颅颈交界区人工骨板的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     颅颈交界区作为枕骨与上颈椎的过渡区域,主要由围绕枕骨大孔的枕骨、寰椎、枢椎及其周围韧带组成,是容纳延髓至颈髓过渡区的管道,其形态结构复杂,功能特殊,病变往往引起明显的临床症状,甚至危及生命。
     临床上主要采取手术减压同时联合内固定系统治疗颅颈交界区畸形,如枕颈融合术、寰枢融合术等。手术的目的是增强该区域的稳定性,而内固定系统提供的稳定只是暂时的,只能通过骨性融合才能实现最终的稳定,这也就要求手术区域有充分的植骨区及植骨材料有较高的融合率。目前临床上应用的植骨材料主要有自体骨、同种异体骨、异种骨、生物活性材料和骨生长因子等,而各种材料都有其局限性。
     本研究在颅颈交界区影像学解剖参数测量的基础上,采用复合生物材料设计出符合枕颈解剖结构的人工骨板,为临床枕颈后路手术提供一种新型的植骨材料。
     材料与方法
     1影像学参数测量
     收集63例颅颈交界区畸形患者的影像学资料,测量枢椎椎弓根进钉点间距及术后连接棒的弧所对应的圆心角及弧两点间距离、枢椎椎弓根上倾角、枢椎椎弓根内倾角;收集59例正常上颈椎的影像学资料,分别测量枢椎椎弓根进钉点间距、寰椎平面脊髓后缘至椎管的距离,共七个相关参数指标。
     2颅颈交界区人工骨板的研制
     在影像学测量的基础之上,根据各个参数指标设计出符合枕颈解剖结构的植骨骨板。
     结果
     1影像学结果
     经过测量,患者组枢椎椎弓根进钉点间距、枢椎椎弓根上倾角、枢椎椎弓根内倾角、术后钉棒的弧长所对应的圆心角、弧两点间距离五个参数样本均数及正常组枢椎椎弓根进钉点间距离、寰椎平面脊髓后缘至椎管的距离两个参数样本均数分别为:35.36±3.12(29.0-41.6)mm、、41.74±7.21(23.2~57.2)°、33.22±3.05(20.6~43.4)°、109.94±8.33(98.7~128.1)°、47.14±7.35(35.3~66.3)mm、34.03±3.49(28.0-38.5)mm、4.74±0.94(3.1-6.6)mm。
     2人工骨板的结构特点
     设计的人工骨板具有巧妙的几何外形和结构设计、良好的生物学性能、安装和观察方便等特点。
     结论
     1.在影像学测量的基础上设计的人工骨板可以很好地覆盖在手术减压后的植骨床上,避免压迫颈髓,术后随访观察方便,可以作为枕颈后路手术的植骨材料。
     2.可以根据测量所得数据将人工骨板设计为多个型号,满足患者个体化差异的需求。
Background and Objective
     The craniocervical junction which is consist of occipital, atlas, axis, and its sur-rounding ligament, is considered as transition zone between occipital bone and the upper cervical, and contained the medulla oblongata. Because of the importance of position, The Lesions such as vessels and nerves often cause significant clinical symptoms, Even life threatening.
     Clinically, Surgical decompression and internal fixation system such as occipitocervical fusion or atlanto-axial fusion is used for craniocervical junction deformity, however the technique requires sufficient bone graft area to improve the fusion rate and enhance the stability in this area. Currently the graft materials basically contained autogeneous bone, allograft bone,heterogeneous bone, Bioactive materials and bone growth factors, however all kinds of materials has its advantages and disadvantages.
     On the basis of imaging anatomical parameters of the craniocervical junction, we designed the artifical bone lamella accord with craniocervical junction anatomy as
     bone graft material of posterior surgery. Materials and methods
     1 Imaging anatomy measurement
     After collecting the imaging data of 63 patients with clinical craniocervical malformation, we measured the related parameters of anatomical atlas and axis. The five relevant parameters are following: the length of the axis pedicle screw point, the central angle corresponds to the arc of connecting rods, the distance between two points of the arc,the upper oblique angle of axis vertebral pedicle, the inside oblique angle of axis vertebral pedicle; furthermore, we also collected and measured the imaging data of 50 normal people, the two parameters are the length of the axis pedicle screw point and the distance from spinal cord to the anterior margin of spinal canal in atlas plane.
     2 The design of artifical bone lamella in craniovertebral junction
     We design the bone graft lamella accord with craniocervical junction anatomy on the basis of imaging anatomical parameters.we call it the artifical bone lamella.
     Results
     1 Imaging anatomy parameters
     For group of patients, the length of the axis pedicle screw point, the central angle corresponds to the arc of connecting rods, the distance between two points of the arc,the upper oblique angle of axis vertebral pedicle, the inside oblique angle of axis vertebral pedicle were 35.36±3.12 (29.0-41.6) mm、、41.74±7.21 (23.2-57.2)。、33.22±6.05 (20.6~43.4)。、109.94±8.33 (98.7-128.1)。、47.1±7.35 (35.3-66.3) mm, respectively. For normal group, the length of the axis pedicle screw point and the distance from spinal cord to the anterior margin of spinal canal in atlas plane were 34.03±3.49 (28.0-38.5) mm、4.74±0.94 (3.1-6.6) mm, respectively.
     2 The structural features of the artifical bone lamella
     The artifical bone lamella has smart geometrical shape and structure design, favourable biological performance, and it is convenient to install and observe after operation.
     Conclusion
     1 The artifical bone lamella which can beautifully cover the bone graft bed of surgical decompression, avoid oppressing cervical spinal cord, and the follow-up is convenient, is a excellent bone graft material in posterior surgery of the craniocervical junction.
     2 The artifical bone lamella can be designed for multiple models that can satisfy the demand of individual differences.
引文
[1]邱贵兴,戴尅戎.骨科手术学.北京:人民卫生出版社,2007,第三版:1311.
    [2]Vender JR, Rekito AJ, Harrison SJ, McDonnell DE. The evolution of posterior cervical and occipitocervical fusion and instrumen-tation. Neurosurg Focus.2004; 16:E9.
    [3]Currier BL, Papagelopoulos PJ, Neale PG, et al. Biomechanical evaluation of new posterior occipitocervical instrumentation system. Clin Orthop Relat Res 2003:103-115.
    [4]Schnee CL, Freese A, Ansell LV. Outcome analysis for adults with spondylolisthesis treated with posterolateral fusion and transpedicular screw fixation [J]. Neurosurg,1997, 86:56-63.
    [5]Wangli,Peng Tianhong,Wangwei, et al. Applied anatomy of internal fixation of occipital bone screw. Journal of Nanhua University(Medical Edition).2006,34(2):172-175.
    [6]Zipnick R,Mcrola A,Gorup J,et al.Occipital morphology:an anatomic guide to internal fixation. Spine,1996,21:1719-1724.
    [7]谭明生,张光铂,王慧敏,等.枕骨粗隆部测量及经板障间螺钉固定通道的研究.中国脊柱脊髓杂志,2003,13(8):462-466.
    [8]Ebraheim NA,Lu J,Biyani A, et al. An anatomic study of the thickness of the occipital bone. Implications for occipitocervical instrumentation[J]. S pine,1996,21 (15):1725-1730.
    [9]Cao Zhenglin, Zhong Shizhen, Xu Dachuan. Anatomical measurement of atlas and axis and its clinical significance. Chinese Journal Of Clinical Anatomy,2000,18(4):299-301.
    [10]Dong Y,Xia H, et al.Quantitative Anatomy of the Lateral Mass of the Atlas. Spine.2003,28(9):860-863.
    [11]谭明生,张光铂,李子荣,等.寰椎测量及其后弓侧块螺钉固定通道的研究.中国脊柱脊髓杂志,2002,12(1):5-8.
    [12]Borne GM, Bedou GL, Pindaudeau M. Treatment of pedieular fracture of the axis:a clinical study and 8crew fixatjon technique[J]. J Neumsurg,1984,60(1):88-89.
    [13]Xu R, Nadaud MC, Ebraheim NA, et al. Morphology of the second cervical vertebra and the posterior projection of the C2 pedicle. Spine,1995,20(3):259-263.
    [14]Ebraheim N, RoLLins JR et al. Anatomic consideration of C2 pedicle screw placement. Spine,1996,21(6):691-695.
    [15]Nderi S, Armen C, Guvencer M, et al. An anatomical study of the C2 pedicle. J Neurosurg,2004,1(3):306-310.
    [16]Mandel IM,Kambach BJ,Petersilge CA.et al.Morphologic considerations of C2 isthmus dimensions for the placement of transarticular screws.Spine,2000,25(12):1542-1547.
    [17]曹正霖,钟世镇,徐达传.寰枢椎的解剖学测量及其临床意义.中国临床解剖学杂志.2000,18(4):299-301.
    [18]Dickman CA, Mamourian A, Sonntag VK, et al. Magnetic resonance imaging of the transverse atlantal ligament for evaluation of atlantoaxial instability.J Neurosurg,2001, 75(2):221-227.
    [19]Huyong, Xiehui, et al. Study on anatomy of atlantoepistrophic complex and its clinical application.China J Orthop & Trauma,2007,20(3):208-210.
    [20]Corbett D. Winegar, Jeffrey A. Rihn, Joseph Hong, et al. Contemporary posterior occipit-ocervical fixation techniques. Current Orthopaedic Practice.2008,14(9):398-406.
    [21]Kowalski JM,ludwig SC,Hutton WC,et al.Cervical spine pedicle screws A biomechanical comparison of two insertion techniques. Spine,2000,5(22)12:865.
    [22]Ebmheim NA, Lu J, Yang H. The effect of translation Of the C1-C2 on the spinal canal. Clin Orthop Relat Res,1998,351:222-229.
    [23]Takenori Oda, Kazuo Yonenobu,Yoshikazu Fujimura, et al. Diagnostic Validity of Space Available for the Spinal Cord at C1 Level for Cervical Myelopathy in Patients With Rheumatoid Arthritis.Spine,2009,34(13):1395-1398.
    [24]余新光,周定标.颅颈交界区畸形的分型新建议与治疗的进一步探讨.中国医师协会神经外科医师分会—第四届全国代表大会论文汇编.2010:580.
    [25]Mihorat TH, chou Mw, Trinidad EM, et al. Chiari malformation:clinical and radiographic findings for 364 symptomatic patients [J]. Neurosurgery,1999,44(5):1005-1017.
    [26]Gardner WJ. Hydrodynamic mechanism of syringomyelia:Its relationship to myelocele.J Neurol Neurosury Psychiat,1965,28:247-259.
    [27]Williams B. The distending force in the production of communicating syringomylia[J]. Lancet,1970; 295:41-42.
    [28]Ball MJ, Dayan AD. Pathogenesis of syringomyelia[J]. Lancet,1972; 2(7781):799-801.
    [29]Strayer A. Chiari I malformation :clinical presentation and management [J]. Neursci Nurs,2001,33(2):90-96.
    [30]Pillay PK,Awad IA lit tle J R,et al. Symptomatic Chiari malformation in adults:a new classification based on magnetic resonance imaging with clinical and prognostic significance[J].Neurosurg,1991,28(5):639-645.
    [31]刘伟国,高龙,郑文济,等Chiari畸形的分型与手术[J].中国临床神经外科杂志,2001,6(4):216-217.
    [32]Meadow J, Kraut M, Guarnieri M, et al. Asymptomatic Chiari Type I malformations identified on magnetic resonance imaging[J]. JMeursurg,2000; 92(6):920-926.
    [33]杨俊,杨福兵Chiari畸形的诊治进展Journal of Military Surgeon in Southwest.2011,13(1):115-117.
    [34]Heller JB, LazareffJ, Gabbay JS, et al. Posterior cranial fossa box expansion lead to resolution of symptomatic cerebellar ptosis Following Chiari I malformation repair. J Craniofae Surg,2007,18(2):274-280.
    [35]Ergun R,Akdemir G,Gezici AR,et al.Surgical management of syringomyelia- Chiari complex[J].Eur Spine J,2000,9(6):553-557.
    [36]下增光,胡震,杨卫东,等.显微外科治疗小脑扁桃体下疝畸形I型合并脊髓空洞症.中华显微外科杂杂志,2008,31(2):148-150.
    [37]Kumar R, Nayak SR. Management of pediatric congenital atlantoaxial dislocation:a report of 23 cases from northern India. Pediatr Neurosurg,2002,36(4):197-208.
    [38]Nakamura M, Yone K, Yam aura I, et al. Treatment of craniocervical Spine lesion with osteogenesis imperfecta:a case report. Spine,2002,27(8):E224-7.
    [39]Leone A, Sundaram M, Cerase A, et al. Destructive spondyloarthropathy of the cervical spine in long-term hemodialyzed patients:a five—year clinical radiological prospective study. Skeletal Radiol,2001,30(8):431-433.
    [40]王正敏,主编.颅底外科学.上海,上海科学技术出版社,1996:174.
    [41]Lorenzo ND, Palma L, Palatinsky E, et al. Conservation cranio-chinr cemplex:a prospective study of 20 adult cases. Spine,2005,30(3):2479-2485.
    [42]Smith JS, Shaffrey CI, Abel MF, et al. Basilar invagination. J Neurosurgery.2010,66(3 suppl):39-47.
    [43]Menezes AH. Aquirod abnormalities of the craniovertebral junction. In Winn HR(eds): Youmans Neurological Surgery,5th Edition. Vol4. WB Saunders,2003,297:4569-4585.
    [44]Gardiner A, Weitzel PP. Bone Graft Substitutes in Sports.Medicine[J]. Sports Med Arthrosc Rev,2007,15(3):158-167.
    [45]Cypher TJ, Grossman JP. Biological principles of bone graft healing.[J] Foot Ankle Surg, 1996,35:413-417.
    [46]Joshi A, Kostakis GC. An investigation of post-operative morbidity following iliac crest graft harvesting. Br Dent J,2004,196:167-171.
    [47]朱加亮,侯树勋.衷鸿宾.骨移植材料的现状和研究进展[J]. Chin J Bone Tumor & Bone Disease.2006,5(5):303-306.
    [48]Suchomel P, Barsa P, Buchvald P, et al. Autologous versus allogenic bone grafts in instrumented anterior cervical discectomy and fusion: a prospective study with respect to bone union pattern [J].Eur Spine,2004,13(6):510-515.
    [49]Niederauer GG, Lee DR, Sankaran S, et al. Bone Grafting in Arthroscopy and Sports Medicine. Sports Med Arthrosc Rev,2006,14(3):163-168.
    [50]LeGeros RZ. Properties of osteoconductive biomaterials:calcium phosphates. Clinical Orthopaedics and Related Research.2002,395:81-98.
    [51]Blattert TR, Delling G, Weckbath, et al. Evaluation of an injectable calcium phosphate cement as an autograft substitute for transpedicular lumbar interbody fusion: a controlled, prospective study in the sheep model. Eur Spine,2003,12:216-223.
    [52]Ames CP, Smith JS, Preul MC, et al. Effect of recombinant human bone morphogenetic protein-2 in an experimental model of spinal fusion in a radiated area[J].Spine,2005, 30(23):2585-2592.
    [53]Osyczka AM, Leboy PS. Bone morphogenetic protein regulation of early osteoblast genes in human marrow stromal cells is mediated by extracellular signal-regulated kinase and phosphatidylirnosital 3-kinase signaling.Endocrinology.2005,146(8):3428-3437.
    [54]Jie Wei, Yubao Li,Weiqun Chen, et al. A study on nano-composite of hydroxyapatite and po lyamide. Journal of materials Science,2003,38:3303-3306.
    [55]Jie Wei, Yubao Li, Yi He. Processing properties of nano apatite-polyamide biocomposites. Journal of materials Science,2005,40:793-796.
    [56]Wei J,Li YB. Tissue engineering scaffold material of nano2apatite crystals and polyamide comeposite [J]. Euro Polym,2004,20 (3):509-515.
    [57]Zhang L, Li Y B, Wang XJ, et al. Studies on the porous scaffold made of the nano-HA /PA66 composite [J]. J Mater Sci,2005,40 (1):107-110.
    [58]陈滔,朱美忠,周鹏程等.应用n-HA/PA66复合人工椎体植骨融合术治疗脊柱骨折22例[J].创伤外科杂志,2009,11(3):217-219.
    [59]蒋电明,权正学,黄伟等.纳米羟基磷灰石\聚酰胺66复合生物活性人工椎板的初步临床应用[J].中国修复重建外科杂志,2007,21(5):441-444.
    [1]余新光,林欣.颅颈交界区不稳定的外科治疗[J].中国现代神经疾病杂志,2004,4(5):267-270.
    [2]Rhoton,AL.Jr.M.D.The foramen magnum. Neurosurgery,2000,47(3):S155-S193.
    [3]Menezes AH, Traynelis VC. Anatomy and biomechanics of normal craniovertebral junction (a) and biomechanics of stabilization (b). Childs Nerv Syst,2008,24:1091-1100.
    [4]Erbengi A, Oge HK. Congenital Malformations of the Craniovertebral Junction: Classification and Surgical Treatment. Acta Neurochirurgica,1994,127:180-185.
    [5]Grob D. Surgical aspects Of the cervical spine in rheumatoid arthritie. Orthopade.2004,33(10):1201-1212.
    [6]Krauss WE, Bledsoe JM, Clarke MJ,et al. Rheumatoid Arthritis of the Craniovertebral Junction. Neurosurgery,2010,66:A83-A95.
    [7]Chamberlai WE. Basilar impression. Yale J Biol Med,1939,11:487-491.
    [8]Mc Gregor DL. The significance of certain measurements of the skull in the diagnosis of basilar impression. Br J Radiol,1948,21:171-181.
    [9]Cone W,Turner WG.The treatment of fracture dislocation of the cervical vertebrae by skeletal traction and fusion.J Bone Joint Sury,1937,19:584-602.
    [10]Stock GH, Vaccaro AR, Brown AK,et al. Contemporary posterior occipital fixation. J Bone Joint Surg Am.2006,88:1642-1649.
    [11]Perry J, Nickel VL. Total cervical spine fusion for neck paralysis.J Bone Joint Surg Am. 1959,41:37-60.
    [12]Hamblen DL. Occipito-cervical fusion. Indications, technique and results. J Bone Joint Surg Br.1967,49:33-45.
    [13]Vender JR, Rekito AJ, Harrison SJ, McDonnell DE. The evolution of posterior cervical and occipitocervical fusion and instrumentation. Neurosurg Focus.2004,16:E9.
    [14]Moskovich R, Crockard HA, Shott S, Ransford AO. Occipitocervical stabilization for myelopathy in patients with rheumatoid arthritis. Implications of not bone-grafting. J Bone Joint Surg Am.2000,82:349-365.
    [15]Yuksel KZ, Crawford NR, Melton MS, Dickman CA. Augmentation of occipitocervical contoured rod fixation with C1-C2 transarticular screws. Spine J.2007,7:180-187.
    [16]Ransford AO, Crockard HA, Pozo JL, et al. Craniocervical instability treated by contoured loop fixation. J Bone Joint Surg Br.1986,68:173-177.
    [17]Kato Y, Itoh T, Kubota M. Clinical evaluation of Luque's segmental spinal instrumentation for upper cervical metastases. J Orthop Sci.2003(8):148-154.
    [18]Vender JR,Houle PJ,Harrison S, et al.Occipital-cervical fusiong using the Locksley intersegmental tie bar technique:long-term experience with 19 patients. Spine J.2002, 2(2):134-141.
    [19]Puttlitz CM, Meleher RP, Kleinstueck FS. et al. Stability analysis of craniovertebral junction fixation techniques. J Bone Joint Surg Am.2004,86-A(3):561-568.
    [20]Stock GH, Vaccaro AR, Brown AK, Anderson PA. Contemporary posterior occipital fixation. J Bone Joint Surg Am.2006,88:1642-1649.
    [21]Paquis P, Breuil V, LonjonM, et al.Occipitocervical fixation using hooks and screws for upper cervical instability. Neurosurgery.1999,44:324-330.
    [22]Tan Mingsheng,Wang Huimin,Jiang Xin, et al. Screw fixation via diploic bone paralleling to occiput table:anatomical analysis of a new technique and report of 11 cases. J Eur Spine.2007,16:2225-2231.
    [23]Olivier G. Biometry of the human occipital bone. J Anat.1975,120:507-518.
    [24]Sasso RC, Jeanneret B, Fischer K, Magerl F.Occipitocervical fusion with posterior plate and screw instrumentation.:A long-term follow-up study. Spine.1994,19:2364-2368.
    [25]Haher TR, Yeung AW, Caruso SA, et al. Occipital Screw Pullout Strength:A Biomechanical Investigation of Occipital Morphology. Spine,1999,24 (1):5-9.
    [26]谭明生,张光铂,王慧敏等.枕骨粗隆部测量及经板障间螺通道的研究.中国脊柱脊髓杂志.2003,13(8):462-466.
    [27]Magerl F, Seeman P. Stable posterior fusion of the atlas and axis by transarticular screw fixation. Springer-Verlag; 1987, pp.322-327.
    [28]Richter M, Schmidt R, Claes L, et al. Posterior atlantoaxial fixation:biomechanical in vitro comparison of six different techniques. Spine,2002,27 (16):1724-1732.
    [29]Oda I, Abumi K, Sell LC, Haggerty CJ,et al.Biomechanical evaluation of five different occipito-atlanto-axial fixation techniques. Spine.1999,24:2377-2382.
    [30]Liang ML, Huang MC, Cheng H, et al.Posterior transarticular screw fixation for chronic atlanto-axial instability. J Clin Neurosci.2004,11:368-372.
    [31]Wang C, Yan M, Zhou H, et al. Atlantoaxial transarticular screw fixation with morselized autograft without additional internalfixation. Technical description and report of 57 cases. Spine.2007,32:643-646.
    [32]Bahadur R, Goyal T, Dhatt SS, et al. Transarticular screw fixation for atlantoaxial instability modified Magerl's technique in 38 patients. Journal of Orthopaedic Surgery and Research.2010,5:87.
    [33]Harms J, Meleher RP. Posterior C1-C2 fusion with polyaxial screw and rod fixation. Spine. 2001,26:2467-2471.
    [34]Resnick D,Benzel E. C1-2 pedicle screw fixation with rigid cantilever beam construct: case re port and technical note J. Neurosur gery,2002,50:426-428.
    [35]Tan MS,Wang HM,Wang YT, et al. Morphometric evaluation of screw fixation in atlas via posterior arch and lateral mass J. Spine,2003,28:888-895.
    [36]马向阳,钟世镇,刘景发等.寰椎后弓侧块螺钉固定的解剖学测量[J].中国脊柱脊髓杂志,2004,14:23-25.
    [37]Gupta S, Goel A:Quantitative anatomy of the lateral masses of the atlas and axis vertebrae. Neurol India 2000,48:120-125.
    [38]Melcher RP,Puttlitz CM,Kleinstueck FS,et al.Biomechanical testing of posterior atlantoaxial fixation techniques. Spine,2002,27:2435-2440.
    [39]Sasso RC, Jeanneret B, F ischer K, et al.Occipitocervical fusion with posterior plate and screw instrumentation.Spine,1994,19(20):2364-2368.
    [40]Goel A,Desai KI,Muzumdar DP. Atlantoaxial fixation using plate and screw method:a report of 160 treated patients. Neurosurgery,2002,51(6):1351.
    [41]Gunnarsson T, Massicotte EM, Govender PV,et al.C1 lateral mass screws in complex cervical spine surgery: indications, techniques, and outcome in a prospective consecutive series of 25 cases. J Spinal Disord Tech.2007,20(4):308-316.
    [42]Nesnick DK, Lapsiwala S,TrostG R, et al. Anatomic suitability of the C1-C2 complex for pediele screw fixation. Spine,200227(14):1494-1498.
    [43]Abumil K, Lioh H, Taneichi H, et al. Transpedicular screw fixation for traumatic lesions of the middle and lower cervical spine: description of techniques and preliminary report[J].Spinal disord,1994,7:19-28.
    [44]Panjabi MM,Duranceau J,Goel V,et al. Cervical human vertebrae:Quantitative three dim-ensional anatomy of the middle and lower regions[J].Spine,1991,16:861-869.
    [45]马向阳,钟世镇.枢椎椎弓根螺钉固定的应用解剖学[J].中华创伤杂志,2003,19(5):274-276.
    [46]Kothe R,Ruther W, Schneider E, et al. Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine. Spine.2004,29(17):1869-1875.
    [47]Kowalski JM,ludwig SC,Hutton WC,et al.Cervical spine pedicle screws A biomechanical comparison of two insertion techniques. Spine,2000,5(22)12:865.
    [48]Abumi K,Shono Y, Ito M, et al. Compl i cations of pedicle screw fixation in reconstructive surgery of the cervical spine. Spine,2000,25:962-969.
    [49]Marcus Richter. Balkan Cakir, et al. Cervical Pedicle Screws:Conventional versus Computer-Assisted Placement of Cannulated Screws. Spine,2005,30(20):2280-2287.
    [50]posterior c2 fixation using bilateral,crossing C2 laminar screws:case series and technical note. Spinal Disord Tech,2004 17(2):158-162.
    [51]胡勇,徐荣明,马维虎.枢椎椎板螺钉固定技术的研究进展[J].中华创伤杂志.2008,24(10):844-846.
    [52]Gorek J,Acaroglu E, Barren S, el al. Constructs incorporating intralaminar C2 screws provide rigid stability for atlantoaxial fixation. Spine.2005,30:1513-1518.
    [53]Lapsiwala SB, Anderson PA, Oza A, Resnick DK. Bio-mechanical comparison of four C1 to C2 rigid fixative techniques: anterior transarticular,posterior transarticular, C1 to C2 pedicle, and C1 to C2 intralaminar screws. Neurosurgery,2006,58:516-521.
    [54]Wang MY.Cervical crossing laminar screws:early clinical results and complications. Neurosurgery,2007,61:311-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700