重庆地区地表形变D-InSAR检测应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重庆市是我国四大地质灾害易发地区之一。该市地质灾害发生频繁且种类繁多,已严重威胁了人民群众的生命财产安全,影响并制约着全市经济建设和社会发展。应用合成孔径雷达差分干涉测量技术对重庆地区进行地表沉降的研究和评价,具有重要的科学意义和实践意义。
     本文在了解合成孔径雷达干涉测量成像及其原理的基础上,分析了图像配准和相位解缠的主要算法,并结合数据处理平台DORIS详细介绍了三轨差分干涉测量方法。以重庆地区1996年4月7日、1998年7月26日和1998年7月27日的三景ERS1/2 SAR图像为例进行三轨差分干涉测量处理,提取了地表形变。最后结合研究区域1988年和2000/2001年多时相的Landsat TM/ETM+图像,进行综合对比,分析地表形变信息。
Chongqing city is located in the hilly region of south-eastern area of Sichuan Basin. It is in the upper reaches of the Yangtze River.Because the surface rock and soil is affected by a strong long-term weathering,geological disasters in this area is relatively frequent. The strength and stability of the rock and soil along the two sides of the river is also reduced because of the long-term erosion of Yangtze River. Controled by the fold structure,Chongqing area has a complex geological structure.The rock is serious-crushed, low-intensity and strong permeability. At the same time,the elevation difference of this area is relatively large. It is precisely because of these characteristics, making Chongqing become the country's four major geological disaster-prone areas.
     Synthetic aperture radar interferometry (InSAR) has been proposed as a potential earth observation technique, and it is an international research hot spot now. It has the advantages of all time and all weather operation, and cost-effective data acquisition for large areas. It uses the phase difference of the radar returns in two complex synthetic aperture radar images,of the same area acquired at separate viewpoints or times,to obtain the third dimension information of targets in the surface.
     As an active microwave imaging sensors, InSAR has high distance resolution and azimuth resolution,and also a characteristic of high automation.It has the advantages of all time and all weather operation, and cost-effective data acquisition for large areas.These features of InSAR technology make it more appropriate in geology, environment, oceans, disasters, mapping applications and many other fields, especially for the areas which are difficult for traditional optical sensors. All in all, InSAR has a special significance for remote sensing.
     Using InSAR technology to the extract the surface deformation of Chongqing area is feasible.It can provide a scientific basis for the study of geological disasters.And has important significance in both science and practice field.
     This dissertation introduced the principle and method of D-InSAR for surface displacement measurememt,analyed the procedure and mathematic model of InSAR. Also,the dissertation introduced the registration of InSAR complex images and the main algorithm of phase unwrapping.At the same time, the radar data processing software DORIS based on Linux operating is profoundly studied.The algorithms of DORIS, as well as its steps, are comprehensively mastered.
     Choose three ERS-1/2 satellite SAR images covering the southern area of Chongqing to got the surface deformation,based on three-pass differential InSAR method.We used the radar image in July 27,1998,orbits 17085 as the master image,the other two images as slave images,to get the topographic information and the deformation information respectively.
     First of all, the simulation precision orbit data is calculated according to the position data of the satellite orbit. The coarse offsets were calculated. The window-based automatic registration technique is used,also the correlation coefficient method. These are all for the coarse registration. And then the precise offset parameters of the two radar images are obtained for precise registration.After precise registration,a sub-pixel matching accuracy is reached. Filtering is also necessary in both azimuth and range direction.
     The Interferogram is producted by multiplied the two images in complex conjugation. After that,in order to got the real surface elevation information, flat-earth effect must be removed. Then the phase unwrapping is processed. After unwrapping the interferogram of the topography, process it with the wrapped deformation interferogram and got the the differential interferogram. of surface deformation during the period 1996-1998 of chongqing region.
     Finally, multi-temporal Landsat TM and ETM+ data are used to compare and analyze the differential interferometric result.Interference fringes are obvious only in the urban area of Chongqing, the northern part of Nanchuan County, PuiLing County and Jiangbei County.The coherence is very low in other areas of the interferogram. Only the noise can be seen.After Geo-coding and projection transformation,the 4 areas with obvious fringes were found in the TM/ETM+ images respectively. Compared the differential interferogram with the TM/ETM+ images in 1988 and 2001 of these 4 areas, the reasons for surface deformation were analyzed.
引文
[1]魏钟栓.合成孔径雷达卫星[M].北京:科学出版社,2001.
    [2]Guarnieri A M, SAR interferometry and statistical topography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(12): 2567-2581.
    [3]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002.
    [4]张红,王超,刘智.获取张北地震同震形变场的差分干涉测量技术[J].中国图像图形学报,2002,5(A6):497-500.
    [5]Madsen S N, Zebker H A, Martin J. Topographic mapping using radar interferometry:processing techniques[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(1): 246-256.
    [6]郭春生,朱兆达,朱岱寅.InSAR数字地形高度图的生成研究[J].现代雷达,2003,25(1):19-21.
    [7]郭华东,姚岁寒,彭斌.雷达对地观测理论与应用[M].北京:科学出版社,2000.
    [8]史世平.使用ERS-1/2干涉测量SAR数据生成DEM[J].测绘学报,2000,29(4): 317-322.
    [9]周兴东,王志勇,丁健全,等.InSAR技术在地形测绘中的应用[J].矿山测量,2006(1):18-20.
    [10]Joughin L R, Winebrenner D P, Fahnestock A M. Observation of ice-sheet motion in satellite radar interferometry[J]. Geophysical research letters, 1995, 22(5): 571-574; 28(5): 4-7.
    [11]周春霞,鄂栋臣,廖明生.InSAR用于南极测图的可行性研究[J].武汉大学学报:信息科学版,2004,29(7):619-623.
    [12]周春霞,鄂栋臣.InSAR技术在南极地区的应用[J].测绘与空间地理信息,2005,28(5):3-7.
    [13]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [14]Rogers A E E, Ingalls R P, Venus. Mapping the surface Reflectivity by Radar Interferometry[J]. Science, 1969, 165(3895): 797-799.
    [15]Zisk S H. Lunar Topography.First Radar-Interferometer Measurements of the Alphansus-Ptolemaeus-Arzachel Region[J]. Science,1972,178(4064): 977-980.
    [16]Zebker H A, Goldstein R M. Topographic mapping from interferometer synthetic aperture radar observations[J]. Journal of Geophysical Research, 1986, 91(B5): 4993-5000.
    [17]Li F K, Goldstein R M, Studies of multibaseline spaceborne interferometric synthetic aperture radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(1): 88-97.
    [18]A.Ferrett, C.Prati, F.Rocca. Analysis of Permanent Scatters in SARinterferometry [C]. Geoscience and Remote Sensing Symposium, IGASS2000, 2000(2): 761-763.
    [19]Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas: Differential radar interferometry[J]. Journal of Geophysical Research, 1989, 94(B7): 9183-9191.
    [20]Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interfereometry[J]. Nature, 1993(364): 138-142.
    [21]Zebker H A, P A Rosen, Goldstein R M, et al.On the Derivation of Coseismic Displacement Fields Using Differential Radar Interferometry: The Landers Earthquake[J]. Journal of Geophysical Research, 1994, 99(B10): 19,617-19,634.
    [22]Peltzer G, Rosen P. Surface displacement of the 17 May 1993 Eureka Valley California.earthquake observed by SAR interferometry[J]. Science, 1995, 268:1333-1336.
    [23]Massonnet D, Feigl K. Satellite Radar Interferometric Map of the Coseismic Deformation Field of the M=6.1 Eureka Valley California Earthquake of May 17.1993[J]. 1995, 22: 1541-1544.
    [24] Murakami M, Tobita M, Fujiwara S, et al. Coseismic crustal deformation of 1994 Northridge California Earthquake detected by interferometry[J]. Journal of Geophysical Research, 1996, 101: 8605-8614.
    [25]Wright T J, Parsons B E, Jackson J A, et al. Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modeling[J]. Earth and Planetary Science Letters, 1999, 172(1/2): 23-37.
    [26]Massonnet D, Holzer T, Vadon J. Land Subsidence Caused by the East Mesa Geothermal Field. California Observed by SAR Interferometry[J].Geophys. Res.Lett, 1997, 24(8):901-904.
    [27]Carnec C, Fabriol H. Monitoring and Modeling Land Subsidence at the Cerro Prieto Geothermal Field Baja California Mexico Using SAR Interferometry[J]. Geophysical research letters, 1999, 26(9): 1211-1214.
    [28]Amelung F, Galloway D, Bell J. Sensing the ups and downs of Las Vegas: InSAR reveal structural control of land subsidence and aquifer-system deformation[J]. Geology, 1999, 27(6): 483-486.
    [29]Galloway O, Hudnut K, Ingebritsen S, et al. Detection of Aquifer System Compaction and Land Subsidence Using Interferometric Synthetic Aperture Radar, Antelope Valley, Mojave Desert, California[J]. Water Resources Research, 1994, 34, (10): 2573-2586.
    [30]单新建,马瑾,王长林,等.利用差分干涉雷达测量技术(D-InSAR)提取同震形变场[J].地震学报,2002,24(4):413-420.
    [31]路旭,匡绍君,贾有良,等.用INSAR作地面沉降监测的试验研究[J].大地测量与地球动力学,2002,122(4):66-70.
    [32]刘国祥,丁晓利,陈永奇,等.使用卫星雷达差分干涉技术测量香港赤腊角机场沉降场[J].科学通报,2001,46(14):1224-1228.
    [33]姜景山,张云华,董晓龙.微波遥感若干前沿技术及新一代空间遥感方法探讨[J].中国工程科学,2000,2(8):75-82.
    [34]单新建,叶洪.干涉测量合成孔径雷达技术原理其在测量地震形变场中的应用[J].地震学报,1998,20(6):647-655.
    [35]Goldstein R M, Zebker H A. Interferometric radar measurement of ocean surface current[J]. Nature, 1987, 328: 707~709.
    [36]Zebker H A, Goldstein R M. Topographic Mapping from Interferometric Synthetic Aperture Radar Observations[J]. Journal of Geophysical Research, 1986, 91: 4993-4999.
    [37]Kampes B M, Usai S. DORIS: the delft object-oriented radar interferometric software, 2nd international symposium on operationalization of remote sensing[M]. Enschede, The Netherlands, 1999.
    [38]邵玉龙.干涉合成孔径雷达成象研究[M].南京:南京航空航天大学出版社,1998,68-76.
    [39]Fielding E, Blom R, Goldstein R. Rapid Subsidence over Oil Fields Measured by SAR Interferometry[J]. Geophysical research letters, 1998, 25(17): 3215-3218.
    [40]Zebker H A, Rosen P A, Hensley S. Atmospheric effects in Interferometric Synthetic Aperture Radar surface deformation and topographic maps[J]. Journal of Geophysical Research Solid Earth, 1997, 102(B4): 7547-7563.
    [41]卢丽君.InSAR影像配准及其并行化算法研究[D].武汉:武汉大学,2005.
    [42]舒宁.雷达影像干涉测量原理[M].武汉:武汉大学出版社,2003.
    [43]王超,刘智,张红,等.张北-尚义地震同震形变场雷达差分干涉测量[J].科学通报,2000,45(23):2550-2553.
    [44]Costantini M A. phase unwrapping method based on net-work programming[J]. Proceedings of the Fringe 96 Workshop, 1996, 261-272.
    [45]孙家柄.遥感原理与应用[M].武汉:武汉大学出版社,2003,32-37.
    [46]任小冲,徐克科,佟国功,等.利用DORIS软件进行SAR差分干涉测量提取地震形变研究[J].河南理工大学学报,2007,1026(5):535-539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700