苏云金芽孢杆菌新助剂筛选及发酵因子优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚊虫传播着各种可怕的疾病,是人类生存和健康的大敌。为寻找高效的苏云金芽孢杆菌(Bacillus thuringiensis,简称Bt)杀蚊菌株资源,本文从国家一级风景保护区武夷山等福建省多个地区采集土壤样品,采用热处理法从125份土壤中分离出71株Bt分离株,并对致倦库蚊进行生物测定,初筛得到5株(QQ13、QQ17、QQ42、QQ66和QQ92)有效菌株,其中QQ17、QQ66和QQ92有较高的毒性。这将对致倦库蚊的生物防治起到重要的促进作用。
     作为主要的微生物杀虫剂,Bt在孢子囊期合成蛋白水解酶。然而,Bt蛋白酶是否对杀虫晶体蛋白的功效有影响仍然是个争议性的话题。为探讨Bt特异蛋白酶在细胞生长及晶体蛋白稳定性中的作用,以及进一步探索这些蛋白酶在工业应用上的可能性,研究设计了蛋白酶基因保守区引物,对Bt的蛋白酶基因片段进行克隆及初步分析。结果表明,从Bt库斯塔克亚种菌株8010中获得了6个蛋白酶基因片段,即中性蛋白酶A、色氨酸合成酶β链、色氨酸合成酶α链、碱性蛋白酶A、磷酸化水解酶基因和糖原磷酸化酶及1个未知功能的DNA片段(可能是编码蜡质芽孢杆菌组特有蛋白的基因)。此外,本文报道了一个非常简单而且快速的提取苏云金芽孢杆菌总DNA方法。
     近年来,对Bt的增效途径探索逐渐成为其研究热点之一。其中,开发新剂型是重要手段之一。而开发一种新剂型,助剂是关键因素。良好助剂可改善制剂的理化性质并提高使用效果。通过对5种助剂进行筛选,本研究提出了一个新的Bt助剂研究选择方法,得到了对该制剂既能提高湿润性又能增效的BCM-101和JFC新型助剂,以提高Bt制剂的杀虫活性。
     本文还研究了Bt工业发酵后处理过程,旨在探讨发酵后处理过程对成品效价的影响,优化发酵后处理过程,设计和研究Bt发酵过程的调控方案,为全程性、自动化调控发酵提供依据。生产实践证明,对于本研究的工业生产菌株而言,其最佳通气量为1:1-1:1.2,温度范围为30-33℃。此外,随着发酵的进行,发酵液的pH值也出现一系列的变化。发酵后处理过程中,喷雾干燥多用于生产高效价(16000IU/mg以上)的Bt产品,板框压滤则多用于低效价(12000IU/mg以下)产品的生产。其中以喷雾干燥为主。在喷雾干燥过程中,膜过滤及干燥时间等因素,都会间接影响产品的效价。
     营养型生长调节剂TA-BR主要是由生长活性物质TA和油菜素内酯BR混配而成的生物肥料,对很多种植物具有良好的增产和改善品质的功能。本文据此研制了一种新型生物药肥,它集苏云金杆菌杀虫剂与营养型生长调节剂TA-BR于一体。研究结果表明,喷施生物药肥后,质量和产量均明显提高,鲜叶亩产量增幅为6.76-26.90%,酚氨比明显降低,水浸出物、水溶性糖及维生素C均有所增加。同时,生物药肥对茶毛虫、茶尺蠖和茶蚕等茶树主要鳞翅目害虫的防效可达90%以上,且对天敌安全。
     综上所述,本文从菌种的分离和鉴定、毒力相关基因的获得、助剂的筛选、工业发酵过程监控与分析和生物药肥的研发及应用等方面对Bt进行研究。在第2章,本研究进一步丰富了Bt菌种资源,筛选到3株对致倦库蚊高效的Bt菌株,为高效杀蚊微生物制剂的研发奠定了良好基础。通过第3章的研究,我们利用蛋白酶基因保守区引物得到了6个蛋白酶基因片段,获得了一个可能是蜡质芽孢杆菌组特异的蛋白基因,进一步丰富了Bt毒力相关基因的研究。在第4章,本研究采用引进的农药助剂,直接在生物农药企业试验,发现了一些新的有效助剂,用于改善Bt原粉的理化性质,提高湿润性和附着率,对Bt制剂起到较好增效作用。本文在第5章中对Bt工业发酵后处理过程进行监控,提高了Bt发酵后处理的控制能力。在第6章,本着既有杀虫作用又能促进茶叶产量和质量为研制目的研制了一种生物药肥。它的成功研发可极大地促进无公害茶叶的发展,综合实现生态效益、经济效益和社会效益。由于苏云金芽孢杆菌在生物防治中扮演着重要角色,上述工作可为苏云金芽孢杆菌的进一步研发奠定良好基础。
Mosquitoes could cause severe illness of human and were the enemies of human health. In order to control them, a method with heat treatment was used to isolate Bacillus thuringiensis (Bt) with high toxicity against mosquitoes from many regions of Fujian province of China, including Wuyi Mountain. 71 isolates were obtained from 125 soil samples. The results showed that five isolates (QQ13, QQ17, QQ42, QQ66 and QQ92 ) were effective against Culex quinquefasciatus, three of which (QQ17, QQ66 and QQ92) showed high mortality. They might effectively promote the biocontrol of C. quinquefasciatus
     During sporulation, Bt synthesizes proteolytic enzymes. However, whether the protease profile of a Bt is related to the efficacy of the ICPs is still a subject of controversy. In order to investigate the role of specific protease of Bt in cell growth and in crystal protein stability and explore the possibility of the proteases to be used in the industry, PCR primers specific for the conserved regions of protease genes were designed and several PCR products were cloned and analyzed. The results showed that six protease genes, neutral protease A (nprA), tryptophan synthase beta chain, tryptophan synthase alpha chain, alkaline protease A (aprA), phosphohydrolase gene and glycogen phosphorylase, with known functions are identified from Bt subsp. kurstaki 8010, respectively, were obtained. In addition, a DNA sequence with unknown function, which may be Bacillus cereus group-specific gene, was also detected. A very simple and rapid method for extracting genomic DNA from Bt was also described.
     Recently, the ways to increase the efficacy of Bt have been hot spots. And research and development of new pesticide adjuvants plays a key role. Good pesticide adjuvants could improve physical and chemical characteristics of pesticide and increase the efficacy of Bt products. In current study, we had investigated 5 pesticide adjuvants for their potential usage in pesticide industries. Among the adjuvants, both BCM-101 and JFC could improve the wettbility of Bt preparation and enhance its activity to Heliotis armigera. In order to increase the efficacy of Bt, a new method of adjuvant-selection was proposed.
     In order to explore the effects of treatments after fermentation on Bt products, optimize the treatment procedures after fermentation, and design the regulation methods of fermentation, we have collected the data of Bt industrial treatment procedures after fermentation to lay a foundation on automatic fermentation. The results showed that as far as the indusrial Bt strain was concerned, the best air and media ratio was 1:1-1:1.2 and the good fermentation temperatures were 30-33℃. The pH values of fermentation liquid varied during the fermentation. In the treatment procedures after fermentation, membrane filtration methods were often used to produce 16000IU/mg Bt products while plate-frame pressure filtration methods were frequently applied in the production of 12000IU/mg Bt products. And the former plays a key role in the procedures. Many elements during spray-drying procedures, including membrane filtration and spray-drying time, could indirectly affect the efficacy of Bt products.
     The quality and yield of the tea were significantly improved after using TA-BR in combination with Bt. Tea yield could increase by 6.76%~26.90% (per mu), the proportion of the amino acids and the tea polyhenols was obviously reduced, the water extracts,the soluble sugar and Vitamin C of tea were higher than that of CK. In addition, the motability of TA-BR in combination with Bt on the Euproctis pseudoconspersa, Ectropis obliqua hypulina, Andraca bipunctata, which were the main pest damaging to tea plants, could reach above 90%. It is safe for natural enemies.
     In summary, the isolation and identification of Bt strains and toxin-related genes, the screen of pesticide adjuvants, the monitor of fermentation procedures and the research and development of TA-BR in combination with Bt had been characterized in this studies. In chapter 2, we obtained 3 Bt isolates with high toxicity against C. quinquefasciatus. This work might lay a foundation on biopesticides products. In chapter 3, we obtained 6 DNA fragments of protease genes and a gene fragment, which might be B. cereus group specific genes, by primer pairs specific for the conserved regions of Bt protease genes. In chapter 4, in order to improve the efficacy of Bt, several pesticide adjuvants had been tested in a Bt factory to find adjuvants with good physical and chemical characteristics, better wettability and adhesion ratio. In chapter 5, we developed a product, TA-BR in combination with Bt, to improve the insecticidal efficacy and promote the yield and quality of tea. This product could greatly promote the development of unharmful tea and make benefits of zoology, economy and society true. Since Bt plays a key role in the biocontrol of pests and plant diseases, the above finding might lay an important foundation in the further work.
引文
奥野中一,芳贺敏郎.实验设计方法.牛长山,张永照译.北京:机械工业出版社,1985.
    操时树,鲁松清,喻子牛.苏云金芽孢杆菌工程的发酵培养基的优选.微生物农药及其产业化.2000,北京:科学出版社,98-104.
    陈焕瑜,肖宏英.1995.对小菜蛾高毒的苏云金杆菌菌株筛选试验初报.植物保护,21(5):4—6.
    陈锦权,关雄,黄志鹏.苏云金杆菌发酵培养基配方优化.农业工程学报,1997,13(1):223-224.
    陈月华,任改新,梁凤来,等.中国Bt Ken-Ag最佳发酵培养基的优选及其发酵生理学研究.微生物学通报,1995,5:135-138.
    陈宗懋.2004.2004年欧盟关于茶叶中农药最大残留量(MRL)标准的变化.中国茶叶,26(2):7.
    陈宗懋.2002.各国茶叶中农药MRL标准的剖析与思考.中国茶叶,24(1):8-10.
    程萍,Aronson A I,喻子牛.2001.初始碳源对苏云金芽孢杆菌cry-lacZ融合基因表达的影响.微生物学杂志,21(1):7-9.
    戴莲韵,王学聘.1997.苏云金芽孢杆菌研究进展.北京:科学出版社.
    党阿丽,沈玉波,齐云翔,等.1996.正交试验设计法考察苏云金杆菌“140”-51培养基.生物技术,6(4):44—46.
    丁秋梅.1993.优化溶解氧浓度提高苏云金杆菌发酵水平.湖北农业科学,(12):5-8.
    段兴.2002.Delphi 6数据库实用程序设计100例.人民邮电出版社.
    方建平,洪军孟,赵左士.1994.油菜素内酯对棉花的增产效应研究.中国棉花,21(2):13-14.
    费成煜.1994.苏云金杆菌发酵工艺条件研究.农业现代化研究,15(5):307-309.
    高彩云.2003.面对绿色壁垒的茶叶出口贸易.中国茶叶,25(3):26-28.
    高家合,王革,李天飞,等.2002.微生物杀虫剂Bt53菌株发酵培养基优化.生物技术,12(5):22-23.
    GB 8302-87,茶多酚取样.
    GB 8303-87,磨碎试样的制备及其干物质含量测定.
    GB 8305,水浸出物测定:杯茶法.
    GB 8313,茶多酚测定:酒石酸亚铁分光光度法.
    GB 8314,游离氨基酸总量测定:茚三酮比色法.
    关雄.1997.苏云金芽孢杆菌8010的研究.北京:科学出版社,1-6.
    郭尽力,任万衷,林剑,等.2001.谷氨酸对苏云金杆菌的芽孢和伴孢晶体的影响.微生物学杂志,21(1):55-56.
    韩德元.1997.植物生长调节剂—原理与应用.北京:北京科学技术出版社,160-161.
    何国振.1994.助剂提高水稻叶面对6-BA吸收和利用研究.水稻科学,
    何献君,宗浩,郑鸽,杨小蓉.2002.一株苏云金芽孢杆菌的分离与鉴定.四川师范大学学报,25(3):301-303.
    黄炳球.1999.表面活性剂APSA-80对井冈霉素的增效作用研究.植物病理学报,29(2):2-6.
    黄天培,邱思鑫,黄志鹏,等.2002.苏云金杆菌摇瓶发酵培养基.福建农林大学学报,31(3):317-319.
    黄志鹏,张柏莲,陈锦权,等.1996.新型高效价苏云金芽孢杆菌制剂的研制.福建农业大学学报,5(4):450-454.
    江用文.2002.加入WTO后我国茶叶发展的对策.中国茶叶,24(6):3-5.
    金玉来.1994.苏云金杆菌7216菌株的摇瓶发酵试验.工业微生物,24(3):35-40.
    李今煜,陈聪,关雄,等.2003.苏云金芽孢杆菌发酵培养基的筛选.福建农林大学学报(自然科学版),32(4):490-492.
    李荣森.1983.微生物防治害虫.北京:科学出版社,274-278.
    林剑,郑丽,郭尽力,等.1998.苏云金杆菌在味精废水中的培养与发酵特性.生物技术,8(5):32-35.
    刘支前.2002.农药桶混助剂的选择原理.农药,43(9):1-4.
    鲁松清.1999.苏云金芽孢杆菌对鳞翅目昆虫广谱高毒基因工程菌的构建.华中农业大学博士学位论文.
    罗绍彬.1989.用菜粉蝶幼虫测定苏云金杆菌的毒效.生物防治通报,5(1):27-29.
    彭可凡,林开春.2000.农药助剂对苏云金杆菌毒力的影响及新液剂研制.微生物 学报,27(4):242-245.
    彭可凡.2000.苏云金芽孢杆菌杀虫剂的剂型加工研究进展.微生物学杂志,20(1):35-37.
    邱思鑫,黄志鹏,黄必旺,等.2004.添加剂对苏云金杆菌杀虫效果的影响.武夷科学,20(12):62-66.
    阮建云.2003.关于无公害茶叶生产的几点认识.中国茶叶,25(3):8-9.
    邵维忠.2003.农药助剂.北京:化学工业出版社,1-16.
    施跃峰.2000.微生物杀虫剂研究进展.植物保护,26(5):32-34.
    宋金柱,杨谦,赵敏.2005.苏云金芽孢杆菌杀虫晶体蛋白基因的研究进展.东北林业大学学报,33(1):66-67.
    苏少泉,耿贺利.2001.茎叶除草剂的吸收与助剂的利用.农药,41(4):9-14.
    孙明,喻子牛.1996.苏云金芽孢杆菌中华亚种CT-43菌株伴孢晶体的特性.微生物学报,36(2):303-306.
    屠豫欽,袁会珠.2003.我国农药的有效利用率与农药的负面影响.世界农药,25(6):1-4.
    王成菊,李常平.2001.助剂与除草剂效能—现状与展望.世界农药,23(6):37-39.
    王明道,杨成运,吴云汉,等.2003.化学添加剂对Bt防治棉铃虫的增效作用.河南农业科学,(5):25-27.
    王庆海,武菊英,江国铿.2003.降雨及助剂对咪唑乙酸药效的影响.农药学报,(3):41-44.
    王廷芹,杨暹.2002.油菜素内酯对青花菜叶片中几种酶和产量的影响.中国蔬菜,(5):15-17.
    王小艺,黄炳球.1997.表面活性剂在农药中的应用及其农药增效机理.农药译丛,19(4):52-57.
    王小艺,黄炳球.1998.茶皂素对农药的增效机理Ⅰ.对药液表面张力的影响.茶叶科学,18(2):125-128.
    王小艺,黄炳球.1998.茶皂素对农药的增效机理Ⅱ.对药液接触角的影响.茶叶科学,18(2):129-133.
    王小艺,黄炳球.茶皂素对农药的增效机理Ⅲ.对药液沉积量的影响[J].,茶叶科 学,1998,18(2):134-138.
    王跃龙.1995.高效除草剂普杀特的杀草谱及其复配制剂.湖南化工,25(2):26-28.
    韦锦坚.2001.几种叶面肥在茶叶上的应用试验初报.广西热带农业,(1):4-7.
    温志强,黄必旺,吴小平.1999.无机化学添加剂与Bt混合对小菜蛾杀虫效果的影响.福建农业大学学报,28(3):315-318.
    翁宜慧,张旭玲,陈聪,等.2004.基于粗糙集的苏云金芽胞杆菌培养基配方优化算法.计算机工程,30(19):115-116.
    吴继星,陈在佴,谢天健,等.1994.苏云金杆菌高效培养基优选模型的研究.生物防治通报,10(3):110-113.
    吴锡端.2002.2001年茶叶经济形势分析.中国茶叶,24(1):11-13.
    吴锡端.2004.2003年我国茶叶产销形势分析.中国茶叶,26(1):11-13.
    吴燕榕,关雄.2002.苏云金芽孢杆菌新型杀虫蛋白vip3A基因的鉴定.农业生物技术学报,10(4):411-412.
    谢明杰,宋玉媛,曹文伟,等.1998.微生物杀虫剂应用的研究进展.辽宁师范大学学报,21(4):326-329.
    徐宏革,袁志明,蔡全信,等.1998.苏云金杆菌Z113菌株发酵培养基的筛选.武汉大学学报(杀虫微生物专刊),35-39.
    徐建敏,徐建休,庞义.1998.添加剂对Bt-ICP杀斜纹夜蛾效果的影响.昆虫天敌,20(2):49-55.
    徐庆贤,张无敌,尹芳,等.2003.苏云金杆菌的利用现状、发展及问题探讨.农业与技术,23(5):62-66.
    许文耀.2002.添加物对Bt制剂杀灭鳞翅目害虫的增效作用.华东昆虫学报,11(2):99-104.
    禤维言,冯斗,陈念平.2001.芸苔素对超甜玉米萌发和幼苗生长的效应.种子,(2):24-25..
    杨建州.1999.味精工业高浓度有机废水培养苏云金芽孢杆菌的研究.应用与环境生物学报,5(增刊):197-199.
    杨自文,吴宏文,王开梅,谢天健,钟连胜,岳书奎.2000.从土壤中高效分离 苏云金杆菌的方法.中国生物防治,16(1):26-30.
    殷向东.1999.生物杀虫剂研究应用进展及其在我国的发展思路.农药,38(11):45-46.
    喻子牛,代大生.1985.7216杀虫菌高菌数发酵培养基的优选.湖北农业科学,(11):12-15.
    喻子牛.1990.苏云金杆菌.北京:科学出版社,60-68,253-267.
    喻子牛.1993.苏云金芽孢杆菌制剂的生产和应用.北京:农业出版社.
    喻子牛.1996.苏云金芽孢杆菌的分类及生物活性蛋白基因.中国生物防治,12(2):85-89.
    袁哲明,孟小林,欧洋,等.1988.取食刺激物对病毒和苏云金杆菌的增效作用.武汉大学学报,44(杀虫微生物专刊):45-47.
    袁志明,张用梅,刘娥英,等.1993.不同培养基对苏云金杆菌以色列变种生长和发育的影响.工业微生物,23(2):13-18.
    张宏宇.1997.影响苏云金杆菌作用效果的因素.植物保护,23(4):41-44.
    张鸿秀.2002.天然植物源助剂SD、SDP的特性及与除草剂的应用效果.植物保护,28(4):45-49.
    张金艳.2001.我国农药剂型加工工业的现状和发展建议.黑龙江农业科学,(2):39-41.
    张灵玲,姚凤銮,黄天恩,等.2004.营养型植物生长调节剂TA-BR制备液的研制与应用.福建农林大学学报,33(3):215-217.
    张灵玲,林晶,骆兰,方叻,黄天培,徐金汉,吴光远,王庆森,关雄.2005.叶面分离Bt及对茶树主要害虫高毒力菌株的筛选.茶叶科学,25(1):56-60.
    张千里.1995.关于正交设计和均匀设计的比较.数理统计与管理,14(1):25-29.
    赵秋雁,赵晓虹,吴保国.1998.Bt L-93菌株培养基的正交试验及培养代谢.东北林业大学学报,26(4):63-65.
    赵善欢.2002.植物化学保护.北京:中国农业出版社,18-30.
    郑舒文,段辉,林剑,等.2001.味精废水综合处理的研究.微生物学杂志,21(3):31-33.
    钟箩.1989.茶叶品质理化分析.上海:上海科学技术出版社,(10):99-102.
    朱玮,赵兵,王晓东,等.2004.生物农药苏云金芽孢杆菌的研究进展.过程工程学报,4(3):282-287.
    朱永兴.1998.茶树生长调节剂的研究与应用.中国茶叶,20(2):12-13.
    邹养军,花蕾,聂俊峰,等.2001.芸苔素叶面微肥对苹果生长及品质的影响.西北农林科技大学学报,29(4):51-54.
    Abdel-Hameed A, Carlberg G, El-Tayeb O M, et al. 1990. Studies on Bacillus thuringiensis H-14 strains isolated in Egypt-Ⅲ. selection of media for delta-endotoxin production. World Journal of Microbiology and Biotechnology, 6(3): 313-317.
    Abrosimova L I, Babaeva P V, Zubareva G M, et al. 1986. Influence of mineral salts on the level of exotoxin production and productivity of a culture of Bacillus thuringiensis. Microbiology, 55(3): 337-341.
    Akanuma S, Yamagishi A. 2005. Identification and characterization of key substructures involved in the early folding events of a (β/α)_8-barrel protein as studied by experimental and computational methods. Journal of Molecular Biology, 353: 1161-1170.
    Arcas J. 1987. Effect of high concentration of nutrients on Bacillus thuringiensis cultures. Biotechnology Letters, 9(2): 105-110.
    Asano S. 1995. Enhancing effects of supermatants from various cultures of Bacillus thuringiensis on larvicidal activity of delta-endotoxin against the common cutworm, Spodoptera litura. Applied Entomology and Zoology, 30(2): 369-374.
    Banik R M, Prakash M. 2004. Laundry detergent compatibility of the alkaline protease from Bacillus cereus. Microbiological Research, 159: 135-140.
    Brar S K, Verma M, Tyagi R D, et al. 2005. Starch industry wastewater-based stable Bacillus thuringiensis liquid tbrmulations. Journal of Economic Entomology, 98(6): 1890-1898.
    Butler Ellis M C, Tuck C R, Miller P C H. 1999. Dilute emulsions an d their effect on the breakup of the liquid sheet produced by fiat-fan spray nozzles. Atomization and Sprays, 9(4): 385-397.
    Butler Ellis M C, Tuck C R, Miller P CH. 1997. The effect of some adjuvants on sprays produced by agricultural at fan nozzles. Crop Protection, 16: 41-50.
    Butler Ellis M C, Tuck C R. 1997. The effect of liquid properties on spray formation by at fan nozzles. Aspects of Applied Biology, 48:105-112.
    Butler Ellis M C, Tuck C R. 1999. How adjuvants influence spray formulation with diluent hydraulic nozzles. Crop Protection, 18:101-109.
    Cavados C F G, Fonseca R N, Chaves J Q, et al. 2001. Identification of entomopathogenic Bacillus isolated from Simulium (Diptera. Simuliidae) larvae and adults. Memorias do Institute Oswaldo Cruz, 96(7): 1017-1021
    Chen F C, Shen L F, Chak K F. 2004. A facile analytical method for the identification of protease gene profiles from Bacillus thuringiensis strains. Journal of Microbiological Methods, 56:125-132.
    Chen F C, Shen L F, Tsai M C, et al. 2003. The IspA protease's involvement in the regulation of the sporulation process of Bacillus thuringiensis is revealed by proteomic analysis. Biochemical and Biophysical Research Communications, 312:708-715.
    Cheng H, Jiang N. 2006. Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnology Letters, 28: 55-59.
    Courshee R J. 1960. Some aspects of the application of insecticides. Annual Review in Entomology, 5: 327-352.
    Damgaard P H, Abdel-Hameed A, Ellenberg J, et al. 1998. Natural occurrence of Bacillus thuringiensis on grass foliage. World Journal of Microbiology & Biotechnology, 14: 239-242.
    DeRuiter H, Uffing A J M, Meinen E, et al. 1990. Influence of surfactants and plant species on leaf retention of spray solutions. Weed Science, 38: 567-572.
    Donovan W P, Tan Y, Slaney AC 1997. Cloning of the nprA gene for neutral protease A of Bacillus thuringiensis and effect of in vivo deletion of nprA on insecticidal crystal protein. Applied and Environmetnal Microbiology, 63: 2311-2317.
    Du C, Nickerson K W. 1996. The Bacillus thuringiensis insecticidal toxin binds biotin-containing proteins. Applied and Envionmental Microbiology, 62(8): 2932-2939.
    Eehrens R,Elakkad M A. 1981. Influence of rainfall on the phytotoxicity of foliarly applied 2,4-D. Weed Science, 29(3): 349-355.
    Estruch J J, Warren G W, Mullins M A, et al. 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National Academy of Sciences, 93: 5389-5394.
    Estruch J J, Warren G W, Mullis M A, et al. 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National Academy of Sciences of the United States of America, 93: 5389-5394.
    Estruch J J, Yu C G, Warren G W. 2000. Class of proteins for the control of plant pests. World Intellectual Property Organization Patent, 6:107-279.
    Faloci M M, Yantomo O M, Marino HA,et al. 1990. Effect of the media composition on the growth parameters and biological properties of Bacillus thuringiensis var. israelensis detla-endotoxin. World Journal of Microbiology and Biotechnology, 6(1): 32-38.
    Fausey J C, Penner D, Karen A R. 1999. Adjuvant effects on CGA-248757 and flumiclorac efficacy and crop tolerance. Weed Technology, 13: 783-790.
    Fedhila S, Nel P, Lereclus D. 2002. The InhA2 metalloprotease of Bacillus thuringiensis strain 407 is required for pathogenicity in insects infected via the oral route. Journal of Bacteriology, 184: 3296-3304.
    Gasjun R. 2001. Oganosilicone surfactant reduces pesticide spray in kiwifruit orchards. Preceding of 6~(th) International Symposiumon Adjuvants for agrochemicals, 191-196.
    Hall K J, Holloway P J, Stock D. 1997a. Factors affecting the efficiency of spray delivery onto foliage using oil-based adjuvants. Aspects of Applied Biology, 48: 113-120.
    Hall K J, Holloway P J, Stock D. 1998. Factors affecting foliar retention of some model adjuvant oil emulsions. Pesticide Science, 54: 320-322.
    Hall K J, Western N M, Holloway P J, et al. 1997b. Effects of adjuvant oil emulsions on foliar retention and spray quality. Proceedings of the Brighton Crop Protection Conference Weeds, 549-554.
    Harrison S K, Wax L M. 1986. Adjuvant effects on absorption, t ranslocation,and metabolism of haloxyfop-methyl in corn (Zeamays). Weed Science, 34: 185-195.
    Hofte H, Whiteley H R. 1989. Insecticidal crystal protein of Bacillus thuringiensis. Microbiological Review, 53:242-255.
    Holloway P J, Rees R T, Stock D. 1994. Interactions between adjuvants, agrochemicals and target organisms. Berlin: Springer-Verlag, 83-106.
    Holloway P J. 1994. Physicochemical factors influencing the adjuvant-enhanced spray deposition and coverage of foliage-applied agrochemicals. In: Interactions Between Adjuvants, Agrochemicals and Target organisms. Ed. P.J. Holloway, R.T. Reesand D. Stock. Chpt. 4:83-106
    Hoyle E R, Hayes A L, Holloway P J. 1998. Some structure-adjuvancy relationships for alkyl polyglycosides. Proceedings of the Fifth International Symposium on Adjuvants for Agrochemicals, I: 67-72.
    Ichimatsu T, Mizuki E, Nishimura K, et al. 2000. Occurrence of Bacillus thuringiensis in fresh waters of Japan. Current Microbiology, 40(4): 217-220.
    Jeong M S, Jeong J K, Lim W K, et al..2004. Structures of wild-type and P28L/ Y173F tryptophan synthase a-subunits from Escherichia coli. Biochemical and Biophysical Research Communications, 323:1257-1264.
    Knowles B H, Ellar D J. 1986. Characterization and partial purification of a plasma membrane receptor for Bacillus thuringiensis var. kurstaki lepidopteran-specific delta-endotoxin. Journal of Cell Science, 83: 89-101.
    
    Kudsk P, Olesen T, Thonke K E. 1990. The influence of temperature, humidity and simulate drain on the performance Of thiameturon-methyl. Weed Research, 30: 261-269.
    
    Kulik V, Hartmann E, Weyand M, et al. 2005. On the structural basis of the catalytic mechanism and the regulation of the alpha subunit of tryptophan synthase from
    Salmonella typhimurium and BX1 from maize, two evolutionarily related enzymes. Journal of Molecular Biology, 352: 608-620.
    Liu Z, Zabkiewicz J A. 2001. Uptake of bentazon in relation to surfactant structures and surfactant uptake. Proceding of 6~(th) Intenational Symposiumon Adjuwants for Agrochemicals, 139-144.
    Liu Z. 1999. Influence of surfactants mixtures on cuticular uptake of glyphosate into grasses. Newzwak and Plant Protection, 52:228-233.
    Liu Z. 2001. Influence of surfactants on foliar uptake of herbicides. Proceding of 18~(th) Asian pacific Weed Science Society Conference, 561-566.
    McConnell E, Richmrds AG. 1959. The Production by Bacillus thuringiensis of a heat stable substance toxic for insects. Canadian Journal of Microbiology, 5: 161-168.
    Meadows M P, Ellis D J, Butt J, et al. 1992. Distribution, frequency, and diversity of Bacillus thuringiensis in an animal feed mill. Applied Environ Microbiology, 58:1344-1350.
    Mizuki E, Ichimatsu T, Hwang S H, et al. 1999. Ubiquity of Bacillus thuringiensis on phylloplanes of arboreous and herbaceous plants in Japan. Journal of Applied Microbiology, 86: 979-984.
    Morris O N, Converse V, Kanagaratnam P, et al. Effect of cultural conditions on spore-crystal yield and toxicity of Bacillus thuringiensis subsp. aizawai (HD 133). Journal of Invertebrate Pathology, 1996, 67(2): 129-136.
    Morris O N, Kanagaratnam P, Converse V. 1997. Suitability of 30 agricultural products and by-products as nutrient sources for laboratory production of Bacillus thuringiensis subsp. aizawai (HD133). Journal of Invertebrate Pathology, 70(2): 113-120.
    Mummigatti S G. 1990. Influence of media composition on production of δ-endotoxin by Bacillus thuringiensis var. thuringiensis. Journal of Invertebrate Pathology, 55:147-151.
    Nakamura S, Tanaka T, Yada R Y, et al. 1997. Improving the thermostability of Bacillus stearothermophilus neutral protease by introducing proline into the active site helix. Protein Engineering, 10:1263-1269.
    Nalewaja J D, Devilliers B, Matysiak R. 1996. Surfactant and salt alert glyphosate retention and absorption. Weed Research, 36: 241-247.
    
    Nickerson K W, Bulla L A. 1974. Physiology of spore forming bacteria associated with insects: minimal nutritional requirements for growth, sporulation and parasporal crystal formation of Bacillus thuringiensis. Applied Microbiology, 26:124-128.
    
    Nickerson K W, Jullian G S, Bulla L A. 1974. Physiology of spore forming bacteria associated with insects: radiorespirometric survey of carbobydrate metabolism in the 12 serotypes of Bacillus thuringiensis. Applied Microbiology, 28(2): 129-132.
    Ohba M. 1996. Bacillus thuringiensis population naturally occurring on mulberry leaves: a possible source of the populations associated with silkworm-rearing insectaries. Journal of Applied Bacteriology, 80: 56-64. Ohba M. 1996. Bacillus thuringiensis populations naturally occurring on mulberry leaves: A possible source of the populations associated with silkworm-rearing insectaries. Journal of Applied Bacteriology, 80: 56-64.
    Panizzi L, Pinzauti M. 1988. Proliferation of pathogenic bacteria in the nest of the Apis mellifera following attack by varroaj acobsoni oud. Apiacta, 23: 74-78.
    Reddy S T, Kumar S N, Venkateswerlu G 1998. Comparative analysis of intracellular proteases in sporulated Bacillus thuringiensis strains. Biotechnology Letters, 20: 279-281.
    Reekmans S. 1998. Novel surfactants and adjuvants for agrochemicals. In: Knowles, D.A. (Ed.), Chemistry and Technology of Agrochemical Formulations. Dordrecht: Kluwer Academic Publishers, 179-231.
    Riggin B T M., Gould F. 1996. Effect of surfactants, Bacillus thuringiensis formulations and plant damage on oviposition by diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 89(4): 891-897.
    Ripep H R, McKav L L. 1994. Oversecretion of the neutral protease from Bacillus subtilis in Lactococcus lacfis spp. lactis JF254. Journal of Dairy Science, 77: 2150-2159.
    Rossa C A A, Yantormo O M, Arcas J A, et al. 1990. Orangic and inorganic nitrogen source ratio effects on Bacillus thuringiensis var. israelensis detla-endotoxin production. World Journal of Microbiology and Biotechnology, 6(1): 27-31.
    Sakharova Z V. 1989. Growth and spore formation in Bacillus thuringiensis at high substrate concentrations. Microbiology, 57: 794-797.
    Salama H S, Foda M S, Sharaby A. 1984. Novel biochemicial avenues for enhancing Bacillus thuringiensis endotoxin potency angaist Spodoptera littoralis (Lep.: Noctuidas). Entomophaga, 29(2): 171-178.
    Salama H S, Foda M S, Sharaby A. 1985a. Potential of some chemicals to increase the effectiveness of Bacillus thuringiensis Berl. against Spodoptera littoralis (Biosd.). Zeitschrift fur Angewandte Entomologie, 100(5): 425-433.
    Salama H S, Foda M S, Sharaby A. 1985b. Role of feeding stimulants inincreasing the efficency of Bacillus thuringiensis versus Spodoptera littoralis(Lep.: Noctuidas). Entomophaga.Genernalis, 10(2): 111119.
    Salama H S. 1983. Utilization of fodder yeast and agroindustrial byproducts of spores and biologically active endotoxins from Bacillus thuringiensis. Microbiology, 138: 553-563.
    Sambrook J, Russell D W. 2001. Molecular cloning, A Laboratory Manual. 3th edn. New York: Cold Spring Harbor Laboratory Press, pp. 1.32-1.34, 1.116-1.118, 1.123-1.125.
    Sarject S G, Elizabeth A C. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annual Review of Entomology, 37: 615-636.
    Scherrer P, Luthy P, Trumpi B. 1973. Production of 8-endotoxin by Bacillus thuringiensis as a function of glucose concentration. Applied Microbiology, 25(4): 644.
    Schnepf E, Crickmore N, Rie J V, et al. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62: 775-806.
    Schnepf E, Crickmore N, Van R J, et al. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3): 775-806.
    Schnepf E, Crickmore N, Vanrie J, et al. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62:775-806.
    Shao Z, Yu Z. 2004. Enhanced expression of insecticidal crystal proteins in wild Bacillus thuringiensis strains by a heterogeneous protein p20. Current Microbiology, 48(5): 321-326.
    Sikdar D P, Majumdar M K, Majumdar S K, et al. 1991. Effect of minerals on the production of the delta-endotoxin by Bacillus thuringiensis var. israelensis. Biotechnology Letters, 13(7): 511-514.
    Smith R A, Couche G A. 1991. The phylloplane as a source of Bacillus thuringiensis variants. Applied Environmental Microbiology, 57(1): 311-315.
    Smith R A, Couche G A. 1991. The phylloplane as a source of Bacillus thuringiensis variants. Applied and Envionmental Microbiology, 57(1): 311-315.
    
    SUN M, YU Z. 2000. Recent developments in the biotechnology of Bacillus thuringiensis. Biotechnology Advances, 18:143-145.
    Warren G W, Koziel M G, Kullins M A. 1998. Pesticidal proteins and strains. World Intellectual Property Organization Patent, 5: 846-870.
    Wilson W A, Wang Z, Roach P J. 2005. Regulation of yeast glycogen phosphorylase by the cyclin-dependent protein kinase Pho85p. Biochemical and Biophysical Research Communications, 329:161-167.
    Wirth W, Storp S, Jacobsen W. 1991. Mechanisms controlling leaf retention of agricultural spray solutions. Pesticide Science, 33: 411-420.
    Xie G, Forst C, Bonner C, et al. 2001. Significance of two distinct types of tryptophan synthase beta chain in bacteria, archaea and higher plants. Genome Biology, 3: research0004.1-0004.13.
    Yang L, Ahmed S A, Miles E W. 1996. PCR Mutagenesis and overexpression of tryptophan synthase from Salmonella typhimurium: on the roles of β_2 subunit Lys-3821. Protein Expression and Purification, 8:126-136.
    Yudina T G, Salamakha O V, Olekhnovich E V, et al. 1992. Effect of carbon source on the biological activity and morphology of paraspore crystals from Bacillus thuringiensis. Microbiology, 61(4): 402-407.
    
    Zouari N, Dhouib A, Ellous R, et al. 1998. Nutritional requirements of a strain of Bacillus thuringiensis subsp. kurstaki and use of gruel hydrolysate for the formulation of a new medium for delta-endotoxin production. Applied Biochemistry and Biotechnology, 69(1): 41-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700