小提琴振动机理及声学品质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在分析国内外小提琴研究现状的基础上,通过理论研究、有限元数值模拟及实验手段,研究小提琴振动以及力学和声学的一些关键问题,揭示小提琴的振动机理和力学特性以及对声学品质的影响,探索从客观的物理角度改善和评判小提琴音质的方法,为小提琴的制造和音质调整提供科学的指导。
     小提琴弓弦之间的相互作用机理非常复杂,粘滑摩擦作用形成一个复杂的振动系统。本文在分析琴弦亥姆霍兹运动、传统的弓弦粘滑摩擦振动模型以及现代弓弦振动理论的基础上,提出了单摆摩擦振动模型。该模型考虑了振动系统的能量转换,并对振动周期给出限制,从而较好体现了小提琴琴弦的振动行为。
     为了深入研究小提琴弦的振动机理,本文使用高速摄像技术,设计和构建了一种非接触式光学测量系统,将高速摄影的二维平面拍摄扩展为三维检测,测量拉弦和拨弦时琴弦上标定点的三维振动特性。开发了基于圆形霍夫变换的图像处理算法,对记录的数以万计的序列图像进了分析处理,精确地提取了琴弦上标定点的位移曲线和三维空间轨迹,并达到亚像素分辨率。利用开发的实验技术对拨弦和拉弦两种不同的弦振动机理进行了深入实验研究。通过测量弦上不同位置点的位移曲线研究了拉弦时振动锯齿波的正、逆程时间变化和振动包络线的形成过程,探究和验证了拉弦时琴弦的“亥姆霍兹运动”特征,为建立弦振动的精确模型提供了实验支持。
     小提琴的琴码,特别是在琴码频率响应中2-3kHz频率范围内的宽带共振峰对小提琴的动态频率响应和声学品质有很大影响。本文首先通过四个理论模型,包括确定性统计分割模型、卷积模型、模态模型和动态接触振动模型,分析了琴码频率响应对整个小提琴动态响应的影响。然后开发了基于动态接触振动理论的仿真模型,利用有限元方法研究了琴码的振动机理,特别是琴弦-琴码和琴码脚-面板这两个动态接触界面的动态接触刚度、激励条件以及琴码的孔洞结构对琴码振动模态与动态频率响应的影响。
     为了验证琴码的理论与数值分析结果,本文设计了基于压电式三向测力仪的实验装置,测量拨弦和拉奏时琴码作用到面板上的横向、纵向和垂直方向动态作用力。提出了基于滑拉弦的琴码频率响应测试技术。该技术为实验研究真实小提琴琴码频率响应提供了一个更为实用和精确的测试手段。实验结果验证了有限元仿真结果。
     小提琴共鸣箱作为小提琴发声系统最为核心的部分,其振动状态对于小提琴的声学特性起着重要作用。本文通过几何建模和有限元仿真,分析了小提琴共鸣箱的振动模态以及频率响应,研究了小提琴共鸣箱面板和背板的琴板厚度、拱高、拱的形状等几何参数,以及低音梁和音柱等对共鸣箱振动特性的影响。设计了基于加速度传感器的振动实验系统,对共鸣箱的频率响应进行测量和分析,并与有限元仿真的结果进行比较。实验结果验证了共鸣箱振动有限元仿真和数值分析的结论。
     本文最后根据上述小提琴振动机理和力学特性的研究结果,进一步分析了小提琴的各结构部件的结构、材料、振动形态以及各结构部件之间的相互作用对小提琴声学品质的影响。提出了改善小提琴声学品质的方法和途径。
After reviewing the current status of violin study, a number of key issues with regard tothe dynamic vibration, mechanics and acoustics of violin were investigated in this thesis.
     The interaction between violin bow and strings is very complicated. Through the analysisof the Helmholtz motion of strings, the traditional stick-slip friction string vibration modeland modern string vibration theory, a pendulum frictional vibration model was developed inthis thesis. By taking account of the energy conversion and the vibration period in thebow-string vibration system, the vibration behavior of violin string can be modelled moreaccurately in the proposed model.
     In order to understand the physics of a bowed violin string and develop an accurate model,experimental measurement of the bowed string motion is crucial. In this thesis, a high-speedphotography based non-contact optical measurement system was designed to measure thestring motion without interference for movement when plucking or bowing a string fitted in aviolin. Through a novel optical system design and setting up an artificial marker on the string,the instantaneous motions of the marker in the X-Y and X-Z planes were simultaneouslyrecorded in every single image. The string vibration was videoed using a single high-speedvideo camera, generating more than10,000sequential images. An image processing algorithmbased on the Hough transform were developed to extract the marker position from a recordedimage at sub-pixel resolution. All the recorded sequential images were processedautomatically using the developed image processing algorithm, to track the three-dimensionalmotion of the marker. Experimental results showed that the proposed measurement systemcan accurately track the violin string motion and trajectory. The tracked motion verified thepredicted Helmholtz motion of the bowed string. The designed measurement system andimage processing algorithm provide a potential experimental tool for studying the mechanismof violin string vibration.
     The dynamic response of a violin is often divided into a deterministic region and astatistic region. However, the statistic region is not well understood. The bridge role in thedynamic response was firstly analyzed through four theoretical models: thedeterministic-statistical division model, the convolution model, the modal model, and thedynamic contact vibration model. The bridge mobility under in-plane and out-of-planeexcitations was then explored based on the dynamic contact vibration model for a real bridgeand a solid plate bridge. Theoretical analysis and numerical results showed that the bridgemobility is not only affected by the bridge geometrical structure and material, but the interaction among the strings, bridge and the front plate also plays a vital role. Especially, thecontact vibration boundaries in the two contact interfaces: strings-bridge, and bridge feet-topplate, have a great impact on the bridge mobility and as a result on the violin dynamicresponse,helping us gain an further understanding to the statistic region in the dynamicresponse of a violin.
     In order to verify the theoretical and numerical findings on bridge mobility, a novelexperimental system was designed on the basis of a piezoelectric dynamometer for bridgemobility analysis in this thesis. The dynamic forces in three directions acted on the front plateby the bridge when bowing a string with finger slurring on the finger board were recordedthrough the experiment system, and frequency responses were further analyzed. Experimentalresults confirmed the impact of contact vibration boundaries on the bridge mobility, whichwere discovered in the finite element simulation.
     Violin corpus plays a key role in the acoustic characteristics of violin. In this thesis,vibration mode analysis and frequency response analysis of the violin corpus were carried outby means of finite element simulation. The impact of the material and geometrical structure ofthe violin front and back plates, the bass bar and the sound-post on the violin vibrationcharacteristics were investigated. An experiment system based on acceleration sensors wasthen designed to measure the frequency response of violin. The experimental results verifiedthe simulated results.
     Based on the obtained theoretical and experimental findings on the vibration mechanismand mechanics of violin, the influence of the violin structures, materials, and interactionamong different parts on the sound quality were further analyzed, and the ways and methodsto improve the violin sound quality were proposed.
引文
[1] Cho A. Probing the secrets of the finest fiddles[J]. SCIENCE,2010(328):1468-1470
    [2] Research papers in violin acoustics,1975-1993: with an introductory essay,350yearsof violin research[M]. Acoustical society of America,1997
    [3]杨成安.无噪声高纯音质提琴的研制[J].开封大学学报,2005,19(4):80-83
    [4] Cremer L, Lazarus H. Der Einfluss des ‘Bogendrucks’ beim Anstreichen einerSaite[C]//Proc.6th Int. Congress Acoust., Tokyo.1968:2-3
    [5] Cremer L. Das Schicksal der, Sekundarwellen bei der Selbsterregung vonStreichinstrumenten[J]. Acta Acustica united with Acustica,1979,42(3):133-148
    [6] Cremer L. The physics of the violin[M]. Cambridge, MA: MIT press,1984
    [7] J. C. Schelleng. The bowed string and the player[J]. The Journal of the AcousticalSociety of America.1973(53):26–41
    [8]刘雷峰.小提琴的振动和声学特性分析研究[D].华南理工大学,2012
    [9] Houssay A. Shaping and understanding sound: Violin makers, musicians and scientistsfrom Renaissance to Romantism[J]. Journal of the Acoustical Society of America,2008,123(5):3446-3446
    [10] Katz M. The violin: a research and information guide[M]. Taylor&Francis,2006
    [11]武慧.改革开放三十年中国小提琴艺术理论研究综论[J].中央音乐学院学报,2010(1):005
    [12]王安潮.世纪琴缘百年琴志——谭抒真音乐艺术成就的历史述评[J].淮南师范学院学报,2011(1):145-148
    [13]郑荃.提琴的设计(一)[J].乐器,2000(2):22-25
    [14]郑荃.提琴的设计(四)——十九世纪的提琴设计(二)[J].乐器,2001(4):026
    [15]郑荃.十九世纪的提琴设计[J].乐器,2001(4):58-59
    [16]郑荃.二十世纪的提琴设计[J].乐器.2002(4):70-71
    [17]郑荃.现代技术在提琴制作研究中的应用[J].乐器,1992(4):005
    [18]华天礽.小提琴的装配和调整[续][J].乐器,1993(3):003
    [19]华天礽.小提琴制作中对小提琴音色有重要作用的几个因素[J].音乐艺术,2012(2)
    [20]周泽华.从音乐声学看小提琴音色[J].武汉音乐学院学报.2000(1):53-58
    [21]周泽华.论小提琴音色[J].黄钟-武汉音乐学院学报,1996,4
    [22]张爱林,贾瑞清,李直高,高小峰.小提琴自由琴板振型分析系统及音柱对振型影响的实验研究(上)[J].乐器,2009(3):16-19
    [23]张爱林,贾瑞清,李直高,高小峰.小提琴自由琴板振型分析系统及音柱对振型影响的实验研究(下)[J].乐器,2009(4):12-14
    [24]胡均安,向在喜,黄钟.小提琴共鸣箱面板和底板弧度对振动特性的影响[J].武汉音乐学院学报,2005(1):131-135
    [25]付蕾,姚树楷,雷利伟,等.小提琴音板抗弯扭刚度测试装置[J].演艺科技,2013(z1)
    [26]马琳琳.小提琴音孔的形态及其对声学品质的影响[J].北方音乐,2013(2):41-42
    [27]武际可.大众力学丛书:音乐中的科学[M].高等教育出版社,2012-06-01
    [28] von Helmholtz H. Die Lehre von den Tonempfindungen als physiologische Grundlagefür die Theorie der Musik, von H. Helmholtz,...2te Ausgabe[M]. F. Vieweg und Sohn,1865
    [29] Raman C V. On the mechanical theory of the vibrations of bowed strings and ofmusical instruments of the violin family, with experimental verification of the results,Part I[J].1918
    [30] Hanson R J, Macomber H K, Morrison A C. Unusual motions of a nonlinearasymmetrical vibrating string[C]//Proceedings of the Stockholm Musical AcousticsConference.2003:731-734
    [31] Popp K, Stelter P. Stick-slip vibrations and chaos[J]. Philosophical Transactions of theRoyal Society of London. Series A: Physical and Engineering Sciences,1990,332(1624):89-105
    [32] Nagyvary J, DiVerdi J A, Owen N L, et al. Wood used by Stradivari and Guarneri[J].Nature,2006,444(7119):565-565
    [33] Awrejcewicz J, Holicke M M. Melnikov's method and stick–slip chaotic oscillations invery weakly forced mechanical systems[J]. international Journal of Bifurcation andChaos,1999,9(03):505-518
    [34] Awrejcewicz J, Delfs J. Dynamics of a self-excited stick-slip oscillator with twodegrees of freedom, part II, slip-stick, slip-slip, stick-slip transitions, periodic andchaotic orbits[J]. European J. Mech. A/Solids,1990,9(5):397-418
    [35] Leine R I, Van Campen D H, De Kraker A, et al. Stick-slip vibrations induced byalternate friction models[J]. Nonlinear dynamics,1998,16(1):41-54
    [36] horet E, Aramaki M, Gondre C, et al. Controlling a non linear friction model forevocative sound synthesis applications[C]//International Conference on Digital AudioEffects (DAFx), Maynooth, Ireland, Sept.2013.2013
    [37] Vincent Debut, X. Delaune, J. Antunes. Identification of the nonlinear excitation forceacting on a bowed string using the dynamical responses at remote locations[J].International Journal of Mechanical Sciences52(2010).1419–1436
    [38] Gough C. A finite element approach towards understanding violin structural modes[J].The Journal of the Acoustical Society of America,2010,127:1791
    [39] Bissinger G. The violin bridge as filter[J]. The Journal of the Acoustical Society ofAmerica,2006,120:482
    [40] Boutin H, Besnainou C. Physical parameters of the violin bridge changed by activecontrol[J]. Journal of the Acoustical Society of America,2008,123(5):3656
    [41] Jansson E V. Violin frequency response–bridge mobility and bridge feet distance[J].Applied Acoustics,2004,65(12):1197-1205
    [42] Gidion G, Gerhard R. Characterization of bridge motions on the violin using polymersensor technology[C]//Proceedings of Meetings on Acoustics. Acoustical Society ofAmerica,2013,19(1):035005
    [43] Maestre E, Scavone G, Smith J O. Digital modeling of bridge driving-pointadmittances from measurements on violin-family instruments[C]//Stockholm MusicalAcoustics Conference (SMAC).2013
    [44] Woodhouse J. On the" bridge hill" of the violin[J]. Acta acustica united with acustica,2005,91(1):155-165
    [45] Jansson E V, Niewczyk B K. On the acoustics of the violin: bridge or body hill[J].Catgut Acoust. Soc. J,1999,4(7):23-27
    [46] Dünnwald H. Deduction of objective quality parameters on old and new violins[J].Catgut Acoust. Soc. J,1991,1(7):1-5
    [47] Beldie I P. About the bridge hill mystery[J]. Catgut Acoust. Soc. J,2003,4(8):9-13
    [48] Pyrkosz M A, Van Karsen C D, Bissinger G. Development of the Titian Stradivarifinite element model[J]. The Journal of the Acoustical Society of America,2010,127:1792
    [49] Hutchins C M. The acoustics of violin plates[J]. Scientific American,1981,245(4):170-186
    [50] Pyrkosz M, Van Karsen C. Comparative Modal Tests of a Violin[J]. ExperimentalTechniques,2013,37(4):47-62
    [51] George Bissinger. Global modeling of the violin radiativity profile[J]. J. Acoust. Soc.Am.2010. Vol.127(3).1791
    [52] Lomte C J. Vibration Analysis of Anisotropic plates, Special Case: Violin[D].Cleveland State University,2013
    [53] Bissinger G, Williams E G, Valdivia N. Violin f-hole contribution to far-field radiationvia patch near-field acoustical holography[J]. The Journal of the Acoustical Society ofAmerica,2007,121:3899
    [54] Georgas P, Schajer G S. Simultaneous measurement of plate natural frequencies andvibration mode shapes using ESPI[M]//Imaging Methods for Novel Materials andChallenging Applications, Volume3. Springer New York,2013:85-90
    [55] Bretos J, Santamaria C, Moral J A. Vibrational patterns and frequency responses of thefree plates and box of a violin obtained by finite element analysis[J]. The Journal ofthe Acoustical Society of America,1999(105):1942
    [56] Lu Y. Comparison of Finite Element Method and Modal Analysis of Violin TopPlate[D]. McGill University,2013
    [57] Richardson B E, Roberts G W, Walker G P. Numerical modelling of two violinplates[J]. J. Catgut Acoust. Soc,1987,47:12-16
    [58] Gough C. A finite element approach towards understanding violin structural modes[J].The Journal of the Acoustical Society of America,2010,127:1791
    [59] Mehta P C, Rampal V V. Lasers and holography[M]. New Jersey: World Scientific,1993
    [60] Malagodi M, Canevari C, Bonizzoni L, et al. A multi-technique chemicalcharacterization of a Stradivari decorated violin top plate[J]. Applied Physics A,2013,112(2):225-234
    [61] Davis E B. The violin as a statistical energy analysis network[J]. The Journal of theAcoustical Society of America,2010,127:1792
    [62] Barlow C Y, Edwards P P, Millward G R, et al. Wood treatment used in Cremoneseinstruments[J]. Nature,1988,332(6162):313
    [63] Buksnowitz C, Teischinger A, Müller U, et al. Resonance wood [Picea abies (L.)Karst.]–evaluation and prediction of violin makers’ quality-grading[J]. The Journal ofthe Acoustical Society of America,2007,121:2384
    [64] Skrodzka E B, Linde B B J, Krupa A. Modal Parameters of Two Violins with DifferentVarnish Layers and Subjective Evaluation of Their Sound Quality[J]. Archives ofAcoustics,2013,38(1):75-81
    [65]张慧敏.论小提琴的正确发音[J].戏剧丛刊,2009(5):110-110
    [66]黄文辉.初探提琴制作上的音乐声学[J].乐器.2010(4).14-17
    [67]张帆,张磊.小提琴音色改变的几种物理现象及方法[J].武汉音乐学院学报.2007(2):79-84
    [68]吴梦忠.提高小提琴音质途径探析[J].韶关学院学报,2010,12:013
    [69]音乐声学:音响·乐器·计算机音乐· MIDI·音乐厅声学原理及应用[M].电子工业出版社,1995
    [70]谢官模.振动力学[M].国防工业出版社,2007:1-3
    [71] Α.Α.哈尔凯维奇著,司秀、刘羽译.自振[M].科学出版社,1957
    [72] Inácio O, Antunes J, Wright M C M. Computational modelling of string–bodyinteraction for the violin family and simulation of wolf notes[J]. Journal of Sound andVibration,2008,310(1):260-286
    [73] J. Woodhouse, P. M. Galluzzo. The Bowed String As We Know It Today[J]. ActaAcustica United with Acustica,2004(90):579-589
    [74] Cremer L, Lazarus H. Der Einfluss des ‘Bogendrucks’ beim Anstreichen einerSaite[C]//Proc.6th Int. Congress Acoust., Tokyo.1968(2-3)
    [75] Cremer L. Das Schicksal der, Sekundarwellen bei der Selbsterregung vonStreichinstrumenten[J]. Acta Acustica united with Acustica,1979,42(3):133-148
    [76] McIntyre M E, Woodhouse J. On the fundamentals of bowed-string dynamics[J]. ActaAcustica united with Acustica,1979,43(2):93-108
    [77] M. E. McIntyre, R. T. Schumacher, J. Woodhouse: On the oscillations of musicalinstruments. J. Acoust. Soc. Amer.1983(74):1325–1345
    [78] F. G. Friedlander: On the oscillations of the bowed string. Proc. Cambridge Phil. Soc.1953(49):516–530
    [79] Friedlander F G. On the oscillations of a bowed string[C]//Proc. Cambridge Philos. Soc.1953,49(3):516–530
    [80] Keller J B. Bowing of violin strings[J]. Communications on Pure and AppliedMathematics,1953,6(4):483-495
    [81] McIntyre M E, Schumacher R T, Woodhouse J. Aperiodicity in bowed-string motion[J].Acta Acustica united with Acustica,1981,49(1):13-32
    [82] Weinreich G, Causse R. Elementary stability considerations for bowed‐stringmotion[J]. The Journal of the Acoustical Society of America,1991(89):887
    [83] J. Woodhouse.On the stability of bowed string motion[J]. Acustica1994(80):58–72
    [84] Schumacher R T. Analysis of aperiodicities in nearly periodic waveforms[J]. TheJournal of the Acoustical Society of America,1992(91):438
    [85] Senjanovi I, Lozina. Application of the harmonic acceleration method for nonlineardynamic analysis[J]. Computers&structures,1993,47(6):927-937
    [86]田泽林.弦乐器的声学原理(一)[J].演艺设备与科技.2006(03):47-52
    [87]于遨游.小提琴琴弦的机理浅论[J].剧作家.2012(06):153-154
    [88] Woodhouse J. On the playability of violins. Part II: Minimum bow force andtransients[J]. Acta Acustica united with Acustica,1993,78(3):137-153
    [89] Woodhouse J, Loach A R. Torsional behaviour of cello strings[J]. Acta Acustica Unitedwith Acustica,1999,85(5):734-740
    [90] McIntyre M E, Woodhouse J. On the fundamentals of bowed-string dynamics[J]. ActaAcustica united with Acustica,1979,43(2):93-108
    [91] Smith J H, Woodhouse J. The tribology of rosin[J]. Journal of the Mechanics andPhysics of Solids,2000,48(8):1633-1681
    [92] Woodhouse J. Bowed string simulation using a thermal friction model[J]. ActaAcustica united with Acustica,2003,89(2):355-368
    [93] Kohut J, Mathews M V. Study of motion of a bowed violin string[J]. The Journal of theAcoustical Society of America,1971,49:532
    [94] C. V. Karsen, T. Bouman, G. Gwaltney: Operating deflection shapes of a violin stringvia high speed/high resolution videography. Topics in Modal Analysis, Volume7:Conference Proceedings of the Society for Experimental Mechanics Series45,2013:637-644
    [95]贾雄.小提琴弦振动与琴体腔谐振研究[D].华南理工大学,2013
    [96] Guang-Ming Zhang, Cheng-Zhong Zhang, D.M. Harvey. Contemporary ultrasonicsignal processing approaches for non-destructive evaluation of multilayeredstructures[J].Nondestructive Testing and Evaluation,2012,vol.27(1):1-27
    [97]赵学智,叶邦彦,陈统坚.大型矩阵奇异值分解的多次分割双向收缩QR算法[J].华南理工大学学报2010,38(1):1-8
    [98] Xuezhi Zhao, Bangyan Ye. Selection of effective singular values using differencespectrum and its application to fault diagnosis of headstock. Mechanical Systems andSignal Processing,2011,25(5):1617-1631
    [99]杨勇,熊伟,叶擎昊等.空间外差光谱仪系统平场波长定标实验设计与数据处理[J].光学精密工程,2013,21(10):2508-2512
    [100] Nixon M, Aguado A S. Feature extraction&image processing[M]. Access Online viaElsevier,2008
    [101] Ballard D H. Generalizing the Hough transform to detect arbitrary shapes[J]. Patternrecognition,1981,13(2):111-122
    [102] Rizon M, Haniza Y, Puteh S, et al. Object detection using circular Hough transform[J].American Journal of Applied Sciences,2005,2(12):1606-1609
    [103] Woodhouse J. On the" bridge hill" of the violin[J]. Acta acustica united with acustica,2005,91(1):155-165
    [104] Zhang C Z, Zhang G M, Ye B Y, et al. Violin Bridge Mobility Analysis under In-PlaneExcitation[J]. Sensors,2013,13(11):15290-15306
    [105] Rodgers O E, Masino T R. The effect of wood removal on bridge frequencies[J]. J.Catgut Acoust. Soc,1990,1(6)
    [106]曹树堃.提琴装配及声音调整指南(5)[J].乐器,2010(10):19
    [107]徐有明.木材学[M].中国林业出版社,2006
    [108]张辅刚.简述乐器用木材[J].中国木材.1990(6):36~37
    [109] Simpson W, TenWolde A. Wood handbook: Wood as an engineering material[J]. Gen.Tech. Rep. FPL–GTR–113, Madison, WI: US Department of Agriculture, ForestService. Forest Products Laboratory,1999
    [110]张辅刚.简述乐器用木材[J].中国木材.1990(6):36~37
    [111] Gough C E. Measurement, modelling and synthesis of violin vibrato sounds[J]. Actaacustica united with acustica,2005,91(2):229-240
    [112] Bissinger G. Parametric plate-bridge dynamic filter model of violin radiativity[J]. TheJournal of the Acoustical Society of America,2012(132):465
    [113] Rabe U, Amelio S, Kester E, et al. Quantitative determination of contact stiffness usingatomic force acoustic microscopy[J]. Ultrasonics,2000,38(1):430-437
    [114] Tian J, Ogi H, Hirao M. Dynamic-contact stiffness at the interface between a vibratingrigid sphere and a semi-infinite viscoelastic solid[J]. Ultrasonics, Ferroelectrics andFrequency Control, IEEE Transactions on,2004,51(11):1557-1563
    [115] Ogi H, Tian J, Tada T, et al. Elastic–stiffness mapping by resonance-ultrasoundmicroscopy with isolated piezoelectric oscillator[J]. Applied physics letters,2003,83(3):464-466
    [116] Rigaud E, Perret-Liaudet J. Experiments and numerical results on non-linear vibrationsof an impacting Hertzian contact. Part1: harmonic excitation[J]. Journal of Sound andVibration,2003,265(2):289-307
    [117]浦广益.ANAYS Workbench12基础教程与实例详解[M].中国水利水电出版社,2010
    [118] Popov V L. Contact mechanics and friction: physical principles and applications[M].Springer,2010
    [119] Polycarpou A A. Measurement and modeling of normal contact stiffness and contactdamping at the meso scale[J].2005
    [120] Yu Y, Jang I G, Kwak B M. Topology optimization for a frequency response and itsapplication to a violin bridge[J]. Structural and Multidisciplinary Optimization,2013,48(3):627-636
    [121] Bailey M, Bissinger G. Modal analysis study of mode frequency and damping changesdue to chemical treatments of the violin bridge[C]//Society of Photo-OpticalInstrumentation Engineers (SPIE) Conference Series.1995,2460:828-833
    [122] Jansson E V. Experiments with the violin string and bridge[J]. Applied Acoustics,1990,30(2):133-146
    [123] Elejabarrieta M J, Ezcurra A, Santamaria C. Vibrational behaviour of the guitarsoundboard analysed by the finite element method[J]. Acta Acustica united withAcustica,2001,87(1):128-136
    [124] Rodgers O E. The effect of the elements of wood stiffness on violin plate vibration[J].J. Catgut. Acoust. Soc,1988
    [125] Rodgers O. Influence of local thickness changes on violin plate frequencies[J]. CAS J,1990,1(5):13-16
    [126] Rodgers O E. Effect on plate frequencies of local wood removal from violin platessupported at the edges[J]. J. Catgut Acoust. Soc,1991(1):7-11
    [127] Richardson B E, Roberts G W, Walker G P. Numerical modelling of two violinplates[J]. J. Catgut Acoust. Soc,1987(47):12-16
    [128] Alonso Moral J. From properties of free top plates, of free back plates, and of ribs ofproperties of assembled violins[J]. Report STL-QPSR,1984:1-29
    [129] Sacconi S F, di Stradivari I S. Libreria del convegno[J].1979
    [130] Hutchins C M. Plate tuning for the violin maker[J]. Catgut Acoustical SocietyNewsletter,1983,39:25-32
    [131]郑荃,江峰.作用在提琴上的力[J].乐器,1992,1:1-4
    [132]林荣华.提琴的受力与发音[J].乐器,1993,1:007
    [133] Moral J A, Jansson E V. Eigenmodes, input admittance, and the function of theviolin[J]. Acta Acustica united with Acustica,1982,50(5):329-337
    [134] Marshall K D. Modal analysis of a violin[J]. The Journal of the Acoustical Society ofAmerica,1985(77):695
    [135] Miller R T. Visualizing complete violin modes[J]. Catgut Acoust. Soc. J,1992,2(2):1-5
    [136] Alonso Moral J, Jansson E V. Input admittance, eigenmodes, and quality of violins[J].Report STL-QPSR,1982:2-3
    [137] Hutchins C M. A study of the cavity resonances of a violin and their effects on its toneand playing qualities[J]. The Journal of the Acoustical Society of America,1990(87):392
    [138] Bissinger G. Structural acoustics model of the violin radiativity profile[J]. The Journalof the Acoustical Society of America,2008(124):4013
    [139]陆兆峰,秦昱,陈禾,等.压电式加速度传感器在振动测量系统的应用研究[J].仪表技术与传感器,2007:3-5
    [140]王永良,宋政湘.基于FPGA的同步测周期高精度数字频率计的设计[J].电子设计应用,2004,33(12):74-76
    [141] Jansson E V, Niewczyk B K, Fryden L. On the body resonance C3and its relation tothe violin construction[J]. J. Catgut Acoust. Soc,1997,3:9-14
    [142] Morset L H. A low-cost PC-based tool for violin acoustics measurements[C]//Proceedings of International Symposium on Musical Acoustics (ISMA), Perugia,Italy.2001,2:627-630
    [143] Bissinger G. Modern vibration measurement techniques for bowed stringinstruments[J]. Experimental Techniques,2001,25(4):43-46
    [144] Morset L H. Measurements of radiation efficiency and internal mechanical loss appliedto violins[C]. ICA
    [145] Hutchins C M. Effects of an air-body coupling on the tone and playing qualities ofviolins[J]. Journal of Catgut Acoustical Society,1985,44:12-15
    [146]韩忆斯.弦乐器的运弓及弱音与颤音[J].乐器,1990(03):5-7
    [147]韩宝强.关于“音”的性质的讨论[J].中国音乐学,2002,3:27-36
    [148]黄小韶.小提琴发音问题探讨[J].中央音乐学院学报,1992,3:71-73
    [149] Bader R. Applications to Musical Instruments[M]//Nonlinearities and Synchronizationin Musical Acoustics and Music Psychology. Springer Berlin Heidelberg,2013:113-115
    [150] Stowell R. REVIEWS OF BOOKS[J]. Music and Letters,1996,77(2):269-271
    [151] Bissinger G. Contemporary generalized normal mode violin acoustics[J]. ActaAcustica united with Acustica,2004,90(4):590-599
    [152] Duennwald H. May. Deduction of Objective Quality Parameters on Old and NewViolins[J]. Journal of the Catgut Acoustical Society,1991,1:1-4
    [153]胡元中.提琴声中的摩擦原理[J].力学与实践,2008,30(5):110-111
    [154]朱起东.弦乐器的音色问题[续][J].乐器,1981,5:015
    [155] Moral J A, Jansson E V. Eigenmodes, input admittance, and the function of theviolin[J]. Acta Acustica united with Acustica,1982,50(5):329-337
    [156]赵心之.小提琴构造上的几个为什么[续][J].乐器,1983,4:008
    [157]曹树堃,洪风.奇妙的提琴世界—提琴知识100问.广东乐器世界,2011-2013连载

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700