基于数值仿真的流体振动抛光机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代工业对零件表面精度的要求越来越高,如何实现工件的高精密抛光已经成为加工领域的一个重要研究课题。本文对一种新型的高精度表面加工工艺——流体振动抛光方法进行了研究。该方法由超声振动提供抛光能量,流体分子或悬浮在其中的微细磨粒在振动的驱使下冲击工件表面,另外,超声空化产生的能量集中,可导致更为强烈的材料去除。加工中的复杂性和微观性因素,包括声场分布、超声空化和微观材料去除机理,都难以采用实验手段直接观测。本文采用多种数值仿真方法,从宏观、介观与微观三种尺度,对上述关键问题进行了研究。
     目前对复杂声场的计算,一般通过用数值方法求解波动方程实现,本文根据驻波的简正分解理论,给出了声压场的直接计算方法。总声压由简正波声压的线性叠加获得,各次简正波的方程根据声源和抛光槽的参数确定。利用此理论对抛光液中的声压场进行了计算,另外,为验证声压场的边界条件,采用有限元流固耦合模型对抛光液的整体流场进行了计算。计算结果表明:驻波的声压波腹一般出现在声源幅射轴与抛光槽侧壁处,声压强度由底向上振荡减弱,声场的基本分布规律由底面超声源决定,侧面超声源只对声场的整体强度有所影响。流场的分布特点与声压场的计算结果吻合,而且符合相应的声学边界条件,不会出现流固振荡。基于整体声场和流场的数值计算结果,采用弹性冲击-接触理论对线性振动引起材料去除进行了估算,发现冲击应力较低,难以形成有效的加工作用。
     针对耗散颗粒动力学方法难以仿真非稳态过程的缺点,本文提出了非稳态耗散颗粒动力学理论。从求解速度朗之万方程出发,建立了系统的温度-密度条件和压强—密度条件,并给出了具体的计算方法。通过仿真实例对该理论进行了数值验证,仿真结果与理论预测值很好地吻合,表明此理论适用于模拟非稳态过程。
     本文首次采用耗散颗粒动力学方法研究声致空化现象,探讨空化导致的材料去除,并计算空化射流驱动下的磨粒运动,为冲击过程的仿真提供基础数据。相比目前常用的空化仿真方法,耗散颗粒动力学能够提供更为丰富的气泡动力学和流场演化信息,而且这种方法也可以方便地对群空化以及多相流中的空化进行仿真。气体模型根据本文提出的非稳态耗散颗粒动力学原理建立,解决了原始方法不能模拟强非稳态气泡动力学的难题,而液体模型则结合流体力学相似原理建立,以处理耗散颗粒的柔软性和流体高抗压缩性之间的矛盾。采用独具特色的张力环技术模拟气泡壁,另外,为改善运算的速度和精度,在仿真计算中采用了相分离技术,气体与液体的动力学单独计算。仿真结果表明:空化产生了强烈的能量集中,随着泡壁的快速塌缩,气泡的体积急剧缩小,气泡内温度与压强迅速上升,同时还伴随有明显的冲击波现象。工件表面附近的空化是非对称的,其后果是在周围液体中引发了涡流和高速微射流。声压、气泡的大小和位置等多种因素都将对空化效应产生影响,根据仿真结果对它们的作用进行了量化描述。群空化过程中,单个气泡的空化将相互削弱,气泡的数目越多密度越大,削弱越明显。对于多相抛光液,固相磨粒的存在也将影响空化进程,磨粒在射流通过后可获得一定的运动速度,其大小随磨粒直径的增大而降低。由空化引起的高速射流是导致材料去除的主要原因,射流冲击工件表面后产生了极高的动压,往复冲击可造成疲劳破坏;另一方面,磨粒在射流的推动下冲击或切削工件,可以实现材料的直接去除。
     流体振动抛光中材料的去除规模可以小到纳米级别,传统的连续介质理论以及基于此的数值方法,不适用于这种尺度范围内现象的处理。本文采用分子动力学这种有效的微观仿真方法,对流体振动抛光的微观材料去除机理进行了研究。加工过程中磨粒的运动是不受约束的,关于自由磨粒冲击的分子动力学仿真目前尚未见到相同的资料。仿真结果发现:冲击打破了工件基体的规则晶格,形成半晶状结构,在此过程中还伴随有基体的弹塑性变形、发热以及振动现象。磨粒在工件表面垂直振动,水平方向做翻滚或摇摆运动,运动过程中磨粒与工件问将出现很强的摩擦效应。磨粒的斜向冲击将在工件表面造成一系列的加工坑,加工坑的形成机制可归结于挤压、撕拉和重结晶等多种效应。冲击能量、冲击角和磨粒尺寸等都将影响加工坑的尺寸和形状,根据仿真数据总结出了加工坑深度与冲击能量间的经验公式。加工表面的最终形貌是由许多磨粒的不断冲击造成的,多次冲击的总体效果近似为单次冲击的线性叠加,工件的表面粗糙度约等于冲击坑的平均深度。多次冲击的表面具有分形特征,且分形维数较低,表明加工后的表面比较光滑。
     本文除了解释了流体振动抛光的加工机理,所提出的非稳态耗散颗粒动力学方法将在微流体以及复杂流体的仿真中发挥重要作用。目前的数值研究只是针对最基础的物理现象,化学作用的加工原理将是后续研究一个重要方向。另外,研究中未发现空化的选择性,未来可以考虑控制气泡在抛光液中的分布,使加工出现有利的选择性,以提高加工效率与精度。
According to the increasing demand for workpiece with high surface quality, high precision polishing technology has now attracted tremendous interest in the field of mechanical engineering. This dissertation will study a novel polishing method termed Polishing Based on Vibrations of Liquid (PVL). In PVL, machining energy is supplied with ultrasonic transducers. Liquid molecules or suspending polishing particles will impact the surface of workpiece when polishing liquid is vibrated by the ultrasonic transducers. Furthermore, energy concentration caused by ultrasonic cavitation will result in the more violent material removal. The complex and microscopic phenomena, including acoustic pressure field, ultrasonic cavitation and microscopic material removal in PVL are all hard to be directly studied by experimental approaches. We will try to solve these key issues with numerical method. According to the specific problems, apply simulations in macro-, meso- or micro- scale.
     Presently, the calculations of complex acoustic field are generally accomplished through numerical solutions of wave functions. Based on normal mode decomposition theorem derived from linear acoustics, we present a direct calculation method for this problem. The total acoustic pressure is obtained from the superposition of pressures of all normal mode waves, and the wave function for each normal mode is decided by boundary conditions. This method is applied to study the pressure distribution in polishing tank, and in order to validate the boundary conditions, a liquid-solid coupling Finite Element model is employed to calculate the velocity field in polishing liquid. It is found that pressure antinodes of the standing wave generally appear on the radiation axes of ultrasonic transducers or at the boundary of polishing tank. The effective acoustic pressure attenuates undulately from the bottom to the top. Basic features of the pressure field are dominated by the ultrasonic transducers located on the bottom of polishing tank, while the transducers on the side wall will affect the total strength of the field. Velocity distribution of polishing liquid is in accordance with the pressure field obtained before, and the boundary conditions are proofed to be accurate either: liquid-solid resonance will not appear. Based on the numerical results for pressure field and flow field, the damage caused by linear acoustics is estimated with elastic impact-contact theory. A low impact stress is given, which means that linear vibration could hardly result in effective material removal.
     According to the difficulty of original Dissipative Particle Dynamics (DPD) on modeling non-equilibrium process, we developed a non-equilibrium-DPD theory. Based on the solution of velocity Langevin equation, constraints for temperature-density relation and for pressure-density relation are established, and the detailed calculation method is provided. Validity of the non-equilibrium DPD theory is confirmed numerically with a case study. The results agree well with theoretical predictions, which suggest that this theory is applicable in the simulation of non-equilibrium processes.
     We employ DPD method to simulate acoustic cavitation for the first time. Cavitation damage is discussed, and the movement of polishing particle in liquid jet caused by cavitation is calculated, so as to provide basic information for the simulation of impact process. Compared to the present numerical methods employed in the simulation of cavitation, DPD method can provide more detailed information for bubble dynamics and liquid flow evolution, moreover, simulating cloud cavitation and cavitation in multiphase environment with DPD is not difficult. Vapor in bubble is modeled with non-equilibrium-DPD method, thus the problem that original DPD method can not simulate bubble dynamics is solved. For the purpose of modeling high bulk modulus, similitude method is employed in addition to DPD method to simulate the dynamics of liquid. Surface tension ring is used to model the movement of bubble wall. In order to improve computational efficiency and accuracy, phase separation scheme is adopted, the dynamics of vapor and liquid are calculated separately. Simulation results suggest that cavitation will result in strong energy concentration. With the fast collapse of bubble wall, bubble volume keeps being compressed and bubble temperature or pressure keeps increasing quickly, at the same time, shock waves appear in the bubble. The cavitation happens near solid boundary is asymmetrical, vortex and high-speed liquid jet is generated consequently. Acoustic pressure, bubble size and the position of bubble in pressure field will all affect the cavitation strength, and the influences of these factors are expressed quantitatively according to the simulation results. Cavitations in a cloud will be weakened by each other, the higher the bubble density is, the more evident weakening effect will be. As for multiphase polishing liquid, the existence of solid polishing particle will affect cavitation process. Polishing particle obtains high velocity when liquid jet passes, and value of the velocity decreases with increasing particle size. It is found that the high-speed liquid jet caused by asymmetrical collapse is mainly responsible for cavitation damage. If liquid jet impact on workpiece, it will result in a very high kinetic pressure, thus repeating impact will bring fatigue damage. Moreover, polishing particle driven by liquid jet will impact or cut workpiece so as to remove material directly.
     Material removal in PVL might happen at the magnitude of nanometer. Traditional continuum theorem and the numerical method based on it are no longer valid for the solution of this microscopic problem. Thus in this paper, Molecular Dynamics (MD) method, which is powerful for the simulation of microscopic phenomena, is employed to study the microscopic material removal mechanism of PVL. The movement of polishing particle in PVL is not constrained, MD simulation of the impact of free particle on substrate is not found elsewhere. From the simulation result, it is found that the impact of particle will break the regular crystal lattices of workpiece, and amorphous structures will be resulted. At the same time, elastic-plastic deformation, thermal effect and vibration phenomenon will happen. Polishing particle will vibrate at vertical direction, while at tangential direction, the movement of particle will be rocking or rolling as the case may be. During the process, strong friction effect will exist between particle and workpiece. When polishing particle impact workpiece obliquely, a serial of machining dents will be caused on the surface. It is found that press, tear and self-organization effects are responsible for the formation of impact dents. Sizes of the machining dent are affected by incident velocity, particle size and incident angle. The empirical relationship between dent depth and incident energy is provided in the paper. Simulation of multiple impacts suggests that the total effect of multiple impacts is approximately the linear superposition of the effects of all single impacts. Roughness of polished surface roughly equals to the average depth of machining dents. Surface fabricated by multiple impacts has fractal character, and the fractal dimension is low, which means the polished workpiece will be fairly smooth.
     Based on the numerical studies of the key issues, the machining mechanisms of PVL are revealed. Moreover, the non-equilibrium-DPD method brought about in this paper will be meaningful for the simulation of micro flows and complex flows. The present researches are mostly focused on physical phenomena. As for the future work on PVL, machining mechanism based on chemical effects should be studied equivalently. Another subject that should be considered in the future is cavitation control. With a better cavitation control scheme, both efficiency and precision of PVL could be significantly improved.
引文
[1] 水清木华研究中心.2005年中国半导体产业研究报告.北京:水清木华研究中心,2005.
    [2] 高宏刚,曹健林,朱镛,陈创天.超光滑表面及其制造技术的发展.物理,2000,29(10):610-614.
    [3] 冯若,姚锦钟,关立勋.超声手册.南京:南京大学出版社,1999.
    [4] T. Nakamura, K. Akamatsu and N. Arakawa. Bowl feed and double sides polishing for silicon wafer for VLSI. Bulletin of the Japan Society of Precision Engineering, 1985, 19(2): 120-125.
    [5] Y. Namba, H. Tsuwa and R. Wada. Ultra-precision float polishing machine. CIRP Annals, 1987, 36(1): 211-214.
    [6] 高宏刚,曹健林,陈斌.浮法抛光超光滑表面加工技术.光学技术,1995,3(3):40-43.
    [7] A. J. Leistner and J. M. Bennett. Polishing study using Teflon and pitch laps to produce flat and super smooth surface. Applied Optics, 1992, 31(10): 1472-1482.
    [8] A. J. Leistner. Teflon laps: Some new developments and results. Applied Optics, 1993 32(19): 3416-3424.
    [9] 刘向阳,王立江,高春甫.光学材料无磨料低温抛光的试验研究.中国机械工程学报,2002,38(6):47-50.
    [10] Y. Mori, K. Yamauchi, and K Endo. Elastic emission machining. Precision Engineering, 1987, 9(3): 123-128.
    [11] M. C. Rushford, J. A. Britten, S. N. Dixit, C. R. Hoaglan, M. D. Aasen and L. J. Summers. Wet-etch figuring for precision optical contouring. Applied Optics, 2003, 42(28): 5706-5713.
    [12] E. W. Kreutz, W. Pfleging, D. A. Wesner, J. Jandeleit and G. Urbasch. Dry etching and micromachining of precision silicon components. Proceedings of SPIE-The International Society for Optical Engineering, 1996, 2879: 37-44.
    [13] L. Y. Shueh, K. Kazutoshi and I. Kingo. Electrochemical etching of Si(001) in NH_4F solutions: Initial stage and {111} microfacet formation. Applied physics letters, 1995, 66(6): 766-768.
    [14] L. N. Allen and K. C. Eastman. Progress in ion figuring large optics. Proceedings of SPIE-The International Society for Optical Engineering, 1995, 2428: 237-247.
    [15] H. Jansen, H. Gardeniers, M. de Boer, M. Elwenspoek and J. Fluitman. Survey on the reactive ion etching of silicon in microtechnology. Journal of Micromechanics and Microengineering, 1996, 6(1): 14-28.
    [16] W. Ensinger, B. Enders and R. Emmerich, R. Source. Recent developments in equipment and application of ion beam assisted thin film deposition. Materials and Manufacturing Processes, 1994, 9(3): 519-535.
    [17] H. F. Winters, J. W. Coburn and T. J. Chuang. Surface processes in plasma-assisted etching environments. Journal of vacuum science & technology B: microelectronicsand nanometer structures, 1983, 1(2): 469-480.
    [18] N. Umehara. Magnetic fluid grinding: a new technique for finishing advanced ceramics. CIRP annals, 1994, 43 (11): 185-188.
    [19] H. Yamaguchi and T. Shinmura. Study of the surface modification resulting from an internal magnetic abrasive finishing process. Wear, 1999, 225(1): 246-255.
    [20] W. I. Kordonski and S. D. Jacobs. Magnetorheological finishing. International journal of modern physics B, 1996, 10(23): 2837-2848.
    [21] 胡建德,许雪峰,鲁建厦,彭勇.电泳技术在脆性材料磨削中的应用.磨床与磨削,1998,3:44-46.
    [22] M. S. Joseph, P. M. Shyam and J. G. Ronald. Chemical Mechanical Planarization of Microelectronic Materials. New York: John Wiley & Sons Inc., 1997.
    [23] Y. Lu,Y. Tani and K. Kawata. Proposal of new polishing technology without using a polishing pad. CIRP Annals, 2002, 51(1): 255-258.
    [24] C. E Brennen. Cavitation and bubble dynamics. Oxford: Oxford University Press, 1995.
    [25] T. J. Matula and L. A. Crum. Measurements of the transient response of single-bubble sonoluminescence subject to an abrupt change in the drive pressure amplitude. The Journal of the Acoustical Society of America, 1997, 102(5): p. 3185.
    
    [26] M. P. Brenner, S. Hilgenfeldt and D. Lohse. Single-bubble sonoluminescence. Reviews of Modern Physics, 2002, 74: 426-477.
    
    
    
    [27] F. Burdin, N.A. Tsochatzidis, P. Guiraud, A.M. Wilhelm and H. Delmas. Characterisation of the acoustic cavitation cloud by two laser techniques. Ultrasonics Sonochemistry, 1999, 6: 43-51.
    
    [28] N.A. Tsochatzidis, P. Guiraud, A.M. Wilhelm and H. Delmas. Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique. Chemical Engineering Science, 2001, 56: 1831-1840.
    
    [29] W. P. Schiffers, S. J. Shaw and D. C. Emmony. Acoustical and optical tracking of the collapse of laser-generated cavitation bubble near a solid boundary. Ultrasonics, 1998,36:559-563.
    
    [30] F. K. Lu, X. Zhang. Visualization of a confined accelerated bubble. Shock Waves, 1999,9:333-339.
    
    [31] X. Chen, R. Q. Xu, Z. H. Shen, J. Lu and X. W. Ni. Optical investigation of cavitation erosion by laser-induced bubble collapse. Optics & Laser Technology, 2004, 36: 197-203.
    
    [32] Y. Viisanen, R. Strey and H. Reiss. Homogeneous nucleation rates for water. The Journal of Chemical Physics, 1993, 99(6): 4680-4692.
    
    [33] D. W. Oxtoby. Homogeneous nucleation: theory and experiment. Journal of Physics: Condensed Matter, 1992, 4: 7627-7650.
    
    [34] I. Akhatov, N. Vakhitova, A. Topolnikov, K. Zakirov, B. Wolfrum, T. Kurz, O. Lindau, R. Mettin and W. Lauterborn. Dynamics of laser-induced cavitation bubbles. Experimental Thermal and Fluid Science, 2002, 26: 731-737.
    
    [35] P. R. Williams, P. M. Williams and S. W. J. Brown. A study of liquid jets formed by bubble collapse under shock waves in elastic and Newtonian liquids. J. Non-Newtonian Fluid Mech. 1998, 76: 307-325.
    
    [36] D. Frost and B. Sturtevant. Effects of ambient pressure on the instability of a liquid boiling explosively at the superheat limit. ASME J. Heat Transfer, 1986, 108: 418-424.
    [37] N. K. Bourne. On the collapse of cavities. Shock Waves, 2002, 11: 447-455.
    [38] W. Lauterborn and C. D. Ohl. Cavitation bubble dynamics. Ultrasonics Sonochemistry, 1997, 4: 65-75.
    [39] M. Postema, A. V. Wamel, C. T. Lancee and N. D Jong. Ultransound induced encapsulated microbubble phenomena. Ultrasound in Med. & Biol., 2004, 30(6): 827-840.
    [40] J. Cao R. N. Christensen Non-spherical bubble collapse mechanics in binary solutions. International Journal of Heat and Mass Transfer. 2001, 44:1411-1423.
    [41] E. A. Brujan, G. S. Keen, A. Vogel and J. R. Blake. The final stage of the collapse of a cavitation bubble close to a rigid boundary. Physics of Fluids, 2002, 14(1): 85-91.
    [42] J. R. Blake, B. B. Taib and G. Doherty. Transient cavities near boundaries: part 1. Rigid boundary. J. Fluid Mech., 1986, 170: 479-497.
    [43] J. R. Blake, B. B. Taib and G. Doherty. Transient cavities near boundaries: part 1. Rigid boundary. J. Fluid Mech., 1986, 170: 479-497.
    [44] D. Frost and B. Sturtevant. Effects of ambient pressure on the instability of a liquid boili.ng explosively at the superheated limit. ASME J. Heat Transfer, 1986, 108: 418-424.
    [45] D. F. Gaitan, L. A. Crum, C. C. Church and R. A. Roy. Sonoluminescence and bubble dynamics for a single, stable cavitation bubble. The Journal of the Acoustical Society of America, 1992, 91(6): 3166-3183.
    [46] 钱梦騄,彭若龙.单泡声致发光现象—气泡的稳定性.声学技术,2002,22(2):130-135.
    [47] 钱梦騄,程茜.单泡声致发光—气泡的动力学特性.声学技术,2003,22(3):203-208.
    [48] 安兆亮,钱梦騄,刘恒彪,李同保.单泡声致发光中泡内气体含量参数实验研究.声学技术,2004,23(4):218-223.
    [49] M. P. Brenner, S. Hilgenfeldt and D. Lohse. Single-bubble sonoluminescence. Reviews of Modern Physics, 2002, 74: 425-484.
    [50] F. Burdin, N. A. Tsochatzidis, P. Guiraud, A. M. Wilhelm and H. Delmas. Characterisation of the acoustic cavitation cloud by two laser techniques. Ultrasonics Sonochemistry, 1999, 6: 43-51.
    
    [51] U. Parlitz, C. Scheffczyk, I. Akhatov and W. Lauterborn. Structure formation in cavitation bubble fields. International Journal of Multiphase Flow, 1996, 22: pp. 97.
    
    [52] J. Appel, P. Koch, R. Mettin, D. Krefting and W. Lauterborn. Stereoscopic high-speed recording of bubble filaments. Ultrasonics Sonochemistry, 2004, 11: 39-42.
    
    [53] R. Mettin, S. Luther, C. D. Ohl and W. Lauterborn. Acoustic cavitation structures and simulations by a particle model. Ultrasonics Sonochemistry, 1999, 6: 25-29.
    
    [54] J. L. Laborde, C. Bouyer, J. P. Caltagirone and A. Gerard. Acoustic cavitation field prediction at low and high frequency ultrasounds. Ultrasonics, 1998, 36(1): 581-587.
    
    [55] G. L. Chahine and R. Duraiswami. Dynamical interactions in a multibubble cloud. ASME Journal of Fluids Engineering, 1992, 114: 680-686.
    
    [56] 冯若,黄金兰.超声清洗及其物理机制.应用声学,1995,13(1):42-47.
    
    [57] T. Okada, Y. Iwai, S. Hattori and N. Tanimura. Relation between impact load and the damage produced by cavitation bubble collapse. Wear, 1995, 184: 231-239.
    
    [58] A. Shima, K. Takayama and Y. Tomta. Mechanism of impact pressure generation from spark-generated bubble collapse near a wall. AIAA Journal, 1983, 21(1): 55-59).
    
    [59] D. Krefting, R. Mettin and W. Lauterborn. High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrasonics Sonochemistry, 2004, 11:119-123.
    
    [60] L. Rayleigh. On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag., 1917, 34: 94-98.
    
    [61] M. S. Plesset. The dynamics of cavitation bubbles. ASME J. Appl. Mech., 1949, 16: 228-231.
    
    [62] J. B. Keller and I. I. Kolodne. Damping of underwater explosion bubble oscillations. J. Appl. Phys., 1956, 27: 1152-1161.
    
    [63] A. Prosperetti and A. Lezzi, A. Bubble dynamics in a compressible liquid. Part 1. First-order theory. J. Fluid Mech., 1986, 168: 457-478.
    
    [64] S. Fujikawa and T. Akamatsu. Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech., 1980, 97: 481-512.
    [65] J. R. Blake, G. S. Keen, R. P. Tong and M. Wilson. Acoustic cavitation: the fluid dynamics of non-spherical bubbles. Phil. Trans. R. Soc. Lond. A, 1999, 357: 251-267.
    [66] G. J. Ball, B. P. Howell, T. G. Leighton and M. J. Schofield. Shock-induced collapse of a cylindrical air cavity in water: a Free-Lagrange simulation. Shock Waves, 2000, 10: 265-276.
    [67] S. K. Park, J. G. Weng and C. L. Tien. A molecular dynamics study on surface tension of microbubbles. Int. J. Heat Mass Transfer, 2001, 44: 1849-1856.
    [68] D. Raabe. Computational Materials Science. Wiley-VCH, Weinheim, Germany: Sachs GZ Press,1998. 6.
    [69] J.N.Reddy,邹仲康等译.有限元法概论.河南科学技术出版社,1988年6月.
    [70] 王勖成.有限单元法基本原理和数值方法,第二版.北京:清华大学出版社,1997.
    [71] U. Kenji and M. Keiji. Chip Formation Mechanism in Microcutting of an Amorphous Metal. Annals of the CIRP, 1992, 41(1): 130-132
    [72] J. Mackerle. Finite-element Analysis of Machining: a Bibliography(1976-1996). Journal of Material Processing Technology, 1999, 86(1): 17-44.
    [73] M. Toshimichi, S. Nobuhiro and L. Sheng. Combined Stress, Material Flow and Great Analysis if Orthogonal Micromachining of Copper. Annals of the CIRP, 1993, 42(1): 75-7842.
    [74] V. R. Marinov. Hybrid Analytical-numerical Solution for the Shear Angle in Orthogonal Metal Cutting. International Journal of Mechanical Sciences, 2001, 43: 399-426.
    [75] D.Raabe,项金钟,吴兴惠译.计算材料学.北京:化学工业出版社,2003年4月.
    [76] D. C. Rapaport. The Art of Molecular Dynamics Simulation, 2nd Edition. Cambridge: Cambridge University Press, 2004.
    [77] J. M. Haile. Molecular Dynamics Simulation, Elementary Methods. New York: John Wiley & Sons, Inc. 1997.
    [78] R Komanduri and L M Raff. A review on the molecular dynamics simulation of machining at the atomic scale. Proceedings of the Institution of Mechanical Engineers, Part B, 2001,215: 1639-1672.
    
    [79] R Komanduri, N Chandrasekaran and L M Raff. M.D. Simulation of nanometriccutting of single crystal aluminum—effect of crystal orientation and direction of cutting. Wear, 2000, 242: 60-88.
    
    
    [80] Y Y Ye, R Biswas and J R Morris. Molecular dynamics simulation of nanoscale machining of copper. Nanotechnology, 2003, 14: 390-396.
    
    [81] S. Shoichi, T. Hiroaki and I. Naoya. Molecular dynamics simulation on microcutting process of monocrystalline silicon. 6th international conference on progress of machining technology, 2002, 9: 260-264.
    
    [82] K Cheng, X Luo and R Ward et al. Modeling and simulation of the tool wear in nanometric cutting. Wear, 2003: 255: 1427-1432.
    
    [83] L. C. Zhang and H. Tanaka. On the mechanics and physics in the nano-indentation of silicon monocrystals. JSME International Journal, Series A, 1999, 42(4): 546-559.
    
    [84] D. H. Kim, S. Y. Lee and D. H. Kim. Plasma sputtering of silicon dioxide substrate by low energy Ar ion bombardment: molecular dynamics simulation. Journal of Crystal Growth, 2002, 237-239: 217-222.
    
    [85] C. F. Abrams and D. B. Graves. Atomistic simulation of silicon bombardment by energetic CF 3+ product distributions and energies. Thin Solid Films, 2000, 374: 150-156.
    
    [86] T. Aoki, J. Matsuo and I. Yamada. Cluster size effect on reactive sputtering by fluorine cluster impact using molecular dynamics simulation. Nuclear instruments and methods in physics research B, 2001, 180: 164-170.
    
    [87] S. Hamaguchi and H. Ohta. Surface molecular dynamics of Si/SiO2 reactive ion etching. Vacuum, 2002, 66: 189-195.
    
    [88] S. Chiba, T. Aoki and J. Matsuo. Molecular dynamics simulation of fluorine ion etching of silicon. Nuclear instruments and methods in physics research B, 2001, 180: 317-321.
    [89] S. P. Ju and C. I. Weng. Molecular dynamics simulation of ionized cluster beam deposition using the tight-binding model. Applied Surface Science, 2002, 193: 224-244.
    
    [90] Y Hu and S. B. Sinnott. A molecular dynamics study of thin-film formation via molecular cluster beam deposition: effect of incident species. Surface Science, 2003, 526: 230-242.
    
    [91] A. M. Mazzone. Cluster beam steering onto silicon surfaces studied by molecular dynamics. Nuclear Instruments and Methods in Physics Research B, 2002, 196: 51-60.
    
    [92] K. Yorizane and Y. Yamamura. Molecular dynamics studies of thin film growth by ionized cluster beam deposition. Computational Materials Science , 1999, 14: 241-247.
    
    [93] S. Zhang, H. T. Johnson and G. J. Wagner et al. Stress generation mechanisms in carbon thin films grown by ion-beam deposition. Acta Materialia, 2003, 51: 5211-5222.
    
    [94] E. Chagarov and J. B. Adams. Molecular dynamics simulations of mechanical deformation of amorphous silicon dioxide during chemical-mechanical polishing. Journal of applied physics, 2003, 94: 3853-3861.
    
    [95] K. Yamauchi, K. Hirose and H. Goto et al. First-principles simulations of removal process in EEM. Computational Materials Science , 1999, 14: 232-235.
    
    [96] T. Fand, C. I. Weng and J. G. Chang. Molecular dynamics simulation of nano-lithography process using atomic force microscopy. Surface science, 2002, 501: 138-147.
    
    [97] P. A. Atanasov, N. N. Nediakov and S. E. Imamova et al. Laser abaition of Ni by ultrashort pulse: Molecular dynamics simulation. Applied surface science, 2002, 186: 369-373.
    
    [98] R. F. W. Herrmann, J. Gerlach and E. E. B. Campbell. Molecular dynamics simulation for laser ablation of silicon. Nuclear instruments & methods in physics research, Section B, 1997, 122: 401-404.
    
    [99] 34. Jun Cai, Jian-Sheng Wang. Friction between Si tip and (001)-2×1 surface: A molecular dynamics simulation. Computer Physics Communications 147 (2002): 145-148
    
    [100] B. Li, P. C. Clapp and J. A. Rifkin et al. Molecular dynamics calculation of heat dissipation during sliding friction. International Journal of Heat and Mass Transfer, 2003, 46: 37-43.
    
    [101] S. L. Zhang, G. Wagner, S. N. Medyanik et al. Experimental and molecular dynamics simulation studies of friction behavior of hydrogenated carbon films. Surface and Coatings Technology, 2004, 177-178: 818-823.
    
    [102] K. Hayashi, A. Maeda and T. Terayama. Molecular dynamics study of wearless friction in sub-micrometer size mechanisms and actuators based on an atomistic simplified model. Computational Materials Science, 2000, 17: 356-360.
    
    [103] L. Colombo and M. Rosati. Parallel tight-binding molecular dynamics simulations on symmetric multi-processing platforms. Computer Physics Communications, 2000, 128: 108-117.
    
    [104] M. C. Potter and D. C. Wiggert. Mechanics of Fluids, 3~(rd) Edition, 流体力学,影印本.北京:机械工业出版社,2003.
    
    [105] J. Walther, R. Jaffe, T. Halicioglu, and P. Koumoutsakos. Hydrophobic hydration of carbon nanotubes. Technical report, ETH, Zurich, Switzerland, 2001.
    
    [106] A. Gehani, J. Reif. Micro flow bio-molecular computation. BioSystems, 1999, 52 : 197-216.
    
    [107] J. Koplik, J. Banavar, and J. Willemsen. Molecular dynamics of fuid flow at solid surface. Physics of Fluids A, 1989, 1: 781-794.
    
    [108] S. O'Connell, P. Thompson. Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. Phys. Rev. E, 1995, 52: 5792-5795.
    
    
    
    [109] G. Bird. Monte Carlo simulation of gas flows. Ann. Rev. Fluid Mech., 1978, 10: 11-31.
    
    [110] I. Nakamori, T. Takagi, T. Takeno, T. Abe, T. Uchimoto and Y. Kohama. Direct simulation of Monte Carlo analysis of nano-floating effect on diamond-coated surface. Diamond & Related Materials, 2005, 14: 2122-2126.
    
    [111] E. Oran, C. Oh, and B. Cybyk. Direct Simulation Monte Carlo: Recent advances and applications. Ann. Rev. Fluid Mech., 1998, 30: 403-441.
    
    [112] A. Garcia, J. Bell, W. Crutchfield, B. Alder. Adaptive mesh and algorithm refinement using Direct Simulation Monte Carlo Method. J. Comp. Phys., 1999, 54 : 134-155.
    
    [113] G. E. Karniadakis, A. Beskok. Micro Flows: Fundamentals and Simulation. Beijing: Chemical Industry Press, 2005.
    
    [114] D. Z. Yu, R. W. Mei, L. S. Luo and W. Shyy. Viscous flow computations with the method of lattice Boltzmann equation. Progress in Aerospace Sciences, 2003, 39: 329-367.
    
    [115] X. D. Niu, C. Shu and Y. T. Chew. A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows. Computers & Fluids, 2007, 36 : 273-281.
    
    [116] P. J. Hoogerbrugge and J. M. Koelman. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 1992, 19(3): 155-160.
    
    [117] P. Espanol and P. B. Warren. Statistical mechanics of Dissipative Particle Dynamics. Europhys. Lett. 1995, 30: 191-197.
    
    [118] R. D Groot and P. B. Warren. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 1997, 107(11): 4423-4436.
    
    [119] C. A. Marsh. Theoretical Aspects of Dissipative Particle Dynamics. PhD Thesis, Theoretical Physics, University of Oxford, 1998.
    
    [120] C. A. Marsh, G. Backx and M. H. Ernst. Static and dynamic properties of dissipative particle dynamics. Physical Review E, 1997, 56(2): 1676-1691.
    
    [121] G. D. Fabritiis and P. V. Coveney. Dynamical geometry for multiscale dissipative particle dynamics. Computer Physics Communications, 2003, 153: 209-226.
    
    [122] P. Espanol, M. Serrano and I. Zuniga. Coarse-graining of a fluid and its relaion with dissipative particel dynamics and smoothed particle dynamics. International Journal of Modern Physics C. World Scientific Publishing Company. 1998.
    
    [123] B. M. Forrest and U. W. Suter. Hybrid Monte Carlo Simulations of Dense Polymer Systems. J. Chem. Phys. 1995, 102: 7256-7266.
    
    [124] A. Satoh and T. Majima. Comparison between theoretical values and simulation results of viscosity for the dissipative particle dynamics method. Journal of Colloid and Interface Science, 2005, 283: 251-266.
    
    [125] B. I. M. ten Bosch. On an extension of Dissipative Particle Dynamics for viscoelastic flow modeling. J. Non-Newtonian Fluid Mech., 1999, 83: 231-248.
    
    [126] J. B. Gibson, K. Zhang, K. Chen, S. Chynoweth and C. W. Manke. Simulation of Colloid-Polymer Systems using Dissipative Particle Dynamics. Molecular Simulation 1999.
    
    [127] P. V. Coveney and K. E. Novik. Computer simulations of domain growth and phase separation in two-dimensional binary immiscible fluids using dissipative particle dynamics. Phys. Rev. E, 1996, 54(5): 5134-5141.
    
    [128] W. Dzwinel and D. A. Yuen. Mixing driven by Rayleigh-Taylor Instability in the Mesoscale Modelled with Dissipative Particle Dynamics. International J. of Modern Physics C, 2001, 12(1): 91-118.
    
    [129] J. M. Kim and R. J. Phillips. Dissipative particle dynamics simulation of flow around spheres and cylinders at finite Reynolds numbers. Chemical Engineering Science, 2004, 59: 4155-4168.
    
    [130] S. Chen, N. P. Thien, X. J. Fan and B. C. Khoo. Dissipative particle dynamics simulation of polymer drops in a periodic shear flow. J. Non-Newtonian Fluid Mech., 2004, 118: 65-81.
    
    [131] W. Dzwinel, K. Boryczko and D. A. Yuen. A discrete-particle model of blood dynamics in capillary vessels. Journal of Colloid and Interface Science, 2003, 258: 163-173.
    
    [132] K. Boryczko, W. Dzwinel and D. A. Yuen. Modeling fibrin aggregation in blood flow with discrete-particles. Computer Methods and Programs in Biomedicine, 2004, 75: 181-194.
    
    
    [133] S. Dahnke, K. M. Swamy and F. J. Keil. Modeling of three-dimensional pressure fields in sonochemical reactors with an inhomogeneous density distribution of cavitation bubbles. Comparison of theoretical and experimental results. Ultrasonics Sonochemistry, 1999, 6: 31-41.
    [134] 马大猷.现代声学理论基础.北京:科学出版社,2004.
    [135] J. L. Laborde, G. Bouyer, J. P. Caltagirone and A. Gerard, Acoustic bubble cavitation at low frequencies. Ultrasonics, 1998, 36(1): 589-594.
    [136] 李润方,林腾蛟,陈兵奎,陶泽光.三维冲击-动力接触问题数值分析的一种高效算法.振动与冲击,2000,19(4):83-87.
    [137] H. Risken. The Fokker-Planck Equation. Springer-Verlag Press. New York, 1989.
    [138] P. Nikunen, M. Karttunena and I. Vattulainen. How would you integrate the equations of motion in dissipative particle dynamics simulations? Computer Physics Communications, 2003, 153: 407-423.
    [139] I. Vattulainen, M. Karttunena, G. Besold and J. M. Poison. Integration Schemes for Dissipative Particle Dynamics Simulations. J. Chem. Phys., 2002: 3967-3979.
    [140] 苏长荪.高等工程热力学.北京:高等教育出版社,1985.
    [141] P. Espanol. Hydrodynamics from dissipative particle dynamics. Physics Review E, 1995, 52: 1734-1742.
    [142] T. J. Zielinski. Exploring the Morse Potential. Division of Chemical Education, Inc., 1998.
    [143] C. P. Lawrence and J. L. Skinner. Flexible TIP4P model for molecular dynamics simulation of liquid water. Chemical Physics Letters, 2003, 372: 842-847.
    [144] Z. G.. Zhang and Z. H. Duan. Prediction of the PVT properties of water over wide range of temperatures and pressures from molecular dynamics simulation. Physics of the Earth and Planetary Interiors, 2005, 149: 335-354.
    [145] J. Tersoff. New empirical approach for the structure and energy of covalent systems. Physical Review B, 1988, 37: 6991-7000.
    [146] F. H. Stillinger and T. A. Weber. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B, 1985, 31:5262-5271.
    [147] F. Zypman and J. Ferrante. Impurity induced correction to the embedded atom method embedding function. Physica A, 1996, 231: 337-345.
    [148] M. Parrinello. From silicon to RNA: the coming of age of ab initio Molecular Dynamics. Solid State Communications, 1997, 102(2-3): 107-120.
    [149] Y. P. Feng, C. K. Ong, H. C. Poon and D. Tomanek. Tight-binding molecular dynamics simulations of semiconductor alloys: clusters, surfaces, and defects. J. Phys.: Condens. Matter, 1997, 9: 4345-4364.
    [150] J.H.Mathews,周璐译.数值方法.北京:电子工业出版社,2005.
    [151] 郑智仁.奈米磨粒在工件运动所衍生之现象的探讨:磨粒刚性与几何形状之效应.国立中山大学学位论文.中国台湾,2005,6.
    [152] J. Tersoff. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical Review B, 1989, 39(8): 5566-5568.
    [153] J. Tersoff. Carbon defects and defect reactions in silicon. Physical Review Letters, 1990, 64(15): 1757-1760.
    [154] T. G. Bifano, T. G. Dow and R. O. Scattergood. Ductile-regime grinding: A new technology for machining brittle materials. ASME International Journals for Industry, 1991, 113: 184-189.
    [155] I. Zarudi and L. C. Zhang. Subsurface damage in sigle-crystal silicon due to grinding and polishing. Journals of Material Science, 1996, 15: 586-587.
    [156] 温诗铸.纳米摩擦学.北京:清华大学出版社,1998.
    [157] L. C. Zhang and H. Tanaka. Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding. Tribology International, 1998, 31(8): 425-433.
    [158] A. Majumdar and C. L. Tien. Fractal Characterization and Simulation of Rough Surfaces. Wear, 1990, 136: 313-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700