谷氨酸棒杆菌海藻糖合成酶基因的分子进化及其酶学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海藻糖合成酶是酶法生产海藻糖的关键酶,通过分子内转糖基作用,将α,α-1,4糖苷键连接的麦芽糖转化为α,α-1,1糖苷键连接的海藻糖,由于海藻糖对生物大分子的非特异性保护作用,使其备受关注,为了降低生产成本,各国科学家纷纷对其生产和应用技术进行了大量的研究。现有的海藻糖合成酶存在一些缺点:如转化效率不够高、热稳定性较差、反应时间较长等。因此,有必要对已有的海藻糖合成酶进行改造,使其工业性能有所改善。
     本论文采用半理性设计方法,以海藻酮糖合成酶(trehalulose synthaseMutB from Pseudomonas mesoacidophila MX-45)晶体结构为模板,在网站SWISS-MODEL上对来自谷氨酸棒杆菌(Corynebacterium glutamicum)海藻糖合成酶进行同源建模,并对其初始结构作了能量优化,结合分析不同来源的海藻糖合成酶基因的保守序列,选择了保守区的位点F244、D247、R245、E289进行定点(饱和)突变,并在保守区外的A288进行定点突变,结果表明:R245、E289分别饱和突变为其它的19个氨基酸后,共获得了38个突变子,但均无酶活;对D247定点突变成结构相似的氨基酸即Glu和Asn后也丧失酶活;突变体F244C、F244L、F244W、F244Y和A288G的比活力均大大降低,分别降低为野生型(WT)的38%、24%、62%、64%和35%,而A288变成T288后没有酶活。与野生型(WT)相比,突变酶F244C、F244W、A288G的Km值基本不变,突变酶F244L、F244Y对底物麦芽糖的亲和力降低了;突变酶F244Y的最适温度和野生型一样,均为27℃,而F244C、F244L、F244W和A288G比野生型提高了5℃;各突变体的最适pH均有所下降,其中F244C、F244Y和A288G最适反应pH为7.5,比野生型的8.0均下降了约0.5个单位,而F244L和F244W均为6.5,均下降了近1.5个单位;突变酶的热稳定性均有不同程度的提高,其中F244Y、F244W和A288G的Tm值比野生型的提高约1℃;F244L提高约2℃,而F244C热稳定性提高了近4℃。通过分析和比较这些突变酶的性质变化,可为今后研究海藻糖合成酶的结构和功能的关系提供有用的数据和信息,为进一步对海藻糖合成酶的分子改造提供理论依据。
Trehalose synthase is the key enzyme in enzymatic process to produce trehalose.It can catalyze maltose bonded in anα,α-1,4-glycosidic linkage to produce trehalose withα,α-1,4-glycosidic linkage.Recently,Trehalose has been widely attended because of it's non-special protecting function on big molecule of biology.The scientists from many countries have been engaging in studying on the technology of production and application to reduce it's cost of production. The existing trehalose synthase have some disadvantages:the transform efficiency is not enough high;The thermostability is low;The reaction time is long and so on.Therefore,it is necessary to perform mutagenesis on trehalose synthase to improve the industrial capability.
     In this paper,trehalose synthase was evolved by half-rational design.The three-dimensional model of TreS from Corynebacterium glutamicum was constructed based on the crystal structure of trehalulose synthase MutB from Pseudomonas mesoacidophila MX-45 on the SWISS-MODEL Internet.The energy of primal structure was optimized.Combined with analyzing the conserved region of trehalose synthase amio sequence from different origin.The conserved amio acid R245 and E289 were predicted likely as active site and were mutated.Further more,the position F244、D247and A288 near the two sites(R245 and E289)were performed site-mutagenesis.The results indicated that the activity was lost after R245 and E289 were converted to other 19 kinds of amio acids and that the mutants D247E and D247N were also shown no activities.The reason of activity lost probably was that these positions were important to maintain the structure stability of the protein,and they possibly were crucial residues or active sites of the enzyme.The specific activity of the mutants F244C、F244L、F244W、F244Y and A288G were decreased largely and reduced to 38%、24%、62%、64%and 35%of the wild-type respectively.After the position of A288 was changed to A288T,it was shown that the activity was disrupted.Compared with the wild-type,The Km of F244C、F244W、A288G were not significantly altered,but the affinity of F244L and F244Y enzyme for the maltose substrate were decreased;The optimum temperature of F244Y was 27℃which the same as the wild-type,and the mutants F244C、F244L、F244W and A288G were enhanced 5℃more than the wild-type;The optimum pH of all the mutants were decreased,The optimum pH of F244C、F244Y and A288G were 7.5 that dropped 0.5 pH units compared with those of the wild-type,and the F244L and F244W were reduced 1.5 units;The thermostability of all the mutants were increased in various degree,The mutant F244Y、244W and A288G increased about more one degree than that of the wild type;F244L increased two degree and F244C enhanced four degree approximately.It can not only provide useful datum and information in studying the relation of the configuration and function by analyzing and studying these changes about the properties of the mutants but also can afford the theoretic basis to perform molecule evolution on trehalose synthase for the future.
引文
[1]Elbein A D.The metabolism of alpha,alpha-trehalose,Adv Carbohydr Chem Biochem 1974,30:227-256.
    [2]谢开云主编,燕山片麻岩山区农业综合开发.北京:中国农业科技出版社,1995,80-104.
    [3]Sugimoto T.Production of trehalose by enzymatic starch sacchrification and its application[J].Shokuhin Kogyo(Food Industry),1995,38:34-39.
    [4]Elbein A D,Pan Y T,Pastuszak I,et al.New insights on trehalose:a multi-functional molecule.Glycobiology.2003,13(4):17-27.
    [5]Laere A V.Trehalose reverse and/or stress metabolite metabolite[J].FEMS Microbiology.Review.1989,63:201-210.
    [6]袁勤生.隐生生物中的典型化合物一海藻糖.中国生化药物杂志,1999,20(1):48-50.
    [7]Hotiger T,Boiler T,Wiemken A.Rapid changes of heat and desiccation tolerance correlate with changes of trehalose content in Saccharomyces Cerevisiae cells subjected to temperature shifts.FEBS letters 1987,220(1):113-115.
    [8]Hoclzle I,Streeter J G.Increased accumulation of trehalose in Rhizobia cultured under 1%oxygen.Appl Environ Microbiol,1990,56(10):3213-3215.
    [9]Attfield P V.Trehalose accumulate in Saccharomyces Cerevisiae during exposure to agents that include heat shock response,FEBS Lett,1987,225:259-263.
    [10]Coter D A.Spores of the cellular slime mold Dictyostelium discoideum.American Society for Microbiol.Spores.Washington D.C,1975,6:61-72.
    [11]Hotiger T,Boller T,Wiemken A.Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway:is trehalose a thermoprotectant.FEBS letters,1989,225(2):431-434.
    [12]Galinski E A,Herzog R M.The role of trehalose as a substitute for nitrogen-containing compatible solutes.Arch Microbiol,1990,153(6):607-613.
    [13]Crowe J H,Crowe L M,Chapman D.Preservation of membranes in anhydrobiotic organisms:the role of trehalose.SCIENCE,1984,223:701-703.
    [14]Bhandal I.S,Hauptmann R M,Widholm J M.Trehalose as cryoprotectant for the freeze preservation of carrot and tobacco cells.Plant Physiol.1985,78(2):430-432.
    [15]Crowe J H,Crowe L M,Jackson S A.Preservation of structural and functional activity in lyophilized sarcoplasmic reticulum.Arch Biochem Biophys,1983,220(2):447-484.
    [16]Crowe J H,Crowe L M,Chapman D.Interaction of carbohydrates with dry dipalmitoyl phosphatidylcholine.Arch Biochem Biophys.1985,236(1):289-296.
    [17]Crowe L M,Crowe J H,Rudolph A,et al.Preservation of freeze-dried liposomes by trehalose.Arch Biochem Biophys,1985,242(1):240-247.
    [18]Hellergren J,Widell S,Lundborg T,et al.Frosthardiness development in Pinus sylvestris:the involvement of a K~+-stimulated Mg~(2+)-dependent ATPase from purified plasma membranes of pine.Physiologia Plantarum,1983,58(1):7-12.
    [19]Colaco C,Sen S,Thangaveln M,et al.Extraordinary stability of enzymes dried in trehalose:simplified molecular biology[J].Biotechnology,1992,10:1007-1011.
    [20]Schebor C,Burin L,Buera M P,et al.Glassy state and thermal inactivation of invertase and lactase in dried amorphous matrices.Biotechnology Progress,1997,13(6):857-863.
    [21]Appleton B,Gibson T D,Woodward J R.High temperature stabilization of immobilized glucose oxidase:potential application in biosensors.Sensors and Actuators,B:chemical 1997,B43(1-3):65-69.
    [22]Terebiznik M R,Zylberman V,Buera M P,et al.Stablizing crude and ultrafiltrated α-amylase and α-glucosidase from Aspergillus oryzae by trehalose.Biotechnology Techniques,1998,12(9):683-687.
    [23]Camina,Piero,Nishiyama,Yoko,et al.Proceedings of the National Academy of Sciences of the United States of America.1998,95(2):520-524.
    [24]Miller D P,Anderson R E,and de Pablo J J.Stabilization of lactate dehydrogenase following freeze-thawing and vacuum-drying in the presence of trehalose and borate.Pharmaceutical Research,1998,15(8):1215-1221.
    [25]童桥,聂松青.海藻糖对载药脂质体在干燥一再水化过程中的保护作用.生物化学杂志,1992,8(6):711-714.
    [26]Storm A R,Kaasen I.Trehalose metabolism in Escherichia coli:stress protection and stress regulation of gene expression.Molecular Microbiology,1993,8(2):205-210
    [27]Koichi Y,I Iiroe Y,I Iiromu K,et al.Protection by trehalose of DNA from radiation damage.Biotech Biochem.1997,61(1):160-161.
    [28]丸田和彦,久保田伦夫,杉本利行等.麦芽糖/海藻糖转化酶及其制备和应用.日本林原生化研究所.日本公开专利,公开号:CN1107888A.
    [29]罗明典.微生物生产海藻糖及其应用前景.微生物学通报,1996,23(4):252-254.
    [30]Kassen I,Falkenber G P,Styrvold O B,et al.Molecular cloning and physical mapping of otsBA genes,which encode the osmoregulatory trehalose pathway of Escherichiacoli:evidence that transcription is activated by KatF[J].J Bacteriol,1992,174(3):889-898.
    [31]Vuorio O E,Kalkkinen N,Londesboraugh J,et al.Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae.Eur J Biochem,1993,216(3):849-861.
    [32]黄成垠,安国瑞,王庆敏.海藻糖及其在医学实验中的应用.国外医学临床生物化学与检验学分册,1997,18(4):171-173.
    [33]王占武,张芪.双歧杆菌与人体健康.中国乳品工业,1996,24(1):24-28.
    [34]齐战,杨大运,王善政.海藻糖在皮肤低温保存中的保护作用.中国药师,2005,8(9):784-785.
    [35]蔡宏,贾晓明.海藻糖在器官组织保存中的应用.国外医学呼吸系统分册,2005,25(3):210-212.
    [36]阚洪玲,孙洪涛,董建军.海藻糖在化妆品中的应用.食品与药品,2005,7(9A):48-50.
    [37]Saito K,Kase T,Takahashi E,et al.Purification and characterization of a trehalose synthase from the Basidiomycete Grifolafrondosa.Appl Environ Microbiol,1998,64(11):4340-4345.
    [38]萧风岐.海藻糖生物技术的重大突破[J].淀粉与淀粉糖,1996,2:42.
    [39]Tsusaki K,Nishimoto T,Nakada T,et al.Cloning and sequencing of trehalose synthase gene from Pimelobacter sp.R48,Biochim Biophys Acta,1996,1290(1):1-31.
    [40]Tsusaki K,Nishimoto T,Nakada T,et al.Cloning and sequencing of trehalose synthase Gene From Thermus aquaticus ATCC339231.Biochim Biophys Acta,1997,1334(11):28-32.
    [41]邓宏鹰,钟少鸿.让海藻糖进入寻常百姓食品链.[2004-03-16]壹食品中国网,http://www.ifoodl.Com/news/new scont.asp?id=857961
    [42]Akanuma S,Yamagishi A,Tanaka N,et al.Serial increase in the thermal stability of 3-isopropylmalate dehydrogenase from Bacillus subtilis by experimental evolution.Protein Sci,1998,7(3):698-705.
    [43]Zhao H,Arnold F H.Functional and nonfunctional mutations distinguished by random recombination of homologous genes[J].Proc.Natl.Acad.Sci.USA,1997,94:7997-8000.
    [44]Zhao H,Arnold F H.Combinational protein design:strategies for screening protein libraries[J].Curr Opin Struct Biol,1997,7(4):480-485.
    [45]Ponting C P,Schultz J,Copley R R,et al.Evolution of domain families.Adv Protein Chem,2000,54:185-244.
    [46]Zhao H,Giver L,Shao Z,et al.Molecular evolution by staggered exteusion process(StEP)in vitro recombination[J].Nature Biotechnology,1998,16:258-261.
    [47]Kumio Y,Yoko O,Kenji S,et al.Improvement in thermostability and psychrophilicity of psychrophilic alanine racemase by site-directed mutagenesis[J].Journal of Molecular Catalysis B:Enzymatic,2003,23:389-395.
    [48]Yutaka Y &KeikoK.Identification of a glutamine residue essential for catalytic activity of aspergilloglutamic peptidase by site-directed mutagenesis[J].FEBSLetters,2004,569(1):161-164.
    [49]由德林,曲红,陈强等.次黄嘌吟-鸟嘌吟磷酸核糖转移酶突变体的基因构建、表达和性质[J].生物化学与生物物理学报,2003,35(9):853-858.
    [50]Kunishige K,Katsuyuki T.Alteration of substrates pecificity of leucine dehydrogenase by site-directed mutagenesis[J].Journal of Molecular CatalysisB:Enzymatic,2003,23:299-309.
    [51]Akashi O,Akihiro I,Masahiro M,et al.Mutual conversion of substrate specificities of Thermoactinomyces Vulgaris R-47 Amylases TVAⅠ and TVAⅡ by site-directed mutagenesis[J].Carbohydrate Research,2003,338:1553-1558.
    [52]周杨展,黄鹤,李士云等.定点突变提高青霉素G酞化酶的稳定性[J].生物化学与生物物理学报,2000,32(6):581-585.
    [53]Jeremiah B,Frueauf,Miguel A,et al.Alteration of inhibitor selectivity by site-directed mutagenesis of Arg~(294)in the ADP-glucose pyrophosphorylase from Anabaena PCC7120[J].Archives of Biochemistry and Biophysics,2002,400:208-214.
    [54]Hiroyuki A,Andrey G,Ljudmila K,et al.Conversion of cofactor specificities of alanine dehydrogenases by site-directed mutagenesis[J].Journal of Molecular CatalysisB:Enzymatic,2004,30:173-176.
    [55]陆健,曹钮,陈坚.运用定点突变提高重组木聚糖酶在毕赤氏酵母中的表达[J].微生物学报,2002,42(4):425-430.
    [56]Yue S,HuiminY,Xudong S,et al.Cloning of the nitrile hydratase gene from Nocardia sp.in Escherichiacoli and Pichia pastoris and its functional expression using site-directed mutagenesis[J].Enzyme and Microbial Technology,2004,35:557-562.
    [57]Bornscheuer U T,Martina P,Improved biocatalysts by directed evolution and rational protein design.Current Opinion in Chemical Biology 2001,5:137-143.
    [58]Desantis G,Jones J B.Towards understanding and tailoring the specificity of synthetically useful enzymes[J].Acc Chem Res,1999,32:99-107.
    [59]Rubingh D N.Protein engineering from a bioindustrial point of view[J].Curr Opin Biotech,1997,8:417-422.
    [60]Zhao H,Arnold F H.Directed evolution converts subtilisin E into a functional equivalent of thermitase.Protein Eng,1999,12:47-53.
    [61]Stemmer Willem P C.Rapid evolution of a protein in vitro by DNA shuffling.Nature,1994,370:389-391.
    [62]Zhao H,Giver L,Shao Z,et al.Molecular evolution by staggered extension process(StEP)in vitro recombination.Nat Biotechnol,1998,16(3):258-261.
    [63]韦宇拓,朱绮霞,罗兆飞等.谷氨酸棒杆菌海藻糖合成酶基因的克隆及功能鉴定.工业微生物,2005,35(2):1-6.
    [64]J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯著,金冬雁译,分子克隆实验指南[M].第2版.北京:中国科学出版社,2002.
    [65]郭尧君,蛋白质电泳实验技术[M].北京:科学出版社,1999.
    [66]WEI Y T,ZHU Q X,LUO Z F,et al.Cloning,expression and identification of a new trehalose synthase from Thermobifida Fusca genome.Acta Biochimica et Biophysica Sinica,2004,36(7):477-484.
    [67]Miller G L.Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal Chem,1959,31:426-428.
    [68]Pan Y T,Edavana V K,Jourdian W J,et al.Purification,cloning,expression and properties of the enzyme[J].Eur J Biochem,2004,271:4259-4269.
    [69]汪家政,范明.蛋白质技术手册[M].北京:中国科学出版社,2001.
    [70]周丽萍,周政,袁中一.青霉素酰化酶的定点突变及其稳定性研究[J].工业微生物,2003.33:9-13.
    [71]颜思旭,蔡红玉.酶催化动力学原理与方法[M].厦门:厦门大学出版社,1987.
    [72]Ding D F,Tang H X,Zhang B H.Protein homology modeling system and its evaluation.Acta Biophysica Sinica,1995,11:416-428.
    [73]Michael D.F,Yoichi K,Taro T.Crystal structure of glycosyltrehalose trehalohydrolase from the Hyperthermophilic Archaeum Sulfolobus Solfataricus.J.Mol.Biol,2000,301:451-464.
    [74]卡尔.布兰登,约翰.图兹.《蛋白质结构导论》(2005年).上海科学出版社,第42-43页.
    [75]Koppensteiner W A,Sippl M J.Knowledge-based potentials-back to the roots[J].Biochemistry(Mosc),1998,63(3):247-252.
    [76]Sippl M J.Knowledge-based potentials for proteins[J].Curr Opin Struct Biol,1995,5(2):229-235.
    [77]Wiederstein M,Sippl M J.Protein sequence randomization:efficient estimation of protein stability using knowledge-based potentials.J Mol Biol,2005,345(5):1199-1212.
    [78]Gardebien F,Thangudu R R,Gontero B,et al.Construction of a 3d model of Cp12,a protein linker.J Mol Graph Model,2006,25(2):186-195.
    [79]Prlic A,Domingues F S,Lackner P,et al.Wilma-automated annotation of protein sequences,Bioinformatics,2004,20(1):127-128.
    [80]Guo R B,Rigolet P,Zargarian L,et al.Structural and functional characterizations reveal the importance of a Zinc Binding Domain in bloom's syndrome helicase,Nucleic Acids Res,2005,33(10):3109-3124.
    [81]Mandecki W,Shallcross M A,Sowadski J,et al.Mutagenesis of conserved residues within the active site of Escherichia coli alkaline phosphatase yields enzymes with increased K_(cat).Protein Eng,1991,4(7):801-804.
    [82]Ajayi W U,Chaudhuri M,Hill G C,Site-directed mutagenesis reveals the essentiality of the conserved residues in the putative diiron active site of the trypanosome alternative oxidase.J Biol Chem,2002,277:8187-8193.
    [83]Hadonou A M,Wilkin J M,Varetto L,et al.Site-directed mutagenesis of the Streptomyces R61 DD-peptidase.catalytic function of the conserved residues around the active site and a comparison with class-A and class-C beta-lactamases.Eur J Biochem,1992,207(1):97-102.
    [84]Muller-Newen G,Stoffel W.Site-directed mutagenesis of putative active-site amino acid residues of 3,2-trans-enoyl-CoA isomerase,conserved within the low-homology isomerase/hydratase enzyme family.Biochemistry,1993,32:11405-11412.
    [85]Zheng R L,Kemp R G.Site-directed mutagenesis of two highly conserved residues near the active site of phosphofructo-l-kinase.Biochem Biophys Res Commun,1994,199(2):577-581.
    [86]Doucet N,De Wals P Y,Pelletier J N.Site-saturation mutagenesis of Tyr-105 reveals its importance in substrate stabilization and discrimination in TEM-1 beta-lactamase.J Biol Chem,2004,279(44):46295-46303.
    [87]Kuiper G G,Klootwijk W,Visser T J.Substitution of cysteine for a conserved alanine residue in the catalytic center of type Ⅱ iodothyronine deiodinase alters interaction with reducing cofactor.Endocrinology,2002,143:1190-1198.
    [88]Olcott M C,Andersson J,Sjoberg B M.Localization and characterization of two nucleotide-binding sites on the anaerobic ribonucleotide reductase from bacteriophage T_4.J Biol Chem,1998,273:24853-24860.
    [89]Bannam T,Goldfine H.Mutagenesis of active-site histidines of Listeria monocytogenes phosphatidylinositol-specific phospholipase C:effects on enzyme activity and biological function.Infect Immun,1999,67:182-186.
    [90]Burgisser D M,Thony B,Redweik U,et al.6-Pyruvoyl tetrahydropterin synthase,an enzyme with a novel type of active site involving both zinc binding and an intersubunit catalytic triad motif;site-directed mutagenesis of the proposed active center,characterization of the metal binding site and modelling of substrate binding.J Mol Biol,1995,253:358-369.
    [91]Straus D,Raines R,Kawashima E,et al.Active site of triosephosphate isomerase:in vitro mutagenesis and characterization of an altered enzyme.Proc Natl Acad Sci.U S A,1985,82:2272-2276.
    [92]Ste'phanie Ravaud,Xavier Robert,Hildegard Watzlawick,et al.Trehalulose synthase native and carbohydrate complexed structures provide insights into sucrose isomerization.The Jouranal of Biological Chemistry,2007,38:28126-28136.
    [93]Bhosale S H,Rao M B,Deshpande V V.Molecular and industrial aspects of glucose isomerase.Microbiol Rev,1996,60:280-300.
    [94]崔涛,刘咸安,王玉珍等.产葡萄糖异构酶的链霉菌M1033菌株的研究.微生物学报,1991,31(4):329-331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700