用户名: 密码: 验证码:
变换光学及其在隐身斗蓬和表面等离激元传播中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2006年,J. B. Pendry教授提出了变换光学理论,受到了相关领域学者的广泛关注。变换光学可用于自由控制电磁波的传播,该理论最重要的应用是用以设计电磁隐身斗蓬和隐身地毯,此外应用变换光学还可设计其他新颖的电磁波调控电磁器件,如电磁波集中器、旋转器、波束分束器等等。当前隐身斗篷的研究关键是如何实现和简化隐身斗篷的结构。变换光学理论是基于麦克斯韦方程形式不变性得到的,可以运用于各类电磁波的传播调控,当然也包括对表面等离激元(SPPs)的调控。近年来,运用变换光学理论来调控表面等离激元的研究正在逐步开展。
     鉴于上述发展趋势,本文着重开展了变换光学及其在隐身斗蓬和表面等离激元传播中的应用研究。首先根据变换光学和散射相消理论,提出了多层均匀各向同性材料隐身斗蓬的优化设计方法,并研究和设计了几种基于变换光学的新型电磁波调控器件;其次我们将变换光学进一步拓展到表面等离激元的传播调控中,设计并分析了表面等离激元波束控制器、分束器、弯折装置以及全向吸收器,最后提出了界面不连续结构上的表面等离激元耦合器和纵向压缩器的概念。本论文的主要内容和研究成果包括如下几方面:
     (1)提出了一种由多层均匀各向同性材料构成的隐身蓬的优化设计方法。通过严格电磁散射计算和遗传算法优化设计,我们得到了层数较少的隐身斗篷结构,分别给出一个六层等厚材料的隐身斗蓬和一个由两种材料交替构成的五层隐身斗蓬的设计实例,均具有很好的隐身效果。在考虑等离子材料损耗影响的情况下,通过采用引进增益材料进行补偿的优化方法,对低损耗和高损耗两种情况分别进行了讨论,也获得了较好的隐身斗篷效果。
     (2)提出了一种由多层均匀各向异性材料实现的电磁集中器的优化设计方法。理论上分析推导了柱坐标系下各向异性材料中的电磁场表达形式和散射计算公式,并将其运用于多层均匀各向异性材料构成的电磁集中器的优化设计中,获得了预期的器件性能。
     (3)运用变换光学方法,提出了360度无畸变全景透镜的设计方案,该器件能够将360度视角的光线压缩到一个180度视角的区域内。分析计算了该器件的材料参数,并对所设计全景透镜的电磁性能,在多种情况下进行了仿真验证,获得预期的效果。
     (4)将变换光学理论和设计方法运用到表面等离激元调控器件的设计方法中,提出了表面等离激元波束控制器、分束器以及弯折装置的设计方案,通过电磁分析分别验证了这些器件的性能。针对表面等离激元调控器件的实现问题,运用改变金属表面介质覆层的厚度来调节SPPs的有效折射率,设计了可实现的表面等离激元弯折装置以及全向吸收器,并对这些表面等离激元调控器件进行了三维电磁波全波仿真验证。
     (5)基于补偿媒质和折叠几何的变换光学,提出了金属/介质界面缝隙上表面等离激元的耦合传输方法。分别分析了利用补偿媒质和变换光学设计方法使SPPs在横向偏移、纵向偏移或轴向倾斜的金属/介质界面缝隙上耦合传输。最后,我们还提出了SPPs的纵向压缩器件,可以用来抑制金属表面附近存在障碍物时SPPs的散射,并能有效提高SPPs的传输效率。
In2006, Professor J. B. Pendry proposed the theory of transformation optics, which has been received wide attention from researchers of related fields. Transformation optics can be used to freely control the propagation of electromagnetic (EM) wave. The most important application of this theory is EM invisibility cloak and carpet, and other novel EM devices are proposed later, for example the EM concentrator, rotator, splitter and so on. Currently, the research of invisibility cloak is focused on the realization and reducing the complexity of the cloak. As transformation optics is based on the form-invariant of Maxwell's equations under different coordinate transformations, it applies to all EM waves including the surface plasmon polaritons (SPPs). Recently, some efforts have been made in successful application of transformation optics to the efficient manipulation of the SPP waves.
     In the view of above development trend, this dissertation mainly studies the transformation optics and its application in the invisibility cloak and SPPs propagation. Firstly, we proposed the optimized design of invisibility cloak with layers of isotropic materials on the basis of transformation optics and scattering cancellation theory, and then several novel transformational devices were studied and designed. Secondly, we extended the transformation optics to surface plasmonic waves, and designed several surface plasmonic devices, including SPPs squeezer, splitter, bend and omni-directional absorber. At last, we proposed the concept of plasmonic coupler for the discontinuous dielectric/metallic interface. The main contributions of this dissertation are listed below:
     (1) We presented optimized design of cylindrical invisibility cloak composed of minimum number of layers of homogeneous and isotropic materials. Through rigid EM scattering calculation and optimization based on genetic algorithm, we achieved multilayered invisibility cloak, such as six-layer cloak with uniform thickness and five-layer cloak with alternating of two materials. We demonstrated that the optimized designs could achieve nearly perfect cloaking performance. When considering the losses of the plasmonic material in the cloak, we analyzed the conditions of high-loss and low-loss through introduction of gain medium to compensate the losses, and also achieved good performance.
     (2) We presented an optimized design of EM concentrator with layers of homogeneous anisotropic materials. We theoretically analyzed EM wave expressions and scattering formula in anisotropic materials under the cylindrical coordinate system, which was then used to optimally design the concentrator with layers of homogeneous anisotropic materials. At last, we obtain the expectant functionality of the device.
     (3) Using the method of transformation optics, we proposed the design scheme of a360°panoramic lens without aberration, which can compress the light from a360°view angle into a180°view angle. The material parameters of the panoramic lens are analyzed and calculated. Through simulations under several different cases, we validated the expected performance of the panoramic lens.
     (4) We applied the theory and design method of transformation optics to the SPPs manipulating devices. The SPPs squeezer, splitter and bend are proposed and validated by three-dimensional (3D) full-wave EM simulations. For the realization of the SPPs devices, we can adjust the effective refractive index of the SPPs through varying the thickness of the cladding material on the metal. We designed the realizable SPPs bend and omni-directional absorber. The functionality of these proposed plasmonic devices has been verified using3D full-wave EM simulations.
     (5) Based on the complementary media and folded-geometry transformation optics, the coupling of SPPs through the gap in the dielectric/metallic interface has been proposed. We analyzed the SPPs coupling when the gap in the dielectric/metallic interface has transverse excursion, longitudinal excursion or even the axial tilt. At last, we presented the SPPs longitudinal compressing device, which can be used to suppress the scattering from the obstacle closely above the metal surface and effectively increase SPPs transmission efficiency.
引文
[1]R. M. Walser, W. S. Weiglhofer and A. Lakhtakia, "Introduction to Complex Mediums for Electromagnetics and Optics," SPIE Press, Bellingham, WA, USA, (2003)
    [2]C. Caloz and T. Itoh, "Electromagnetic metamaterials:transmission line theory and microwave applications," John Wiley (2006)
    [3]V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp.10,509 (1968)
    [4]N. Seddon, T. Bearpark, "Observation of the inverse Doppler effect," Science 302,1537 (2003)
    [5]J. Lu, et.al, "Cerenkov radiation in materials with negative permittivity and permeability," Opt. Exp.11,723(2003)
    [6]J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett.76,4773 (1996)
    [7]J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech.47,2075 (1999)
    [8]D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett.84, 4184(2000)
    [9]R. A. Shelby, D. R. Smith, S. Schultz, "Experimental verification of a negative index of refraction," Science 292,77 (2001)
    [10]D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, "Metamaterials and Negative Refractive," Science 305,788 (2004)
    [11]C.G. Parazzoli, R. B. Greegor, K. Li, B. E.C. Koltenbah, and M. Tanielian, "Experimental Verification and Simulation of Negative Index of Refraction Using Snell's Law," Phys. Rev. Lett.90,107401 (2003)
    [12]J. Huangfu, L. Ran, H. Chen, X. Zhang, K. Chen, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Appl. Phys. Lett., 84,1537(2004)
    [13]L. Ran, J. Huangfu, H. Chen, et.al, "Microwave solid-state left-handed material with a broad bandwidth and an ultralow loss," Phys. Rev. B.70,073102 (2004)
    [14]R. X. Wu, "Effective negative refraction index in periodic metal-ferrite-metal film composite," J. Appl. Phys.97,076105 (2005)
    [15]M. Silveirinha and N. Engheta, "Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using ε-Near-Zero Materials," Phys. Rev. Lett.97, 157403(2006)
    [16]B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, "Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide," Phys. Rev. Lett.100,033903 (2008)
    [17]R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer and D. R. Smith, "Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies," Phys. Rev. Lett.100,023903 (2008)
    [18]E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett.58,2059 (1987)
    [19]S.John, "Strong localization of photons in certain discordered dielectric superlattices," Phys. Rev. Lett.58,2486(1987)
    [20]W. Cai, D. A. Genov, and V. M. Shalaev, "Superlens based on metal-dielectric composites," Phys. Rev. B 72,193101 (2005)_
    [21]X. Zhang, L. Li, "Creating all-angle negative refraction by using insertion," Appl. Phys. Lett.86,121103(2005)
    [22]X. Zhang, "Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens," Phys. Rev. B 70,195110 (2004)
    [23]J. B. Pendry, D. Schurig, D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780(2006)
    [24]U. Leonhardt, "Optical Conformal Mapping," Science 312,1777 (2006)
    [25]H. Chen and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett.90,241105(2007)
    [26]M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett.100,063903(2008)
    [27]D. Kwon and D. H Werner, " Transformation optical designs for wave collimators, flat lenses and right-angle bends," New Journal of Physics 10,115023 (2008)
    [28]M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, "Transformation optical design of adaptive beam bends and beam expanders," Optics Express 16,11555 (2008)
    [29]T. Yang, H. Y. Chen, X. Luo, and H. Ma, "Superscatterer:enhancement of scattering with complementary media," Opt. Express 16,18545 (2008)
    [30]Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang and C. T. Chan, "Illusion Optics:The Optical Transformation of an Object into Another Object," Phys. Rev. Lett.102,253902 (2009)
    [31]M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics and Nanostructures-Fundamentals and Applications 6, 87-95 (2008)
    [32]E. E. Narimanova and A. V. Kildisheva, "Optical black hole:Broadband omnidirectional light absorber," Appl. Phys. Lett.95,041106 (2009)
    [33]D. A. Genov, S. Zhang, and X. Zhang, "Mimicking celestial mechanics in metamaterials," Nat. Phys.5,687 (2009).
    [34]Q. Cheng, J. T. Cui, W. X. Jiang and B. G. Cai, "An omnidirectional electromagnetic absorber made of metamaterials," New J. Phys.12,063006 (2010)
    [35]D. Kwon and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New Journal of Physics 10,115023 (2008)
    [36]H. Chen, C. T. Chan and P. Sheng, "Transformation optics and metamaterials," Nature material 9,387(2010)
    [37]T. Han, C. Qiu, J. Hao, X. Tang and S. Zouhdi, "Gain-assisted transformation optics," Optics Express 19,8610 (2011)
    [38]H. Ma, S. Qu, Z. Xu and J. Wang, "The open cloak," Appl. Phys. Lett.94,103501 (2009)
    [39]C. Li and F. Li, "Two-dimensional electromagnetic cloaks with arbitrary geometries," Opt. Express 16,13414(2008)
    [40]J. Zhang, J. Huangfu, Y. Luo, H. Chen, J. A. Kong and B. Wu, "Cloak for multilayered and gradually changing media," Phys. Rev. B 77,035116 (2008)
    [41]C. W. Qiu, L. Hu, B. Zhang, B. I. Wu, S. G. Johnson, and J. D. Joannopoulos, "Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings," Opt. Express 17,13467(2009)
    [42]S. Zhang, D. A. Genov, C. Sun, and X. Zhang, "Cloaking of matter waves," Phys. Rev. Lett. 100(12),123002(2008).
    [43]W. Wang, L. Lin, J. Ma, C. Wang, J. Cui, C. Du and X. Luo, "Electromagnetic concentrators with reduced material parameters based on coordinate transformation," Optics Express 16, 11431-11437(2008)
    [44]W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and R. Smith, "Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces," Appl. Phys. Lett.92,264101 (2008).
    [45]D. H. Kwon and D. H. Werner, "Transformation electromagnetics:an overview of the theory and applications," IEEE Antennas and Propagation Magazine, Vol.52, No.1 (2010)
    [46]M. Yan, W. Yan, and M. Qiu, "Cylindrical superlens by a coordinate transformation," Phys. Rev. B 78,125113(2008)
    [47]W. H. Wee and J. B. Pendry, "Shrinking optical devices," New Journal of Physics 11, 073033 (2009)
    [48]X. Zang and C. Jiang, "Two-dimensional elliptical electromagnetic superscatterer and superabsorber," Optics Express 18,6891 (2010)
    [49]X. Zhang, H. Chen, X. Luo and H. Ma, "Transformation media that turn a narrow slit into a large window," Optics Express 16,11764 (2008)
    [50]H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, "Design and Experimental Realization of a Broadband Transformation Media Field Rotator at Microwave Frequencies," Phys. Rev. Lett.102,183903 (2009)
    [51]P. H. Tichit, S. N. Burokur and A. Lustrac, "Waveguide taper engineering using coordinate transformation technology," Opt. Express 18,767 (2010)
    [52]M. Tsang and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B 77,035122 (2008)
    [53]P. Zhang, Y. Jin and S. He, "Cloaking an object on a dielectric half-space," Opt. Express 16, 3161 (2008)
    [54]H. Chen, R. Miao and M. Li, "Transformation optics that mimics the system outside a Schwarzschild black hole," Opt. Express 18,15183 (2010)
    [55]D. Schurig, J. B. Pendry, D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Optics Express 14,9794 (2006)
    [56]S. A. Cummer, B. Popa, D. Schurig, D. R. Smith and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74,036621 (2006)
    [57]M. Yan, Z. Ruan, and M. Qiu, "Cylindrical Invisibility Cloak with Simplified Material Parameters is Inherently Visible," Phys. Rev. Lett.99,233901 (2007)
    [58]M. Yan, Z. Ruan, M. Qiu, "Scattering characteristics of simplified cylindrical invisibility cloaks," Opt. Express 15,17772 (2007)
    [59]D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314,977-980 (2006)
    [60]W. Cai, U. K. Chettiar, A. V. Kildishev and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics 1,227 (2007)
    [61]W. Cai, U. K. Chettiar, A. V. Kildishev and V. M. Shalaev, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett.91,111105 (2007)
    [62]Y. Huang, Y. Feng, T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Optics Express 15,11133-11141 (2007)
    [63]B. Popa and S. A. Cummer, "Cloaking with optimized homogeneous anisotropic layers," Phys. Rev. A,79,023806 (2009)
    [64]S. Xi, H. Chen, B. Zhang, B. Wu and J. A. Kong, "Route to low-scattering cylindrical cloaks with finite permittivity and permeability," Phys. Rev. B 79,155122 (2009)
    [65]Z. Yu, Y. Feng, X. Xu, J. Zhao and T. Jiang, "Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials," J. Phys. D:Appl. Phys.44,185102 (2011)
    [66]W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng and J. Y. Chin, "Arbitrarily elliptical-cylindrical invisible Cloaking," J. Phys. D:Appl. Phys.41,085504 (2008)
    [67]W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu and T. J. Cui, "Analytical design of conformally invisible cloaks for arbitrarily shaped objects," Phys. Rev. E 77,066607 (2008)
    [68]H. Chen, X. Luo, H. Ma, and C. T. Chan, "The Anti-Cloak," Optics Express 16,18545 (2008)
    [69]Y. Lai, H. Chen, Z. Q. Zhang and C.T. Chan, "Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell," Phys. Rev. Lett.102,093901 (2009)
    [70]M. W. McCall, A. Favaro, P. Kinsler and A. Boardman, "A spacetime cloak, or a history editor," J. Opt.13,024003 (2011)
    [71]J. Li and J. B. Pendry, "Hiding under the Carpet:A New Strategy for Cloaking," Phys. Rev. Lett.101,203901 (2008).
    [72]R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, "Broadband Ground-Plane Cloak," Science 323,366 (2009)
    [73]J. Valentine, J. Li, T. Zentgraf, G. Bartal and X. Zhang, "An optical cloak made of dielectrics," Nature materials 8,568 (2009)
    [74]L. H. Gabrielli, J. Cardenas, C. B. Poitras and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Photonics 3,461 (2009)
    [75]T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener, "Three-Dimensional Invisibility Cloak at Optical Wavelengths," Science 328,337 (2010)
    [76]B. Zhang, Y. Luo, X. Liu and G. Barbastathis, "Macroscopic Invisibility Cloak for Visible Light," Phys. Rev. Lett.106,033901 (2011)
    [77]X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry and S. Zhang, "Macroscopic invisibility cloaking of visible light," Nature communications 1(2011)
    [78]X. Xu, Y. Feng, Z. Yu, T. Jiang, and J. Zhao, "Simplified ground plane invisibility cloak by multilayer dielectrics," Opt. Express 18,24477 (2010)
    [79]X. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, "Infrared carpet cloak designed with uniform silicon grating structure," Appl. Phys. Lett.95,184102 (2009)
    [80]X. Xu, Y. Feng, S. Xiong, J. Fan, J. Zhao and T. Jiang, "Broad band invisibility cloak made of normal dielectric multilayer," Appl. Phys. Lett.99,154104 (2011)
    [81]S. Zhang, C. Xia and N. Fang, "Broadband Acoustic Cloak for Ultrasound Waves," Phys. Rev. Lett.106,024301 (2011)
    [82]H. Chen and C. T. Chan, "Acoustic cloaking and transformation acoustics," J. Phys. D: Appl. Phys.43,113001 (2010)
    [83]J. B. Pendry and J. Li, "An acoustic metafluid:realizing a broadband acoustic cloak," New J. Phys.10,115032(2008)
    [84]S. A. Cummer, B. Popa, D. Schurig, D. R. Smith, J. Pendry, "Scattering Theory Derivation of a 3D Acoustic Cloaking Shell," Phys. Rev. Lett.100,024301 (2008)
    [85]D. Torrent and J. Sanchez-Dehesa, "Acoustic cloaking in two dimensions:a feasible approach," New J. Phys.10,063015 (2008)
    [86]S. A. Cummer and D. Schurig, "One path to acoustic cloaking," New J. Phys.9,45(2007)
    [87]A. Alu, D. Rainwater and A. Kerkhoff, "Plasmonic cloaking of cylinders:finite length, oblique illumination and cross-polarization coupling," New Journal of Physics 12,103028 (2010)
    [88]E. Irci and V. B. Ertiirk, "Achieving transparency and maximizing scattering with metamaterial-coated conducting cylinders," Phys. Rev. E 76,056603 (2007)
    [89]H. Wang and X. Zhang, "Achieving multifrequency transparency with cylindrical plasmonic Cloak," J. Appl. Phys.106,053302 (2009)
    [90]M. G. Silveirinha, A. Alu and N. Engheta, "Parallel-plate metamaterials for cloaking structures," Phys. Rev. E 75,036603 (2007)
    [91]S. Tricarico, F. Bilotti and L. Vegni, "Scattering cancellation by metamaterial cylindrical Multilayers," Journal of the European Optical Society-Rapid Publications 4,09021 (2009)
    [92]A. Alu and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72,016623 (2005)
    [93]A. Alu and N. Engheta, "Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking," New Journal of Physics 10,115036 (2008)
    [94]A. Alu and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers," J. Appl. Phys.97,094310 (2005)
    [95]A. Alu and N. Engheta, "Multifrequency Optical Invisibility Cloak with Layered Plasmonic Shells," Phys. Rev. Lett.100113901 (2008)
    [96]A. Alu and N. Engheta, "Plasmonic and metamaterial cloaking:physical mechanisms and potentials," J. Opt. A:Pure Appl. Opt.10,093002 (2008)
    [97]A. Alu and N. Engheta, "Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights," Opt Express 19,3318 (2007)
    [98]G. W. Milton, M. Briane and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New Journal of Physics 8,248 (2006)
    [99]S. G. Johnson, "Coordinate transformation & invariance in electromagnetism," notes for the course 18.369 at MIT (2007)
    [100]A. J. Ward and J. B. Pendry, "Refraction and geometry in maxwell's equations," Journal of modern optics 43,773 (1996)
    [101]Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, "Transformational plasmon optics," Nano Lett. 10,1991-1997(2010)
    [102]P. A. Huidobro, M. L. Nesterov, L. Martin-Moreno and F. J. Garcia-Vidal, "Transformation Optics for Plasmonics," Nano Lett.10,1985 (2010)
    [103]M. Kadic, S. Guenneau and S. Enoch, "Transformational plasmonics:cloak, concentrator and rotator for SPPs," Optics Express 18,12027 (2010)
    [104]P. A. Huidobro, M. L. Nesterov, L. Martin-Moreno and F. J. Garcia-Vidal, "Moulding the flow of surface plasmons using conformal and quasiconformal mappings," New Journal of Physics 13,033011 (2011)
    [105]J. Renger, M. Kadic, G. Dupont, S. S. Acimovic, S. Guenneau, R. Quidant and S. Enoch, "Hidden progress:broadband plasmonic invisibility," Opt. Express 18,15757 (2010)
    [106]T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, "Plasmonic Luneburg and Eaton lenses," nature nanotechnology 6,151 (2011)
    [107]A. Aubry, D. Y. Lei, A. I. Fernandez-Dominguez, Y. Sonnefraud, S. A. Maier and J. B. Pendry, "Plasmonic light-harvesting devices over the whole visible spectrum, " Nano Lett.10, 2574(2010)
    [108]Y. Luo, J. B. Pendry and A. Aubry, "Surface plasmons and singularities," Nano Lett.10, 4186-4191 (2010)
    [109]A. I. Fernandez-Dominguez, S. A. Maier and J. B. Pendry, "Collectrion and concentration of light by touching spheres:a transformation optics approach," Phys. Rev. Lett.105, 266807(2010)
    [110]A. Aubry, D. Y.. Lei, S. A. Maier and J. B. Pendry, "Conformal transformation applied to plasmonics beyond the quasistatic limit," Phys. Rev. B 82,205109 (2010)
    [111]A. I. Fernandez-Dominguez, A. Wiener, F. J. Garcia-Vidal, S. A. Maier and J. B. Pendry, "Transformation-optics description of nonlocal effects in plasmonic nanostructures," Phys. Rev. Lett.108,106802(2012)
    [1]J. B. Pendry, D. Schurig, D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780(2006)
    [2]H. Chen and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett.90,241105 (2007)
    [3]D. Kwon and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New Journal of Physics 10,115023(2008)
    [4]M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett.100,063903 (2008)
    [5]J. Li and J. B. Pendry, "Hiding under the Carpet:A New Strategy for Cloaking," Phys. Rev. Lett.101,203901(2008).
    [6]M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics and Nanostructures-Fundamentals and Applications 6, 87-95 (2008)
    [7]G. W. Milton, M. Briane and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New Journal of Physics 8,248 (2006)
    [8]S. G. Johnson, "Coordinate transformation & invariance in electromagnetism," notes for the course 18.369 at MIT (2007)
    [9]A. J. Ward and J. B. Pendry, "Refraction and geometry in maxwell's equations," Journal of modern optics 43,773 (1996)
    [10]吕盘明,“张量算法简明教程,”中国科技大学出版社,合肥(2008)
    [11]C. F. Bohren and D. R. Huffman, "Absorption and Scattering of Light by Small Particles," Wiley:New York (1983)
    [12]D. Schurig1, J. B. Pendry, D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Optics Express 14,9794 (2006)
    [13]H. Chen, B. Wu, B. Zhang, and J. A. Kong, Electromagnetic wave interactions with a metamaterial Cloak, Phys.Rev.Letts.99,063903 (2007).
    [14]D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314,977-980 (2006)
    [15]W. Cai, U. K. Chettiar, A. V. Kildishev and V. M. Shalaev, "Nonmagnetic cloak with minized scattering," Appl. Phys. Lett.91,111105 (2007)
    [16]X. Xu, Y. Feng, L. Zhao, T. Jiang, C. Lu and Z. Xu, "Designing the coordinate transformation function for non-magnetic invisibility cloaking," J. Phys. D:Appl. Phys.41, 215504(2008)
    [17]A. Alu, D. Rainwater and A. Kerkhoff, "Plasmonic cloaking of cylinders:finite length, oblique illumination and cross-polarization coupling," New Journal of Physics 12,103028 (2010)
    [18]E. Irci and V. B. Ertiirk, "Achieving transparency and maximizing scattering with metamaterial-coated conducting cylinders," Phys. Rev. E 76,056603 (2007)
    [19]H. Wang and X. Zhang, "Achieving multifrequency transparency with cylindrical plasmonic Cloak," J. Appl. Phys.106,053302 (2009)
    [20]M. G. Silveirinha, A. Alu and N. Engheta, "Parallel-plate metamaterials for cloaking structures," Phys. Rev. E 75,036603 (2007)
    [21]S. Tricarico, F. Bilotti and L. Vegni, "Scattering cancellation by metamaterial cylindrical Multilayers," Journal of the European Optical Society-Rapid Publications 4,09021 (2009)
    [22]A. Alu and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72,016623 (2005)
    [23]A. Alu and N. Engheta, "Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking," New Journal of Physics 10,115036 (2008)
    [24]A. Alu and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers," J. Appl. Phys.97,094310 (2005)
    [25]A. Alu and N. Engheta, "Multifrequency Optical Invisibility Cloak with Layered Plasmonic Shells," Phys. Rev. Lett.100,113901 (2008)
    [26]A. Alu and N. Engheta, "Plasmonic and metamaterial cloaking:physical mechanisms and potentials," J. Opt. A:Pure Appl. Opt.10,093002 (2008)
    [1]D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314,977-980 (2006)
    [2]B. Popa and S. A. Cummer, "Cloaking with optimized homogeneous anisotropic layers," Phys. Rev. A 79,023806 (2009)
    [3]S. Xi, H. Chen, B. Zhang, B. Wu and J. A. Kong, "Route to low-scattering cylindrical cloaks with finite permittivity and permeability," Phys. Rev. B 79,155122 (2009)
    [4]T. Han, C. W. Qiu, J. Hao, X. Tang and S. Zouhdi, "Gain-assisted transformation optics," Optics Express 19,8610-8615 (2011)
    [5]J. B. Pendry, D. Schurig, D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782(2006)
    [6]D. Schurigl, J. B. Pendry, D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Optics Express 14,9794 (2006)
    [7]Y. Huang, Y. Feng, T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Optics Express 15,11133-11141 (2007)
    [8]B. Wood, J. B. Pendry and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectricsystem," Phys. Rev. B 74,115116 (2006)
    [9]C. A. Balanis, "Advanced Engineering Electromagnetics," John Wiley & Sons (1989)
    [10]Genetic Algorithm and Direct Search Toolbox, User's Guide, Version 1
    [11]J. M. Johnson and Y. Rahmat-Samii, "Genetic Algorithms in Engineering Electromagnetics," IEEE Antennas and Propagation Magazine 39,7 (1997)
    [12]A. Alu and N. Enghtea, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. B 72,016623 (2005)
    [13]A. Alu and N. Enghtea, "Multifrequency Optical Invisibility Cloak with Layered Plasmonic Shells," Phys. Rev. Lett.100,113901 (2008)
    [14]A. Alu and N. Enghtea "Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights," Opt. Express 15,3318 (2007)
    [15]A. Alu and N. Enghtea "Effects of size and frequency dispersion in plasmonic cloaking," Phys. Rev. E 78,045602 (2008)
    [16]P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379(1972)
    [17]J. G. Rivas, C. Janke, P. Bolivar and H. Kurz, "Transmission of THz radiation through InSb gratings of subwavelength apertures," Opt. Express 13,847-859 (2005)
    [18]N. Garcia, E. V. Ponizovskaya and J. Q. Xiao, "Zero permittivity materials:Band gaps at the visible," Appl. Phys. Lett.80,1120 (2002)
    [1]J. B. Pendry, D. Schurig, D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782(2006)
    [2]D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314 977-80(2006)
    [3]D. H. Kwon and D. H. Werner, "Transformation electromagnetics:an overview of the theory and applications," IEEE Antennas and Propagation Magazine, Vol.52, No.1 (2010)
    [4]M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry and D. R. Smith "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett.100,063903(2008)
    [5]M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics and Nanostructures-Fundamentals and Applications 6, 87-95 (2008)
    [6]W. Wang, L. Lin, J. Ma, C. Wang, J. Cui, C. Du and X. Luo, "Electromagnetic concentrators with reduced material parameters based on coordinate transformation," Optics Express 16, 11431-11437(2008)
    [7]W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and R. Smith, "Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces," Appl. Phys. Lett.92,264101 (2008).
    [8]J. Yang, M. Huang, C. Yang, Z. Xiao and J. Peng, "Metamaterial electromagnetic concentrators with arbitrary geometries," Optics Express 17,19656 (2009)
    [9]W. Li, J. Guan and W. Wang, "Homogeneous-materials-constructed electromagnetic field concentrators with adjustable concentrating ratio," J. Phys. D:Appl. Phys.44,125401 (2011)
    [10]S. A. Cummer, B. Popa, D. Schurig, D. R. Smith and J. Pendry "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74,036621 (2006)
    [11]D. C. Liu and J. Nocedal, "On the limited memory BFGS method for large scale optimization," Mathematical programming," Phys. Rev. E 45,503-528 (1989)
    [12]B. Popa and S. A. Cummer, "Cloaking with optimized homogeneous anisotropic layers," Phys. Rev. A 79,023806 (2009)
    [13]张德丰等编著,"MATLAB数值计算方法,”机械工业出版社,北京(2010)
    [14]A. Argyros, K. Bekris, S. Orphanoudakis, and L. Kavraki, "Robot homing by exploiting panoramic vision," Auton. Robot.19,7-25 (2005)
    [15]W. Sturzl, D. Soccol, J. Zeil, N. Boeddeker, M. Srinivasan, "A rugged, obstruction-free, mirror-lens combination for panoramic imaging," Applied Optics 47.6070 (2008)
    [16]R. Benosman, S. B. Kang, and O. Faugeras, "Panoramic Vision:Sensors, Theory and Applications," Springer (2001)
    [1]J. A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S. J. Souri, K. Banerjee, K.. C. Saraswat, A. Rahman, R. Reif and J. D. Meindl, "Interconnect limits on gigascale integration (GSI) in the 21st century," Proc. IEEE, vol.89,305-324 (2001)
    [2]W. A. Murray and W. L. Barnes, "Plasmonic materials," Adv. Mater.19,3771-3782 (2007)
    [3]R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag.18,396-408 (1902)
    [4]U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces," J. Opt. Soc. Am.31,213-222 (1941)
    [5]R. H. Ritchie "plasma losses by fast electrons in thin film," Phys. Rev.106,874-881 (1957)
    [6]E. A. Stern and R. A. Ferrell "surface plasma oscillations of a degenerate electron gas," Phys. Rev.120,130-136(1960)
    [7]J. Homola, "Electromagnetic Theory of Surface Plasmons," Springer Ser Chem Sens Biosens 4,3-44 (2006)
    [8]M. Fox, "Optical properties of solids," Oxford University Press, Oxford (2001)
    [9]C. Kittle, "Introduction to solid state physics," John Wiley & sons, Inc., New York (1971)
    [10]黄昆,“固体物理学,”高等教育出版社,北京(1988)
    [11]李正中,“固体理论(第2版),”高等教育出版社,北京(2002)
    [12]S. Maier, "Plasmonics:Fundamentals and Applications," Springer, New York (2007)
    [13]W. L. Barnes, A. Dereux and T. W. Ebbesen, "surface plasmon subwavelength optics," Nature 24,824 (2003)
    [14]J. A. Dionne, L. A. Sweatlock and H. A. Atwater, "Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model," PHYSICAL REVIEW B 72,075405 (2005)
    [15]B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F. R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett.7951-53(2001)
    [16]P. B. Johnson and R. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6,4370 (19712)
    [17]D. Palik, "Handbook of Optical Constants of Solids," Academic, New York (1985)
    [18]R. Zia, M. D. Selker, P. B. Catrysse and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21,2442 (2004)
    [19]R. Zia, J. A. Schuller, A. Chandran and M. L. Brongersma, "Plasmonics:the next chip-scale technology," materials today 9,20-27 (2006)
    [20]D. K. Gramotnev and S. I. Bozhevolnyi, "plasmonics beyond the diffraction limit," Nature photonics 4,83(2010)
    [21]D. F. P. Pile and D. K. Gramotnev, "Plasmonic subwavelength waveguides:next to zero Losses at sharp bends," Opt. Lett.30,15 (2005)
    [22]S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, et. al, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440,508 (2006)
    [23]G. Yuan, P. Wang, Y. Lu and H. Ming, "Multimode interference splitter based on dielectric-loaded surface plasmon polariton waveguides," Opt. Express 17,12594 (2009)
    [1]J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312,1780(2006)
    [2]G. W. Milton, M. Briane and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New Journal of Physics 8,248 (2006)
    [3]S. G. Johnson, "Coordinate transformation & invariance in electromagnetism," notes for the course 18.369 at MIT (2007)
    [4]A. J. Ward and J. B. Pendry, "Refraction and geometry in maxwell's equations," Journal of modern optics 43,773 (1996)
    [5]D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314 977-80 (2006)
    [6]U. Leonhardt, "Optical Conformal Mapping," Science 312,1777 (2006)
    [7]M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics and Nanostructures-Fundamentals and Applications 6, 87-95 (2008)
    [8]W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and R. Smith, "Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces," Appl. Phys. Lett.92,264101 (2008)
    [9]Z. L. Mei and T. J. Cui, "Arbitrary bending of electromagnetic waves using isotropic materials," J. Appl. Phys.105,104913 (2009)
    [10]D. H. Kwon and D. H. Werner, "Transformation electromagnetics:an overview of the theory and applications," IEEE Antennas and Propagation Magazine, Vol.52, No.1 (2010)
    [11]M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry and D. R. Smith "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett.100,063903(2008)
    [12]X. Xu, Y. Feng, and T. Jiang, "Electromagnetic beam modulation through transformation optical structures," New J. Phys.10,115027 (2008).
    [13]P.-H. Tichit, S. N. Burokur, and A. de Lustrac, "Waveguide taper engineering using coordinate transformation technology," Opt. Express 18,767 (2010)
    [14]E. E. Narimanova and A. V. Kildisheva, "Optical black hole:Broadband omnidirectional light absorber," Appl. Phys. Lett.95,041106 (2009)
    [15]D. A. Genov, S. Zhang, and X. Zhang, "Mimicking celestial mechanics in metamaterials," Nat. Phys.5,687 (2009).
    [16]Q. Cheng, J. T. Cui, W. X. Jiang and B. G. Cai, "An omnidirectional electromagnetic absorber made of metamaterials," New J. Phys.12,063006 (2010)
    [17]D. Kwon and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New Journal of Physics 10,115023 (2008)
    [18]M. W. McCalll, A. Favarol, P. Kinsler and A. Boardman, "A spacetime cloak, or a history editor," J. Opt.13,024003 (2011)
    [19]J. Li and J. B. Pendry, "Hiding under the Carpet:A New Strategy for Cloaking," Phys. Rev. Lett.101,203901 (2008)
    [20]H. Chen, C. T. Chan and P. Sheng, "Transformation optics and metamaterials," Nature material 9,387(2010)
    [21]T. Yang, H. Y. Chen, X. Luo, and H. Ma, "Superscatterer:enhancement of scattering with complementary media," Opt. Express 16,18545 (2008)
    [22]X. Zhang, H. Chen, X. Luo and H. Ma, "Transformation media that turn a narrow slit into a large window," Optics Express 16,11764 (2008)
    [23]H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, "Design and Experimental Realization of a Broadband Transformation Media Field Rotator at Microwave Frequencies," Phys. Rev. Lett.102,183903 (2009)
    [24]M. Kadic, S. Guenneau, and S. Enoch, "Transformational plasmonics:cloak, concentrator and rotator for SPPs," Optics Express 18,12027-12032 (2010)
    [25]P. A. Huidobro, M. L. Nesterov, L. Martin-Moreno, F. J. Garcia-Vidal, "Transformation optics for plasmonics," Nano Lett.10,1985-1990 (2010)
    [26]Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, "Transformational plasmon optics," Nano Lett. 10,1991-1997(2010)
    [27]P. A. Huidobro, M. L. Nesterov, L. Martin-Moreno, F. J. Garcia-Vidal, "Moulding the flow of surface plasmons using conformal and quasiconformal mappings," New J. Phys.13, 033011 (2011)
    [28]T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, "Plasmonic Luneburg and Eaton lenses," nature nanotechnology 6,151 (2011)
    [29]M. Kadic, S. Guenneau, S. Enoch and S. A. Ramakrishna, "Plasmonic Space Folding: Focusing Surface Plasmons via Negative Refraction in Complementary Media," ACS Nano 5,6819(2011)
    [1]H. Raether, "Surface Plasmons:on smooth and rough surfaces and on gratings," Springer, Berlin (1988)
    [2]M. Kadic, S. Guenneau, and S. Enoch, "Transformational plasmonics:cloak, concentrator and rotator for SPPs," Opt. Express 18,12027 (2010).
    [3]Y. Liu, T. Zentgraf, G. Bartal and X. Zhang, "Transformational plasmon optics," Nano Lett., 10 1991-1997(2010)
    [4]P. A. Huidobro, M. L. Nesterov, L. Martin-Moreno, F. J. Garcia-Vidal, "Transformation optics for plasmonics," Nano Lett.10,1985-1990 (2010)
    [5]P. A. Huidobro, M. L. Nesterov, L. Martin-Moreno, F. J. Garcia-Vidal, "Moulding the flow of surface plasmons using conformal and quasiconformal mappings," New J. Phys.13, 033011 (2011)
    [6]T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, "Plasmonic Luneburg and Eaton lenses," nature nanotechnology 6,151-155 (2011)
    [7]M. Kadic, S. Guenneau, S. Enoch and S. A. Ramakrishna, "Plasmonic Space Folding: Focusing Surface Plasmons via Negative Refraction in Complementary Media," ACS Nano 5, 6891 (2011)
    [8]W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424,824 (2003)
    [9]E. Ozbay, "Plasmonics:Merging Photonics and Electronics at Nanoscale Dimensions," Science 311,189(2006)
    [10]R. F. Oulton, D. F. Pile, Y. Liu and X. Zhang, "Scattering of surface polaritons at abrupt surface interfaces:implication for nanoscale cavities," Phys. Rev. B 76,035408 (2007)
    [11]J. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett.85,3966-9 (2000)
    [12]J. B. Pendry and S. A. Ramakrishna, "Focusing light using negative refraction," J. Phys. Condens. Matter 15,6345 (2003)
    [13]H. Chen, C. T. Chan and P. Sheng, "Transformation optics and metamaterials," Nature material 9 387-396 (2010)
    [14]Y. Lai, H. Chen, Z. Q. Zhang and C.T. Chan, "Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell," Phys. Rev. Lett.102,093901 (2009)
    [15]M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry and D. R. Smith "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett.100,063903(2008)
    [16]D. H. Kwon and D. H. Werner, "Transformation electromagnetics:an overview of the theory and applications," IEEE Antennas and Propagation Magazine, Vol.52, No.1 (2010)
    [17]G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett.32,53 (2007).
    [18]J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature 455, 376-379 (2008).
    [19]C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315,47-49 (2007).
    [20]V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon.1,41-48 (2006).
    [21]S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature 466,735-738 (2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700