压缩感知理论在雷达成像中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以ISAR和InISAR为代表的高分辨率雷达成像技术在军事和民用领域有着广泛的需求。通常情况下,高分辨率雷达图像的获得需要宽带雷达信号,而宽带雷达信号则又会导致雷达数据率的增加。近年来在雷达技术领域得到高度关注的压缩感知理论,其非相关测量过程能够有效地降低高分辨率雷达成像系统的数据率,有望解决雷达系统中超大数据量的采集、存储与传输问题。因此压缩感知理论和技术在雷达成像领域的应用,有可能会为高分辨率雷达成像技术带来巨大变革。压缩感知在高分辨率雷达成像中的应用研究工作虽然取得了一定的进展,但还没有针对压缩感知雷达成像理论进行系统性研究,也没能在此基础上给出实用化的成像算法。论文以基于压缩感知的雷达成像理论与算法作为研究内容,将压缩感知理论应用到高分辨率雷达成像算法中。论文围绕着成像数据获取方法、成像信号处理方法和压缩感知在宽带雷达成像中的应用等紧密联系而侧重不同的三个方面展开了研究,建立了匹配滤波体制和去斜体制下的基带回波信号稀疏表示模型,提出了压缩感知测量器应用到雷达接收机的数字方案与模拟方案,构建了具有保相性的压缩感知距离压缩算法,通过距离-方位解耦合的雷达成像框架,将压缩感知距离压缩算法与传统的雷达二维成像和InISAR三维成像算法相结合,形成了压缩感知雷达成像算法,并将其应用到调频步进宽带雷达成像中。论文通过对仿真和实测数据的处理,证明了所提出的方法的有效性。
     论文的主要贡献体现在以下三个方面:
     在基于压缩感知的雷达数据获取方法研究中,通过对雷达回波信号的分析,建立了匹配滤波体制和去斜体制下的雷达回波信号稀疏表示模型,并将模拟/信息转换器引入压缩感知雷达成像处理中,以实现对距离向雷达回波信号的实时测量。在此基础上提出了压缩感知测量器应用到雷达接收端的数字实现方案与模拟实现方案。
     在压缩感知雷达成像算法研究中,首先在常用的稀疏信号重建算法中筛选出适合雷达成像的算法,然后与雷达回波信号稀疏表示模型以及非相干测量矩阵一起构建了具有保相性的压缩感知距离压缩算法。在此基础上利用距离-方位解耦合的雷达成像框架,将压缩感知距离压缩算法与传统的雷达二维成像和InISAR三维成像算法相结合,形成了压缩感知雷达成像算法。
     在压缩感知宽带雷达成像算法研究中,结合调频步进信号的子脉冲合成方法,提出了针对调频步进信号的压缩感知测量方法,实现了压缩感知宽带雷达成像。
High-resolution radar imaging is widely demanded in many applications. Usually high-resolution radar imaging needs wide-band radar signals, and wide-band radar signals result in the increase of data rate. In recent years, compressive sensing (CS) theory is highly focused in radar community, and its incoherence measurement process can effectively reduce the data rate of high-resolution imaging radar system, and release the burden of radar system on huge amount of data sampling, storage and transmission. So, CS theory and technologies may bring deep change to high-resolution imaging radar system. Although the research of CS based radar imaging has made some progress, there is still lack of systemic research on the CS based radar imaging theory, and no practicable imaging algorithm. In the dissertation, the theory and algorithms of CS based radar imaging is discussed and applied to high-resolution radar imaging. The major works include the following three parts: the CS based radar imaging data acquisition methods, the CS based radar imaging algorithms and the application of CS in wide-band radar imaging. Firstly, we establish the sparse representation models of the baseband echo under both matched filtering and de-chirp processing, and propose digital or analog realization scheme of analog-to-information convertor in radar receiver. Secondly, we realize a phase-reservation CS based range compression algorithm, constructe a CS based radar imaging framework with range and azimuth decoupled and apply it to both 2D and 3D radar imaging combined with conventional imaging algorithms. Finally, we apply the CS based imaging method to wideband radar imaging system. The effectiveness of the proposed algorithms are tested through processing both simulation and real data.
     The major contributions of the dissertation are summarized as follows:
     In the study of CS based radar data acquisition methods, we firstly analyze the radar echo signal, and then establishe the sparse representation models of the processed signals under matching filter mode and de-chirp mode. Aiming to real-time measurement, we introduce Analog-to-Information converter(AIC) into compressive sensing imaging processing, and proposes both digital and analog solutions of AIC in radar receiver.
     In the study of CS based imaging algorithms, we firstly select the sparse signal reconstruction algorithm suitable for radar imaging, and then propose a phase-reserve CS range compression algorithm combined with sparse representation of radar echo signal and non-correlation measurement matrix. Finally, we propose a range-azimuth decoupling radar imaging frame, in which CS range compression algorithm is combined with traditional radar 2D imaging and 3D imaging algorithms so as to realize the CS imaging algorithm.
     In the study of CS based wide-band radar imaging algorithm, we propose a CS measurement method for stepped-frequency chirp signal (SFCS) and realize CS imaging for wide-band radar with application of the subaperture processing method of SFCS.
引文
[1] Wehner Donald R. High-Resolution Radar[M]. 2nd. Boston: Artech House, 1995.
    [2]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社, 1999.
    [3] Sullivan R J著,微波成像技术国家重点实验室译.成像与先进雷达技术基础[M].北京:电子工业出版社, 2009.
    [4]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [5] Carrasco-Flores Benjamin. Robust methods for the motion compensation of Inverse Synthetic Aperture Radar imagery[D]. Arizona State University, 1990.
    [6] Nugroho Srihanto. ISAR imaging of a man euvering target[D]. State University of New York at Buffalo, 1994.
    [7] Son Jae Sok. Translational motion compensation methods for inverse synthetic aperture radar imagery[D]. The University of Texas at El Paso, 1999.
    [8] Brinkman Wade. Focusing ISAR Images using Fast Adaptive Time-Frequency and 3D Motion Detection on Simulated and Experimental Radar Data[D]. Naval Postgraduate School, 2005.
    [9]王根原.机动目标的逆合成孔径雷达成像研究[D].西安电子科技大学, 1998.
    [10]罗琳.逆合成孔径雷达成像方法的实验研究[D].西安电子科技大学, 1998.
    [11]卢光跃.逆合成孔径雷达(ISAR)成像技术的改进[D].西安电子科技大学, 1999.
    [12]刘峥.脉冲合成高分辨雷达目标运动补偿与成像[D].西安电子科技大学, 2000.
    [13]郑义明. SAR/ISAR运动补偿新方法研究[D].西安电子科技大学, 2000.
    [14]邢孟道.基于实测数据的雷达成像方法研究[D].西安电子科技大学, 2002.
    [15]张兴敢.逆合成孔径雷达成像及目标识别[D].南京航空航天大学, 2002.
    [16]高勋章.基于高阶统计量的雷达目标高分辨成像研究[D].国防科学技术大学, 2004.
    [17]范录宏.逆合成孔径雷达成像与干扰技术研究[D].电子科技大学, 2006.
    [18]汪玲.逆合成孔径雷达成像关键技术研究[D].南京航空航天大学, 2006.
    [19]高昭昭.高分辨ISAR成像新技术研究[D].西安电子科技大学, 2009.
    [20]张直中.先进合成孔径雷达/逆合成孔径雷达成像及其特征分析[J].雷达科学与技术, 2005(02):65-70.
    [21] Pullis Jack D. Three Dimensional Inverse Synthetic Aperture Radar Imaging[D]. Air Force Institute of Technology, 1995.
    [22]李强.单脉冲雷达目标三维成像与识别研究[D].西安电子科技大学, 2007.
    [23]马长征.雷达目标三维成像技术研究[D].西安电子科技大学, 1999.
    [24]张冬晨. InISAR三维成像的关键技术研究[D].中国科学技术大学, 2009.
    [25]穆冬.干涉合成孔径雷达成像技术研究[D].南京航空航天大学, 2001.
    [26]张直中.发展中的三维成像合成孔径雷达[J].现代雷达, 1999(05):6-13.
    [27] Bamler R., Ha rtl P. S ynthetic a perture ra dar inte rferometry[J]. INVERSE PROBL EMS, 1998,14(4):R1-R54.
    [28] Graham L. C. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 1974, 62(6):763-768.
    [29]石晓进.星载干涉合成孔径雷达信号处理若干问题研究[D].中国科学院空间科学与应用研究中心, 2008.
    [30] Donoho D L. Compr essed sensin g[J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006,52(4):1289-1306.
    [31] Tsaig Y, Donoho D L. Ex tensions of comp ressed sensing [J]. SI GNAL PROCESS ING, 2006,86(3):549-571.
    [32] Candes E J , T ao T . N ear-optimal si gnal r ecovery from random proj ections: Universal encoding strate gies?[J]. IEEE TR ANSACTIONS ON INFORMATION THE ORY, 2006,52(12):5406-5425.
    [33] Candes E J , Romberg J, Tao T. Robust unc ertainty principles: Exact signal re construction from hi ghly incomplete fr equency inf ormation[J]. IEEE TRA NSACTIONS ON INFORMATION THEORY, 2006,52(2):489-509.
    [34]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社, 2005.
    [35] Cutrona L. J ., Leith E. N., Porcello L. J ., et al. On the application o f cohe rent optical processing techniques to synthetic-aperture radar[J]. 1966,54(8):1026-1032.
    [36] Kirk J. C. A Discussion of Digital Processing in Synthetic Aperture Radar[J]. Aerospace and Electronic Systems, IEEE Transactions on, 1975,AES-11(3):326-337.
    [37]袁孝康.合成孔径雷达的发展现状与未来[J].上海航天, 2002(05):42-47.
    [38]张直中.合成孔径雷达(SAR)的最新发展[J].现代雷达, 2003(01):1-8.
    [39] Brown William M. S ynthetic Aperture Radar[J]. Aerospace and Electronic Systems, IEEE Transactions on, 1967,AES-3(2):217-229.
    [40] Walker J. L. Range-Doppler Imaging of Rotating Objects[J]. 1980,AES-16(1):23-52.
    [41] Chung-Ching Chen, Andrews H. C. Target-Motion-Induced Radar Imaging[J]. Aerospace and Electronic Systems, IEEE Transactions on, 1980,AES-16(1):2-14.
    [42] Ausherman Dale A., Kozma Adam, Walker Jack L., et al. Developments in Radar Imaging[J]. 1984,AES-20(4):363-400.
    [43] Zhang Yunhua, Wu Jie, Li Haibin. Two simple and e fficient approaches for compressing stepped chirp signals[C]. Asia-Pacific Microwave Conference 2005, Suzhou, China.
    [44]李海滨.调频步进信号及逆合成孔径雷达成像方法研究[D].中国科学院空间科学与应用研究中心, 2005.
    [45]伍捷.时频方法在高分辨率ISAR运动补偿和成像中的应用[D].中国科学院空间科学与应用研究中心, 2006.
    [46] Gu Xiang, Zhang Yunhua, Zhang Xiangkun. Electromagnetic simulation of I SAR imaging with supper -resolution[C]. 2007 1st Asian and Pacific Conferenc e on S ynthetic Aperture Radar, Huangshan, China: 595-598.
    [47] Zhang Yunhua, Jiang Bitao, Zhang Xiangkun, et al. Imaging simulation of spacecraft by ground based hig h-resolution ISAR[C]. 3rd European Rad ar Conf erence, EuRAD 2006, Manchester, United kingdom: 229-232.
    [48] Zhang Yunhua, Wu Jie. ISAR imaging with step ped-frequency chirp signal by de-chirping processing[C]. 2007 1st Asian and P acific C onference on S ynthetic Apertur e Rad ar, Huangshan, China: 687-690.
    [49]江碧涛,张云华,姜景山.宽带调频步进信号的全去斜处理方法[J].测试技术学报, 2008(03): 225-230.
    [50] Zhai Wenshuai, Zhang Yunhua. Apply super-SVA to SAR imaging with both aperture gaps and bandwi dth gaps[J]. P roceedings of W orld Academy of S cience, Eng ineering and Technology, 2009,57:39-42.
    [51] Zhang Yunhua, Z hang Xiang kun, Zhai Wenshuai, et al. Moving train imag ing b yground-based ka-band radar[C]. Loughborough Antennas and Propagation Conference, LAPC 2009, Loughborough, United kingdom,: 413-416
    [52]翟文帅,张云华.运用Super-SVA方法处理频谱不连续调频步进信号[J].电子与信息学报, 2009(12): 2848-2852.
    [53] Showman G. A., Sangston K. J., Richards M. A. Correction of artifacts in turntable inverse synthetic aperture radar images[J]. Proceedings of SPIE -RADAR SENSOR TECHNOLOGY II, 1997,3066:40-51.
    [54] Fortuny J, Sieber A J. Three-dimensional synthetic aperture radar imaging of a fir tree: First results[J]. IEEE TRA NSACTIONS ON GEOS CIENCE AND RE MOTE S ENSING, 1999,37(2):1006-1014.
    [55] Kempf T ., Pe ichl M., Dill S., e t a l. 3D T ower-Turntable ISAR Imaging[C]. Ra dar Conference, 2007. EuRAD 2007. European: 114-117
    [56] Soumekh M. Automatic airc raft l anding using interferometric inver se s ynthetic a perture radar ima ging[J]. IEEE TRANSACTIONS ON IMAGE P ROCESSING, 1996,5(9):1335-1345.
    [57] Xu X. J ., Xia o Z. H., Luo H. Thr ee-dimensional inte rferometric ISAR ima ging with applications t o t he scat tering di agnosis of com plex radar t argets[J]. P roceedings of S PIE -RADAR SENSOR TECHNOLOGY IV, 1999,3704:208-214.
    [58] Xu X J , Na rayanan R M. Thr ee-dimensional inte rferometric ISAR ima ging for tar get scattering diagnosis and modeling [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001,10(7):1094-1102.
    [59] Xu X. J., Narayanan R. M. Enhanced resolution in 3-D Interferometric ISAR imaging using an iterative S VA pro cedure[C]. IEEE INTERNATIONAL GEOSCIENCE AND R EMOTE SENSING SYMPOSIUM, 2003:935-937.
    [60] Xu X. J ., Na rayanan R . M. Enhan ced resoluti on in SAR/ ISAR ima ging usin g iterative sidelobe apodiz ation[J]. IEEE TR ANSACTIONS ON IMAGE PROCESSI NG, 2005,14(4):537-547.
    [61] Wang G Y, Xia X G, Chen V C. Three-dimensional ISAR imaging of maneuvering targets using three r eceivers[J]. IEEE TR ANSACTIONS ON IMAGE P ROCESSING, 2001,10(3):436-447.
    [62] Ma C. Z., Yeo T. S., Tan H. S., et al. Interferometric ISAR imaging on squint model[ C]. PIERS 2008 HANGZHOU: 2008:278-283.
    [63] Ma C Z, Yeo T S , Zhang Q, et al . Three-dimensional ISAR imaging based on antenna array[J]. I EEE TRANSACTIONS ON GEO SCIENCE AND R EMOTE S ENSING, 2008,46(2):504-515.
    [64]罗斌凤,张群,袁涛,等. InISAR三维成像中的ISAR像失配准分析及其补偿方法[J].西安电子科技大学学报, 2003(06): 739-743.
    [65] Zhang Q, Y eo T S, Du G, e t a l. Estima tion of thr ee-dimensional motion pa rameters in interferometric I SAR imaging[J]. I EEE TRA NSACTIONS ON GE OSCIENCE AND REMOTE SENSING, 2004,42(2):292-300.
    [66] Zhang G. J., Zhang Q., Zhang T., et al. Interferometric three-dimensional imaging on ground moving tar get[C]. 20 04 7TH INTERNATIONAL C ONFERENCE ON S IGNAL PROCESSING PROCEEDINGS:1934-1937.
    [67]张群,金亚秋.强背景杂波下的地面运动目标干涉式三维成像[J].电子与信息学报, 2007(01): 1-5.
    [68]李道京,汤立波,吴一戎,等.顺轨机载InSAR海面运动舰船成像[J].数据采集与处理, 2005(04): 417-422.
    [69] Given J A, Sc hmidt W R. Ge neralized ISAR - P art II: Interferometric t echniques fo r three-dimensional loca tion of sc atterers[J]. IEEE TRANSACT IONS ON IMAGE PROCESSING, 2005,14(11):1792-1797.
    [70] Zhang Chi, Zhang Xiaoling, Zhang Wei. Research on the three-dimensional ISAR imaging for spin tar get[C]. 1st Asian and Pa cific Conference on S ynthetic Aperture R adar, 2007, Huangshan, China: 546-549.
    [71] Lei Zhang, Meng-dao Xing, Cheng-Wei Qiu, et al. T wo-Dimensional Spectrum Matched Filter Banks for Hi gh-Speed Spinning -Target Three-Dimensional I SAR I maging[J]. IEEE Geoscience and Remote Sensing Letters, 2009,6(3):368-372.
    [72]喻玲娟,谢晓春.压缩感知理论简介[J].电视技术, 2008(12) :16-18.
    [73] Compressed Sensing @ IDCoM[EB/OL]. http://www.see.ed.ac.uk/~mdavies4/Research/CS/.
    [74]稀疏微波成像的理论、体制和方法研究[EB/OL]. www.973.gov.cn/GSNR/2010CB731900-G.Doc.
    [75] Baraniuk R., Steeghs P. Compressive Radar Imaging[C]. 2007 IEEE Radar Conference, Boston, 128-133.
    [76] Herman Matthew, Strohmer Thomas. Compressed sensing radar[C]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING:1509-1512.
    [77] Varshney K. R., Cetin M., F isher J . W., et al. Sparse Represent ation in S tructured Dictionaries With Application to S ynthetic Aperture Radar[J]. IEEE Transactions on Sig nal Processing, 2008, 56(8): 3548-3561.
    [78] Potter Lee C., Schniter Philip, Ziniel Justin. Sparse reconstruction for radar[C]. Proceedings of SPIE -Algorithms for Synthetic Aperture Radar Imagery XV,:697003-697015
    [79] Yoon Yeo-Sun, Amin Moeness G. Compressed se nsing technique fo r high-resolution radar imaging[C]. P roceedings of S PIE- S IGNAL PROCESSING, S ENSOR FUS ION, AND TARGET RECOGNITION XVII, 2008, 6968: A968
    [80] Gurbuz Ali C., McClellan J ames H., Scott J r W aymond R. Compre ssive sensing fo r subsurface ima ging using ground p enetrating r adar[J]. Sig nal Proc essing, 2009,89(10):1959-1972.
    [81] Gurbuz Ali Cafer, McC lellan J ames H., Scott Waymond R. A compressive sensing data acquisition and imaging method for stepped frequency GPRs[J]. IEEE Transactions on Signal Processing, 2009,57(7):2640-2650.
    [82] Gurbuz Ali Ca fer, McCle llan J ames H., Scott J r W aymond R. Gp r ima ging usin g compressed me asurements[J]. I nternational Geosc ience a nd Re mote Se nsing S ymposium (IGARSS), 2008,2(1):I13-I16.
    [83] Yoon Yeo-Sun, Amin Moeness G . Imaging of behind the wall targets using wideband beamforming with compressive sensin g[C]. 2009 IEEE/SP 15th W orkshop on S tatistical Signal Processing, Cardiff, United kingdom: 93-96.
    [84] Shi G M, L in J, Chen X Y, et al. UWB echo signal detection with ultra-low rate sampling based on compressed sensing[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2008,55(4):379-383.
    [85]宋琳,曹吉海.基于随机滤波的雷达信号采样和目标重建方法[J].科技导报, 2008(13) : 64-67.
    [86] Lei Zhang, M engdao Xing, Chen g-Wei Qiu, et al. Achi eving Hi gher Resolution ISAR Imaging With Limited Pulses via Compressed Sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2009,6(3): 567-571.
    [87] Yun Lin W en Hon g W ei-xian T an. Compresse d Sensing T echnique f or Circular SAR Imaging[C]. IET International Radar Conference 2009, Guilin, China.
    [88] Lin Yue-Guan, Wu Yi-Rong, Hong Wen, et al. Compressive sensing in radar imaging[C]. IET International Radar Conference 2009, , Guilin, China.
    [89] Wu Jiao, Liu Fang, Jiao Licheng. Reconstruction of images from compressive sensing based on t he st agewise fast LASSO[C]. P roceedings of S PIE- R emote S ensing and G IS Dat a Processing and Other Applications,7498: 749848.
    [90]侯颖妮,李道京,洪文.基于稀疏阵列和压缩感知理论的艇载雷达运动目标成像研究[J].自然科学进展, 2009(10): 1110-1116.
    [91] Xie Xiaochun, Zhang Y unhua. F ast Compres sive Sensing Radar Imaging Based on Smoothed l0 Norm [C]. 2nd Asian-Pacific Conference on S ynthetic Aperture Radar, 2009, Xian, China:443-447.
    [92] Xiaoyun Si, Licheng Jiao, Hang Yu, et al. SAR images reconstruction based on Compressive Sensing [C]. 2nd Asian-Pacific Conference on Synthetic Aperture Radar, 2009, Xian, China: 1056-1059.
    [93] Zhu F ., Z hang Q., Xiang Y ., et al. Compressive Se nsing in ISAR s pectrogram da ta transmission [C]. 2nd Asian-Pacific Conference on Synthetic Aperture Radar, 2009, Xian, China: 89-92.
    [94] Lei Yu, Yi Yang, Hong Sun, et al. Turbo-like Iterative Thresholding for SAR image recovery from compressed m easurements [C]. 2nd Asian -Pacific Conference on Synthetic Ap erture Radar, 2009, Xian, China:664-667.
    [95] Li Jun, Xing Mengdao, Wu Shunjun. Application of compressed sensing in sparse ap erture imaging of rada [C]. 2nd Asian-Pacific Conference on Synthetic Aperture Radar, 2009, Xian, China: 651-665.
    [96] Fang Liu, Hu Wang, Hong xia Hao. F letcher-reeves C onjugate G radient for S parse Reconstruction: [C]. 2nd Asian-Pacific Conference on Synthetic Aperture Radar, 2009, Xian, China:322-325.
    [97] Yabo Liu, Yinghui Quan, Jun Li, et al. SAR imaging of multiple ships based on compressed sensing: [C]. 2nd Asian-Pacific Conference on Synthetic Aperture Radar, 2009, Xian, China: 112-115.
    [98] Min Wang. Raw SAR d ata compression by structurally random matrix based compressive sampling [C]. 2nd Asian-Pacific Conference on Synthetic Aperture Radar, 2009, Xian, China: 1119-1122.
    [99]余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用[J].电子与信息学报, 2010(01): 12-16.
    [100] Xue Ming, Santiago Enrique, Sedehi Matteo, et al. SAR ima ging via iterative adaptive approach and sparse ba yesian learning[C]. Proceedings of SPIE- Algorithms for Synthetic Aperture Radar Imagery XVI, 7337, 733706
    [101] Bhattacharya Sujit, B lumensath Thomas, Mulgrew Bernard, et al. Synthetic Aperture Radar raw data encoding using compressed sensing[C]. 2008 IEEE Radar Conference, , Rome, Italy.
    [102] Tello Marivi, Lopez-Dekker Paco, Mallorqui Jordi J. A novel strategy for radar imagingbased on compressive sensing[C]. International Geoscience and Remote Sensing Symposium (IGARSS), 2008,2(1):I213-I216.
    [103] Jouny Ismail. Compressed sensing for UWB radar target signature reconstruction[C]. 2009 IEEE 13th Dig ital Sig nal Processin g W orkshop and 5th IEEE Sig nal Processin g Education Workshop, Marco Island, FL, United states: 714-719
    [104]吴顺君,梅晓春等编著.雷达信号处理和数据处理技术[M].北京:电子工业出版社, 2008.
    [105] Mahafza B R. MA TLAB Simula tions f or Radar S ystems Desi gn [ M]. Chapman & Hall/CRC; 2003.
    [106] Cumming Ian G., Wong Frank H. Digital Processing Of Synthetic Aperture Radar Data: Algorithms And Implementation[M]. Artech House Publishers, 2005.
    [107] Wang K., Luo L., Bao Zh. Global optimum method for motion compensation in ISAR imagery[C] Radar 97, 1997: 233-235.
    [108] Genyuan Wang, Zheng Bao. Th e minimum e ntropy criterion of r ange alignment in ISAR motion Compensation[C]. Radar 97, 1997 : 236-239
    [109] Li Xi, Liu Guosui, J inlin Ni. Autofocusin g of ISAR ima ges bas ed on entrop y minimization[J]. IEEE T ransactions on Aerospace and Ele ctronic S ystems, 1999,35(4):1240-1252.
    [110]黄小红,姜卫东,邱兆坤,等.基于时频的逆合成孔径雷达的距离—瞬时多普勒成像方法[J].国防科技大学学报, 2002(06): 34-36.
    [111]孙真真,陈曾平,庄钊文,等.一种基于时频分解的ISAR图像理解与处理方法[J].电子与信息学报, 2003(01): 1-8.
    [112]金添,常文革.基于综合时频分析的机动目标ISAR成像[J].现代雷达, 2004(1 1): 18-21.
    [113]范录宏,黄顺吉,侯印鸣.基于HH变换的非平稳运动目标的ISAR成像[J].电波科学学报, 2006(04): 624-627.
    [114]王勇,姜义成.基于两种时频分布的ISAR成像方法[J].现代雷达, 2006(01): 35-37.
    [115]王勇,姜义成.两种线性时频分布在机动目标ISAR成像中的应用[J].哈尔滨工业大学学报, 2006(05): 702-704.
    [116]朱宇涛,向家彬.一种基于时频分析的自适应积累成像算法[J].空军雷达学院学报, 2006(02): 91-93.
    [117]沈丽红.基于时频分析的ISAR运动补偿方法研究[D].南京航空航天大学, 2006.
    [118]陈兴华. FrFT与SAR动目标检测和成像[D].浙江大学, 2006.
    [119] Chen V C, Chen V C. Time-Frequency Transforms for Rad ar Imaging and Si gnal Analysis [M]. Artech Print on Demand; 1st edition, 2002.
    [120]吴勇.双站逆合成孔径雷达二维成像算法研究[D].国防科技大学, 2005.
    [121]张振华.双/多基SAR成像算法研究[D].西安电子科技大学, 2007.
    [122]黄艺毅.双站逆合成孔径雷达的成像算法研究[D].上海交通大学, 2008.
    [123] Willis Nicholas J. Bistatic radar[M]. Boston : Artech House, 1991.
    [124] Cherniakov Mikhail. Bistatic radar :emerging technology[M]. Hoboken, NJ : J. Wiley & Sons, 2008.
    [125] Xie Xiaochun, Zhang Yunhua. 3D ISAR imaging based on MIMO radar array[C]. 2009 Asia-Pacific Conference on Synthetic Aperture Radar, Xian, China:1018-1021.
    [126] Donoho D. L., Vetterli M., De Vore R. A., et al. D ata comp ression and harmonic analysis[J]. Information Theory, IEEE Transactions on, 1998,44(6):2435-2476.
    [127] Candnes E. J ., Tao T. Decoding by linear programming[J]. Information Theory, IEEE Transactions on, 2005,51(12):4203-4215.
    [128] Baraniuk R. G . Compressive Sensin g [ J]. S ignal Proc essing Ma gazine, IEEE, 2007,24(4):118-121.
    [129] Sami Kirolos, Jason Laska, Michael Wakin, et al. Analog-to-Information Conversion via Random Demodulation[C] . 2006 I EEE Dallas/ CAS Workshop on De sign, Applications, Integration and Software: 71-74.
    [130] Kirolos S., Ra gheb T., Laska J ., e t a l. Pr actical issue s in imple menting analog-to-information converte rs[C]. 6TH INTERNATIONAL W ORKSHOP ON SYSTEM-ON-CHIP FOR REAL-TIME APPLICATIONS, PROCEEDINGS, 2006:141-146.
    [131] Ragheb T., Kirolos S., Laska J., et al. Implementation models for analog-to-information conversion via random sampling[C]. 50th Midwest S ymposium on Ci rcuits and S ystems, 2007: 325-328
    [132] Chen S. S., Donoho D. L., Saunders M. A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001,43(1):129-159.
    [133] Tropp J oel A. Greed is good: algorithmic results for sparse approx imation[J]. IEEE Transactions on Information Theory, 2004,50(10):2231-2242.
    [134] Figueiredo Mario A. T., Nowak Robert D., Wright Stephen J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal on Selected Topics in Signal Processing, 2007,1(4):586-597.
    [135] Tan Kun, Wan Qun, Huang Anmin, et al. A f ast subspace pursuit for compressive sensing[C]. IET International Radar Conference 2009, Guilin, China.
    [136] Ji S H, Xue Y, Carin L. Bayesian compressive sensing[J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008,56(6):2346-2356.
    [137] Seeger M W . Ba yesian inference and optimal design for the sparse linear model[J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2008,9:759-813.
    [138] Wipf David Paul. Bayesian methods for finding sparse representations[D]. University of California, San Diego. , 2006.
    [139] Mohimani G. H., B abaie-Zadeh M., J utten C. Complex-valued spa rse r epresentation based on sm oothed l0 norm[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, : 3881-3884
    [140] Mohimani H, B abaie-Zadeh M, J utten C. A Fast Approach fo r Overcomplete Sparse Decomposition B ased o n Smoothed l0 Norm[ J]. IEEE TRA NSACTIONS ON S IGNAL PROCESSING, 2009,57(1):289-301.
    [141] Grant Mich ael, Boyd Stephen. CVX: Ma tlab Software for Disciplined Convex Programming[EB/OL]. http://cvxr.com/cvx/.
    [142] Wipf David. SBL Matlab code[EB/OL]. http://dsp.ucsd.edu/~dwipf/.
    [143] Mohimani. Hosein, B abaie-Zadeh. Mass oud, J utten. Christian. Smoothed L0 (S L0) Algorithm for Sparse Decomposition[EB/OL]. http://ee.sharif.edu/~SLzero/.
    [144]谢晓春,张云华.基于压缩感知的二维雷达成像算法[J].电子与信息学报, 2010,35(5):1234-1238.
    [145] Xie X. C., Zhang Y. H. High-resolution imaging of moving train by ground-based radar with compressive sensing[J]. Electronics Letters, 2010,46(7):529-531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700