-Connected WindPower/Water-Electrolytic Hydrogen Production System [J]. International Journal ofHydrogen Energy, Vol.37, No.1,2012, pp.737-740.
    【20】. Fujishima A., Honda K. N., Electrochemical Photolysis of Water at a SemiconductorElectrode [J], Nature, Vol.238, No.5358,1972, pp.37-38.
    【21】.上官文峰,太阳能光解水制氢的研究进展[J]。无机化学学报, Vol.17, No.5,2001, pp.619-626.
    【22】.张全国,尤希凤,张军合,生物制氢技术研究现状及其进展[J]。生物质化学工程,Vol.40, No.1,2006, pp.27-31.
    【23】. Fischer S. F., Scherer P. O. J., Charge Separation in Photosynthesis via a SpinExchange Coupling Mechanism [J]. European Biophysics Journal, Vol.26, No.6,1997, pp.477-483.
    【24】. Kalia V. C., Jain S. R., Kumar A., Joshi A. P., Fermentation of Biowaste to H2byBacillus Licheniformis [J]. World Journal of Microbiology and Biotechnology, Vol.10, No.2,1994, pp.224-227.
    【25】. Kojima Y., Suzuki K., Fukumoto K., Sasaki M., Yamamoto T., Kawai Y., Hayashi H.,Hydrogen Generation Using Sodium Borohydride Solution and Metal Catalyst Coatedon Metal Oxide [J]. International Journal of Hydrogen Energy, Vol.27, No.10,2002,pp.1029-1034.
    【26】. Schlesinger H. I., Brown H. C., Finholt A. E., Gilbreath J. R., Hoekstra H. R., Hyde E.K., Sodium Borohydride, Its Hydrolysis and Its Use as a Reducing Agent and in theGeneration of Hydrogen [J]. Journal of the American Chemical Society, Vol.75, No.1,1953, pp.215-219.
    【27】. Wee J. H., A Comparison of Sodium Borohydride as a Fuel for Proton ExchangeMembrane Fuel Cells and for Direct Borohydride Fuel Cells [J]. Journal of PowerSources, Vol.155,2006, pp.329–339.
    【28】. Rakap M., zkar S., Zeolite Confined Palladium(0) Nanoclusters as Effective andReusable Catalyst for Hydrogen Generation from the Hydrolysis of Ammonia-Borane[J]. International Journal of Hydrogen Energy, Vol.35, No.3,2010, pp.1305-1312.
    【29】. Kasahara S., Kubo S., Hino R., Onuki K., Nomura M., Nakao S. I., Flowsheet Studyof the Thermochemical Water-Splitting Iodine-Sulfur Process for Effective HydrogenProduction [J]. International Journal of Hydrogen Energy, Vol.32, No.4,2007, pp.489-496.
    【30】. Wang H. Z., Leung D. Y. C., Leung M. K. H., Ni M., A Review on HydrogenProduction Using Aluminum and Aluminum Alloys [J]. Renewable and SustainableEnergy Reviews, Vol.13, No.1,2009, pp.845-853.
    【31】.石新军,燃料电池的应用与发展[J]。现代物理知识,Vol.18, No.2,2006, pp.16-20.
    【32】. Shkolnikov E. I., Zhuk A. Z., Vlaskin M. S., Aluminum as Energy Carrier: FeasibilityAnalysis and Current Technologies Overview [J]. Renewable and Sustainable EnergyReviews, Vol.15, No.9,2011, pp.4611-4623.
    【33】. Pourbaix M., Atlas of Electrochemical Equilibria in Aqueous Solutions [M].Pergamon Press, Oxford,1966, pp.169-176.
    【34】. Belitskus D., Reaction of Aluminum with Sodium Hydroxide Solution as a Source ofHydrogen [J]. Journal of the Electrochemical Society, Vol.117, No.8,1970, pp.1097-1099.
    【35】. Hu H. R., Qiao M. H., Pei Y., Fan K. N., Li H. X., Zong B. N., Zhang X. X., Kineticsof Hydrogen Evolution in Alkali Leaching of Rapidly Quenched Ni-Al Alloy [J].Applied Catalysis A: General, Vol.252, No.1,2003, pp.173-183.
    【36】. Martínez S. S., Benítes W. L., Gallegos A. A. A., Sebastián P. J., Recycling ofAluminum to Produce Green Energy [J]. Solar Energy Materials&Solar Cells, Vol.88, No.2,2005, pp.137-243.
    【37】. Martínez S. S., Sánchez L. A., Gallegos A. A. A., Sebastián P. J., Coupling a PEMFuel Cell and the Hydrogen Generation from Aluminum Waste Cans [J]. InternationalJournal of Hydrogen Energy, Vol.32, No.15,2007, pp.3159-3162.
    【38】. Ramírez J. M. O., Castellanos R. H., Jesús A. M. D., Arco E. B., Pless R. C., Designand Devolopment of a Refrigeration System Energized with Hydrogen Produced fromScrap Aluminum [J]. International Journal of Hydrogen Energy, Vol.33, No.10,2008,pp.2620-2626.
    【39】. Wang E. D., Shi P. F., Du C. Y., Wang X. R., A mini-type Hydrogen Generation fromAluminum for Proton Exchange Membrane Fuel Cells [J]. Journal of Power Sources,Vol.181,2008, pp.144-148.
    【40】. Zhang J. S., Klasky M., Letellier B. C., The Aluminum Chemistry and Corrosion inAlkaline Solutions [J]. Journal of Nuclear Materials, Vol.384, No.2,2009, pp.175-189.
    【41】. Sarathi R., Sankar B., Chakravarthy S. R., Influence of Nano Aluminum PowderProduced by Wire Explosion Process at Different Ambience on hydrogen Generation[J]. Journal of Electrical Engineering, Vol.61, No.4,2010, pp.215-221.
    【42】.赵增典,朱宗波,黄玉红,孔祥勇,铝-碱溶液水解制氢的技术研究[J]。电源技术研究与设计,Vol.35, No.3,2011, pp.290-293.
    【43】. Wang C. C., Chou Y. C., Yen C. Y., Hydrogen Generation from Aluminum andAluminum Alloys Powder [J]. Procedia Engineering, Vol.36,2012, pp.105-113.
    【44】. Hsieh S. S., Her B. S., Chen C. I., Aluminum-Based Hydrogen Generation for aMini-Type Proton Exchange Membrane Fuel Cell with an Innovative Flow Field Plate[J]. International Journal of Electrochemical Science, Vol.7, No.8,2012, pp.6859-6876.
    【45】. Soler L., Macanás J., Mu oz M., Casade J., Synergistic Hydrogen Generation fromAluminum Alloys and Sodium Borohydride in Aqueous Solutions [J]. InternationalJournal of Hydrogen Energy, Vol.32, No.18,2007, pp.4702-4710.
    【46】. Cui Q. Z., Sha Y. Y., Chen J. L., Gu Z. Y., Galvanic Synthesis of HollowNon-precious Metal Nanoparticles Using Aluminum Nanoparticle Template and TheirCatalytic Applications [J]. Journal of Nanoparticle Research, Vol.13, No.10,2011,pp.4785-4794.
    【47】. Dai H. B., Ma G. L., Kang X. D., Wang P., Hydrogen Generation from CouplingReactions of Sodium Borohydride and Aluminum Powder with Aqueous Solution ofCobalt Chloride [J]. Catalysis Today, Vol.170, No.1,2011, pp.50-55.
    【48】. Dai H. B., Ma G. L., Xia H. J., Wang P., Combined Usage of Sodium Borohydrideand Aluminum Powder for High-performance Hydrogen Generation [J]. Fuel Cells,Vol.11, No.3,2011, pp.424-430.
    【49】. Sun W. Q., Fan M. Q., Fei Y., Pan H., Wang L. L., Yao J., Hydrogen Generation fromAl-NiCl2/NaBH4Mixture Affected by Lanthanum Metal [J]. The Scientific WorldJournal, Vol.2012, No.150973,2012, pp.1-6.
    【50】. Liu J. B., Fei Y., Pan H., Fan M. Q., Wang L. L., Yao J., Controllable HydrogenGeneration Performance from Al/NaBH4Composite Activated by La Metal andCoCl2Salt in Pure Water [J]. Journal of Rare Earths, Vol.30, No.6,2012, pp.548-551.
    【51】. Zhuang D. W., Kang Q., Muir S. S., Yao X. D., Dai H. B., Ma G. L., Wang P.,Evaluation of a Cobalt-Molybdenum-Boron Catalyst for hydrogen Generation ofAlkaline Sodium Borohydride Solution-Aluminum Powder System [J]. Journal ofPower Sources, Vol.224,2013, pp.304-311.
    【52】. Jung C. R., Kundu A., Ku B., Gil J. H., Lee H. R., Jang J. H., Hydrogen fromAluminum in a Flow Reactor for Fuel Cell Applications [J]. Journal of Power Sources,Vol.175,2008, pp.490-494.
    【53】. Soler L., Candela A. M., Macanás J., Mu oz M., Casado J., Hydrogen Generation byAluminum Corrosion in Seawater Promoted by Suspensions of Aluminum Hydroxide[J]. International Journal of Hydrogen Energy, Vol.34, No.20,2009, pp.8511-8518.
    【54】. Soler L., Candela A. M., Macanás J., Mu oz M., Casado J., In Situ Generation ofHydrogen from Water by Aluminum Corrosion in Solutions of Sodium Aluminate [J].Journal of Power Sources, Vol.192,2009, pp.21-26.
    【55】. Soler L., Candela A. M., Macanás J., Mu oz M., Casado J., Hydrogen Generationfrom Water and Aluminum Promoted by Sodium Stannate [J]. International Journal ofHydrogen Energy, Vol.35, No.3,2010, pp.1038-1048.
    【56】. Macanás J., Soler L., Candela A. M., Mu oz M., Casado J., Hydrogen Generation byAluminum Corrosion in Aqueous Alkaline Solutions of Inorganic Promoters: TheAlHidrox Process [J]. Energy, Vol.36, No.5,2011, pp.2493-2501.
    【57】. Dai H. B., Ma G. L., Xia H. J., Wang P., Reaction of Aluminum with AlkalineSodium Stannate Solution as a Controlled Sources of Hydrogen [J]. Energy&Environmental Science, Vol.4, No.6,2011, pp.2206-2212.
    【58】. Ma G. L., Dai H. B., Zhuang D. W., Xia H. J., Wang P., Controlled HydrogenGeneration by Reaction of Aluminum/Sodium Hydroxide/Sodium Stannate SolidMixture with Water [J]. International Journal of Hydrogen Energy, Vol.37, No.7,2012, pp.5811-5816.
    【59】. Ivanov V. G., Leonov S. N., Savinov G. L., Gavrilyuk O. V., Glazkov O. V.,Combustion of Mixtures of Ultradisperse Aluminum and Gel-Like Water [J].Combustion, Explosion, and Shock Waves, Vol.30, No.4,1994, pp.569-570.
    【60】. Vlaskin M. S., Shkolnilov E. I., Lisicyn A. V., Bersh A. V., Zhuk A. Z.,Computational and Experimental Investigation on Thermodynamics of the Reactor ofAluminum Oxidation in Saturated Wet Steam [J]. International Journal of HydrogenEnergy, Vol.35, No.5,2010, pp.1888-1894.
    【61】.范美强,孙立贤,徐芬,高秀英,铝水反应制氢技术[J]。电源技术研究与设计,Vol.31, No.7,2007, pp.556-558.
    【62】. Franzoni F., Milani M., Montorsi L., Golovitchev V., Combined Hydrogen Productionand Power Generation from Aluminum Combustion with Water: Analysis of theConcept [J]. International Journal of Hydrogen Energy, Vol.35, No.4,2010, pp.1548-1559.
    【63】. Franzoni F., Mercati S., Milani M., Montorsi L., Operating Maps of a CombinedHydrogen Production and Power Generation System Based on Aluminum Combustionwith Water [J]. International Journal of Hydrogen Energy, Vol.36, No.4,2011, pp.2803-2816.
    【64】. Cuomo J. J., Woodall J. M., Solid State Renewable Energy Supply [P]. US Patent1982-4358291.
    【65】. Kravchenko O. V., Semenenko K. N., Bulychev B. M., Kalmykov K. B., Activation ofAluminum Metal and Its Reaction with Water [J]. Journal of Alloys and Compounds,Vol.397, No.1-2,2005, pp.58-62.
    【66】. Fan M. Q., Xu F., Sun L. X., Hydrogen Generation by Hydrolysis Reaction ofBall-Milled Al-Bi Alloys [J]. Energy&Fuels, Vol.21, No.4,2007, pp.2294-2298.
    【67】. Fan M. Q., Xu F., Sun L. X., Studies on Hydrogen Generation Characteristics ofHydrolysis of the Ball Milling Al-based Materials in Pure Water [J]. InternationalJournal of Hydrogen Energy, Vol.32, No.14,2007, pp.2809-2815.
    【68】. Fan M. Q., Xu F., Sun L. X., Zhao J. N., Jiang T., Li W. X., Hydrolysis of BallMilling Al-Bi-Hydride and Al-Bi-Salt Mixture for Hydrogen Generation [J]. Journalof Alloys and Compounds, Vol.460, No.1-2,2008, pp.125-129.
    【69】. Fan M. Q., Sun L. X., Xu F., Feasibility Study of Hydrogen Generation from theMilled Al-based Materials for Micro Fuel Cell Applications [J]. Energy&Fuels, Vol.23, No.9,2009, pp.4562-4566.
    【70】. Fan M. Q., Sun L. X., Xu F., Experiment Assessment of Hydrogen Production fromActivated Aluminum Alloys in Portable Generator for Fuel Cell Applications [J].Energy, Vol.35, No.7,2010, pp.2922-2926.
    【71】. Wang W., Chen D. M., Yang K., Investigation on Microstructure and HydrogenGeneration Performance of Al-rich Alloys [J]. International Journal of HydrogenEnergy, Vol.35, No.21,2010, pp.12011-12019.
    【72】. Parmuzina A. V., Kravchenko O. V., Activation of Aluminum Metal to EvolveHydrogen from Water [J]. International Journal of Hydrogen Energy, Vol.33, No.12,2008, pp.3073-3076.
    【73】. Ilyukhina A. V., Kravchenko O. V., Bulychev B. M., Shkolnikov E. I.,Mechanochemical Activation of Aluminum with Gallams for Hydrogen Evolutionfrom Water [J]. International Journal of Hydrogen Energy, Vol.35, No.5,2010, pp.1905-1910.
    【74】. Ziebarth J. T., Woodall J. M., Kramer R. A., Choi G., Liquid Phase-Enabled Reactionof Al-Ga and Al-Ga-In-Sn Alloys with Water [J]. International Journal of HydrogenEnergy, Vol.36, No.9,2011, pp.5271-5279.
    【75】. Ilyukhina A. V., Ilkyukhin A. S., Shkolnikov E. I., Hydrogen Generation from Waterby Means of Activated Aluminum [J], International Journal of Hydrogen Energy, Vol.37, No.21,2012, pp.16382-16387.
    【76】. ivkovi D., Balanovi L., Manasijev D., Mitovski A., ivkovi., Kosti, N.,Calorimetric Study of Al-Ga System Using Oelsen Method [J]. Thermochimica Acta,Vol.544,2012, pp.6-9.
    【77】. Luo P., Dong S. J., Xie Z. X., Mei Z. Q., Xiong H. K., Novel Material of HydrogenGeneration [J]. Journal of Shanghai Jiaotong University, Vol.17, No.3,2012, pp.356-359.
    【78】. Wang W., Zhao X. M., Chen D. M., Yang K., Insight into the Reactivity ofAl-Ga-In-Sn Alloy with Water [J]. International Journal of Hydrogen Energy, Vol.37,No.3,2012, pp.2187-2194.
    【79】. Wang W., Chen W., Zhao X. M., Chen D. M., Yang K., Effect of Composition on theReactivity of Al-rich Alloys with Water [J]. International Journal of Hydrogen Energy,Vol.37, No.24,2012, pp.18672-18678.
    【80】. Wang H. H., Chang Y., Dong S. J., Lei Z. F., Zhu Q. B., Luo P., Xie Z. X.,Investigation on Hydrogen Production Using Multicomponent Aluminum Alloys atMild Conditions and Its Mechanism [J]. International Journal of Hydrogen Energy,Vol.38, No.3,2013, pp.1236-1243.
    【81】. Munoz A. G., Saidman S. B., Bessone J. B., Corrosion of An Al-Zn-In Alloy inChloride Media [J]. Corrosion Science, Vol.44, No.10,2002, pp.2171-2182.
    【82】. Fan M. Q., Sun L. X., Xu F., Study of the Controllable Reactivity of AluminumAlloys and Their Promising Application for Hydrogen Generation [J]. EnergyConversion and Management, Vol.51, No.3,2010, pp.594-599.
    【83】. Fan M. Q., Sun L. X., Xu F., Feasibility Study of Hydrogen Production for Micro FuelCell from Activated Al-In Mixture in Water [J]. Energy, Vol.35, No.3,2010, pp.1333-1337.
    【84】. Fan M. Q., Sun L. X., Xu F., Mei D. S., Chen D., Chai W. X., Huang F. L., Zhang Q.M., Microstructure of Al-Li Alloy and Its Hydrolysis as Portable Hydrogen Source forProton-Exchange Membrane Fuel Cells [J]. International Journal of Hydrogen Energy,Vol.36, No.16,2011, pp.9791-9798.
    【85】. Fan M. Q., Mei D. S., Chen D., Lv C. J., Shu K. Y., Portable Hydrogen Generationfrom Activated Al-Li-Bi Alloys in Water [J]. Renewable Energy, Vol.36, No.11,2011, pp.3061-3067.
    【86】. Fan M. Q., Liu S., Sun L. X., Xu F., Wang S., Zhang J., Mei D. S., Huang F. L.,Zhang Q. M., Synergistic Hydrogen Generation from AlLi Alloy and Solid-StateNaBH4Activated by CoCl2in Water for Portable Fuel Cell [J]. International Journalof Hydrogen Energy, Vol.37, No.5,2012, pp.4571-4579.
    【87】. Fan M. Q., Liu S., Wang C., Chen D., Shu K. Y., Hydrolytic Hydrogen GenerationUsing Milled Aluminum in Water Activated by Li, In, and Zn Additives [J]. FuelCells, Vol.12, No.4,2012, pp.642-648.
    【88】. Liu S., Fan M. Q., Wang C., Huang Y. X., Chen D., Bai L. Q., Shu K. Y., HydrogenGeneration by Hydrolysis of Al-Li-Bi-Nacl Mixture with Pure Water [J]. InternationalJournal of Hydrogen Energy, Vol.37, No.1,2012, pp.1014-1020.
    【89】. Zhao Z. W., Chen X. Y., Hao M. M., Hydrogen Generation by Splitting Water withAl-Ca Alloy [J]. Energy, Vol.36, No.5,2011, pp.2782-2787.
    【90】. Luo H., Liu J., Pu X, X., Liang J., Wang Z. J., Wang F. J., Zhang K., Peng Y. J., XuB., Li J. H., Yu X. B., Hydrogen Generation from Highly Activated Al-Ce CompositeMaterials in Pure Water [J]. Journal of the American Ceramic Society, Vol.94, No.11,2011, pp.3976-3982.
    【91】. Eom K. S., Cho E. A., Kwon H. S., Feasibility of on-board Hydrogen Production fromHydrolysis of Al-Fe Alloy for PEMFCs [J]. International Journal of Hydrogen Energy,Vol.36, No.19,2011, pp.12338-12342.
    【92】. Eom K. S., Kim M. J., Oh S. K., Cho E. A., Kwon H. S., Design of Ternary Al-Sn-FeAlloy for Fast on-board Hydrogen Production, and Its Application to PEM Fuel Cell[J]. International Journal of Hydrogen Energy, Vol.36, No.18,2011, pp.11825-11831.
    【93】. Eom K. S., Kwon J. Y., Kim M. J., Kwon H. S., Design of Al-Fe Alloys for Faston-board Hydrogen Production from Hydrolysis [J]. Journal of Materials Chemistry,Vol.21, No.34,2011, pp.13047-13051.
    【94】. Huang X. N., Lv C. J., Huang Y. X., Liu S., Wang C., Chen D., Effects of Amalgamon Hydrogen Generation by Hydrolysis of Aluminum with Water [J]. InternationalJournal of Hydrogen Energy, Vol.36, No.23,2011, pp.15119-15124.
    【95】. Zou M. S., Guo X. Y., Huang H. T., Yang R. J., Zhang P., Preparation andCharacterization of Hydro-Reactive Mg-Al Mechanical Alloy Materials for HydrogenProduction in Seawater [J]. Journal of Power Sources, Vol.219,2012, pp.60-64.
    【96】. Chaklader A., Hydrogen Generation from Water Split Reaction [P], US Patent2002-6440385.
    【97】. Streletskii A. N., Kolbanev I. V., Borunova A. B., Leonov A. V., Butyagin P. Y.,Mechanochemical Activation of Aluminum:1. Joint Grinding of Aluminum andGraphite [J]. Colloid Journal, Vol.66, No.6,2004, pp.729-735.
    【98】. Streletskii A. N., Kolbanev I. V., Borunova A. B., Butyagin P. Y., MechanochemicalActivation of Aluminum:3. Kinetics of Interaction between Aluminum and Water [J].Colloid Journal, Vol.67, No.5,2005, pp.631-637.
    【99】. Streletskii A. N., Kolbanev I. V., Permenov D. G., Povstugar I. V., Borunova A. B.,Dolgoborodov A. Y., Makhov M. N., Butyagin P. Y., The Reactivity of Al-Based“Mechanochemical” Nanocomposites [J]. Reviews on Advanced Materials Science,Vol.18, No.4,2008, pp.353-359.
    【100】. Skrovan J., Alfantazi A., Troczynski T., Enhancing Aluminum Corrosion in Water [J].Journal of Applied Electrochemistry, Vol.39, No.10,2009, pp.1695-1702.
    【101】. Alinejad B., Mahmoodi K., A Novel Method for Generating Hydrogen by Hydrolysisof Highly Activated Aluminum Nanoparticles in Pure Water [J]. International Journalof Hydrogen Energy, Vol.34, No.19,2009, pp.7934-7938.
    【102】. Czech E., Troczynski T., Hydrogen Generation through Massive Corrosion ofDeformed Aluminum in Water [J]. International Journal of Hydrogen Energy, Vol.35,No.3,2010, pp.1029-1037.
    【103】. Mahmoodi K., Alinejad B., Enhancement of Hydrogen Generation Rate in Reaction ofAluminum with Water [J]. International Journal of Hydrogen Energy, Vol.35, No.11,2010, pp.5227-5232.
    【104】. Dupiano P., Stamatis D., Dreizin E. L., Hydrogen Production by Reacting Water withMechanically Milled Composite Aluminum-Metal Oxide Powders [J]. InternationalJournal of Hydrogen Energy, Vol.36, No.8,2011, pp.4781-4791.
    【105】. Wang H. W., Chung H. W., Teng H. T., Cao G. Z., Generation of Hydrogen fromAluminum and Water-Effect of Metal Oxide Nanocrystals and Water Quality [J].International Journal of Hydrogen Energy, Vol.36, No.23,2011, pp.15136-15144.
    【106】. Huang X. N., Lv C. J., Wang Y., Shen H. Y., Chen D., Huang Y. X., HydrogenGeneration from Hydrolysis of Aluminum/Graphite Composites with a Core-ShellStructure [J]. International Journal of Hydrogen Energy, Vol.37, No.9,2012, pp.7457-7463.
    【107】. Chen X. Y., Zhao Z. W., Hao M. M., Wang D. Z., Research of Hydrogen Generationby the Reaction of Al-Based Materials with Water [J]. Journal of Power Sources, Vol.222,2013, pp.188-195.
    【108】. Deng Z. Y., Liu Y. F., Tanaka Y., Ye J. H., Sakka Y., Modification of Al ParticleSurfaces by γ-Al2O3and Its Effect on the Corrosion Behavior of Al [J]. Journal of theAmerican Ceramic Society, Vol.88, No.4,2005, pp.977-979.
    【109】. Deng Z. Y., Tang Y. B., Zhu L. L., Sakka Y., Ye J. H., Effect of DifferentModification Agents on Hydrogen-Generation by the Reaction of Al with Water [J].International Journal of Hydrogen Energy, Vol.35, No.18,2010, pp.9561-9568.
    【110】. Deng Z. Y., Ferreira J. M. F., Sakka Y., Hydrogen-Generation Materials for PortableApplications [J]. Journal of the American Ceramic Society, Vol.91, No.12,2008, pp.3825-3834.
    【111】. Deng Z. Y., Liu Y. F., Tanaka Y., Zhang H. W., Ye J. H., Kagawa Y., TemperatureEffect on Hydrogen Generation by the Reaction of γ-Al2O3-Modified Al Powder withDistilled Water [J]. Journal of the American Ceramic Society, Vol.88, No.10,2005,pp.2975-2977.
    【112】. Deng Z. Y., Liu W. H., Gai W. Z., Sakka Y., Ye J. H., Ou Z. W., Role of ModificationAgent Coverage in Hydrogen Generation by the Reaction of Al with Water [J].Journal of the American Ceramic Society, Vol.93, No.9,2010, pp.2534-2536.
    【113】. Liu W. H., Gai W. Z., Deng Z. Y., Tang J. W., Enhancing Hydrogen-GenerationPerformance of γ-Al2O3Modified Al Powder by Ultrasonic Dispersion [J]. Journal ofthe American Ceramic Society, Vol.95, No.4,2012, pp.1193-1196.
    【114】. Deng Z. Y., Ferreira J. M. F., Tanaka Y., Ye J. H., Physicochemical Mechanism forthe Continuous Reaction of γ-Al2O3-Modified Aluminum Powder with Water [J].Journal of the American Ceramic Society, Vol.90, No.5,2007, pp.1521-1526.
    【115】. Bunker B. C., Nelson G. C., Zavadil K. R., Barbour J. C., Wall F. D., Sullivan J. P.,Windisch Jr. C. F., Engelhardt M. H., Baer D. R., Hydration of Passive Oxide Filmson Aluminum [J]. The Journal of Physical Chemistry B, Vol.106, No.18,2002, pp.4705-4713.
    【116】. Alwitt R. S., The Aluminum-Water System, in Oxides and Oxide Films [M], Chapter3, Edited by Diggle J. W. and Vijh A. K., Marcel Dekker, New York,1976.
    【117】. Schluter H. J., Zuchner H., Braun R., Buhl H., Diffusion of Hydrogen in Aluminum[J]. Zeitschrift Fur Physikalische Chemie-International Journal of Research inPhysical Chemistry&Chemistry Physics, Vol.181, No.1-2,1993, pp.103-109.
    【118】. Wolverton C., Ozolins V., Asta M., Hydrogen in Aluminium: First-PrinciplesCalculations of Structure and Thermodynamics [J]. Physical Review B, Vol.69, No.14,2004, pp.144109.1-144109.16.
    【119】. Maurice V., Despert G., Zanna S., Bacos M. P., Marcus P., Self-Assembling ofAtomic Vacancies at an Oxide/Intermetallic Alloy Interface [J]. Nature Materials, Vol.3, No.10,2004, pp.687-691.
    【120】. Deng Z. Y., Fukasawa T., Ando M., Zhang G. J., Ohji T., Microstructure andMechanical Properties of Porous Alumina Ceramics Fabricated by the Decompositionof Aluminum Hydroxide [J]. Journal of the American Ceramic Society, Vol.84, No.11,2001, pp.2638-2644.
    【121】. Levenspiel O., Chemical Reaction Engineering [M].3rdEdition. Wiley, New York,1999.
    【122】. Kao H. C., Wei W. C., Kinetics and Microstructure Evolution of HeterogeneousTransformation of-alumina to α-alumina [J]. Journal of the American CeramicSociety, Vol.83, No.2,2000, pp.362-368.
    【123】. Gbor P. K., Jia C. Q., Critical Evaluation of Coupling Particle Size Distribution withthe Shrinking Core Model [J]. Chemical Engineering Science, Vol.59, No.10,2004,pp.1979-1987.
    【124】.李洪桂,冶金原理[M]。科学出版社,2005,pp.293-302.
    【125】. Mgaidi A., Jendoubi F., Oulahna D., El Maaoui M., Dodds J. A., Kinetics of theDissolution of Sand into Alkaline Solutions: Application of a Modified ShrinkingCore Model [J]. Hydrometallurgy, Vol.71, No.3-4,2004, pp.435–446.
    【126】. Deng Z. Y., Fukasawa T., Ando M., Zhang G. J., Ohji T., Bulk Alumina Support withHigh Tolerant Strain and Its Reinforcing Mechanisms [J]. Acta Materialia, Vol.49, No.11,2001, pp.1939-1946.
    【127】. Jevnikar P., Krnel K., Kocjan A., Funduk N., Kosma T., The Effect ofNano-Structured Alumina Coating on Resin-bond Strength to Zirconia Ceramics [J].Dental Materials, Vol.26, No.7,2010, pp.688-696.
    【128】. Saito Y., Takei T., Hayashi S., Yasumori A., Okada K., Effects of Amorphous andCrystalline SiO2Additives on γ-Al2O3to α-Al2O3Phase Transitions [J]. Journal of theAmerican Ceramic Society, Vol.81, No.8,1998, pp.2197-2200.
    【129】. Kao H. C., Wei W. C., Kinetics and Microstructural Evolution of HeterogeneousTransformation of-alumina to α-alumina [J]. Journal of the American CeramicSociety, Vol.83, No.2,2000, pp.362-368.
    【130】. Lu H. X., Hu J., Chen C. P., Sun H. W., Hu X., Yang D. L., Characterization ofAl2O3-Al Nano-composite Powder Prepared by a Wet Chemical Method [J]. CeramicsInternational, Vol.31, No.3,2005, pp.481-485.
    【131】. Skrovan J., Troczynski T., Alfantazi A., The Role of Alumina in Aluminum Corrosionand Passivation [J]. ECS Transaction, Vol.28, No.24,2010, pp.157-169.
    【132】. Teng H. T., Lee T. Y., Chen Y. K., Wang H. W., Cao G. Z., Effect of Al(OH)3on theHydrogen Generation of Aluminum-Water System [J]. Journal of Power Sources, Vol.219,2012, pp.16-21.
    【133】. Sohlberg K., Pennycook S. J., Pantelides S. T., Hydrogen and the Structure of theTransition Aluminas [J]. Journal of the American Chemical Society, Vol.121, No.33,1999, pp.7493-7499.
    【134】. Ionescu A., Allouche A., Aycard J. P., Rajzmann M., Hutschka F., Study of γ-AluminaSurface Reactivity: Adsorption of Water and Hydrogen Sulfide on OctahedralAluminum Sites [J]. The Journal of Physical Chemistry B, Vol.106, No.36,2002, pp.9359-9366.
    【135】. Hass K. C., Schneider W. F., Curioni A., Andreoni W., The Chemistry of Water onAlumina Surfaces: Reaction Dynamics from First Principles [J]. Science, Vol.282,No.5387,1998, pp.265-268.
    【136】. Hass K. C., Schneider W. F., Curioni A., Andreoni W., First-principles MolecularDynamics Simulations of H2O on α-Al2O3(0001)[J]. The Journal of PhysicalChemistry B, Vol.104, No.23,2000, pp.5527-5540.
    【137】. Schaub R., Thostrup P., Lopez N., Lagsgaard E., Stensgaard I., Norskov J. K.,Besenbacher F., Oxygen Vacancies as Active Sites for Water Dissociation on RutileTiO2(110)[J]. Physical Review Letters, Vol.87, No.26,2001, pp.266104.
    【138】. Bikondoa O., Pang C., Ithnin R., Muryn C. A., Onishi H., Thornton G., DirectVisualization of Defect-mediated Dissociation of Water on TiO2(110). NatureMaterials, Vol.5, No.3,2006, pp.189-192.
    【139】. Rosenband V., Gany A., Application of Activated Aluminum Powder for Generation ofHydrogen from Water [J]. International Journal of Hydrogen Energy, Vol.35, No.20,2010, pp.10898-10904.
    【140】.林美凤,铝与酸、碱反应的实验探索及理论研究[J]。化学教育,Vol.22, No.12,2001, pp.35-36.
    【141】.沈大年,中国城市供水中有关取水与处理概况[J]。中国给水排水,Vol.14, No.3,1998, pp.31-34.
    【142】. Kwong K. F. N. K., Huang P. M., Influence of Citric Acid on the Crystallization ofAluminum Hydroxides [J]. Clays and Clay Minerals, Vol.23, No.2,1975, pp.164-165.
    【143】. Kuan W. H., Wang M. K., Huang P. M., Wu C. W., Chang C. M., Wang S. L., Effect ofCitric Acid on Aluminum Hydrolytic Speciation [J]. Water Research, Vol.39, No.15,2005, pp.3457-3466.
    【144】. Sposito G., Environmental Chemistry of Aluminum [M]. CRC Press, Berkeley,California,1996, pp.272-318.
    【145】. Hargrove W. L., Thomas G. W., Extraction of Aluminum from Aluminum-OrganicMatter Complexs [J]. Soil Science Society of American Journal, Vol.45, No.1,1981,pp.151-153.
    【146】. Hidber P. C., Graule T. J., Gauckler L. J., Citric Acid-A Dispersant for AqueousAlumina Suspensions [J]. Journal of the American Ceramic Society, Vol.79, No.7,1996, pp.1857-1867.
    【147】. Kummert R., Stumm W., The Surface Complexation of Organic Acids on Hydrous-Al2O3[J]. Journal of Colloid and Interface Science, Vol.75, No.2,1980, pp.373-385.
    【148】. Pommerenk P., Schafran G. C., Adsorption of Inorganic and Organic Ligands ontoHydrous Aluminum Oxide: Evaluation of Surface Charge and the Impacts on Particleand NOM Removal during Water Treatment [J]. Environmental Science&Technology,Vol.39, No.17,2005, pp.6429-6434.
    【149】. Hiemstra T., Riemsdijk W. H. V., A Surface Structural Approach to Ion Adsorption:The Charge Distribution (CD) Model [J]. Journal of Colloid and Interface Science,Vol.179, No.2,1996, pp.488-508.
    【150】. Li Y. H., Wang S. G., Cao A. Y., Zhao D., Zhang X. F., Xu C. L., Luan Z. K., Ruan D.B., Liang J., Wu D. H., Wei B. Q., Adsorption of Fluoride from Water by AmorphousAlumina Supported on Carbon Nanotubes [J]. Chemical Physics Letters, Vol.350, No.5-6,2001, pp.412-416.
    【151】. Tripathy S. S., Bersillon J. L., Gopal K., Removal of Fluoride from Drinking Water byAdsorption onto Alum-impregnated Activated Alumina [J]. Separation andPurification Technology, Vol.50, No.3,2006, pp.310-317.
    【152】. Ku Y., Chiou H. M., The Adsorption of Fluoride Ion from Aqueous Solution byActivated Alumina [J]. Water, Air, and Soil Pollution, Vol.133, No.1-4,2002, pp.349-361.
    【153】. Ayoob S., Gupta A. K., Bhakat P. B., Bhat V. T., Investigations on the Kinetics andMechanisms of Sorptive Removal of Fluoride from Water Using Alumina CementGranules [J]. Chemical Engineering Journal, Vol.140, No.1-3,2008, pp.6-14.
    【154】. Tousi S. S. R., Szpunar J. A., Effect of Structural Evolution of Aluminum Powderduring Ball Milling on Hydrogen Generation in Aluminum-Water Reaction [J].International Journal of Hydrogen Energy, Vol.38, No.2,2013, pp.759-806.
    【155】. Ivanov V. G., Safronov M. N., Gavrilyuk O. V., Macrokinetics of Oxidation ofUltradisperse Aluminum by Water in the Liquid Phase [J]. Combustion, Explosion,and Shock Waves, Vol.37, No.2,2001, pp.173-177.
    【156】. Tikhov S. F., Sadykov V. A., Ratko A. I., Kouznetsova T. F., Romanenkov V. E.,Eremenko S. I., Kinetics of Aluminum Powder Oxidation by Water at100oC [J].Reaction Kinetics and Catalysis Letters, Vol.92, No.1,2007, pp.83-88.
    【157】. Nie H. Q., Zhang S. S., Schoenitz M., Dreizin E. L., Reaction Interface betweenAluminum and Water [J]. International Journal of Hydrogen Energy, Vol.38, No.26,2013, pp.11222-11232.
    【158】. Deng Z. Y., Zhu L. L., Tang Y. B., Sakka Y., Ye J. H., Xie R. J., Role of ParticleSizes in Hydrogen Generation by the Reaction of Al with Water [J]. Journal of theAmerican Ceramic Society, Vol.93, No.10,2010, pp.2998-3001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700