苏北农村耐药结核病的影响因素及分子流行病学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于流动人口骤增,艾滋病流行,耐药结核病蔓延,发展中国家贫穷加剧和对结核病控制的忽视等,全球结核病疫情再次恶化。我国结核病疫情加重的突出原因是耐药结核病的广泛流行,进入90年代后,我国结核病仍然以高耐药率为特点,被WHO/IUATLD列为MDR-TB的“热点”之一。目前我国农村集中了80%的TB病人,是耐药TB防制研究的重点。
    本研究运用WHO/IUATLD推荐的比例法药敏试验测定苏北农村两县2002年的初治和复治TB病人的初始分离株对四种一线抗痨药的敏感性,进行耐药谱分析;在定性研究的基础上,设计调查表,深入探讨农村耐药TB的影响因素;用PCR-SSCP检测利福平耐药菌株的rpoB基因突变,以PCR-RFLP检测INH耐药菌株的katG S315T突变,进一步揭示INH耐药和RIF耐药的分子机制。此外,本文尝试运用VNTR分型方法研究了现场M.TB分离株的分子特征,分析了与VNTR基因型成簇的相关因素。研究结果如下:
    
    1. 定性研究表明,临床治疗结核病失败与结核病诊断和治疗过程中的人为因素有关,病人延误就医、对结核病治疗的依从性差在非项目县更加突出;老年病人由于年龄大、就诊不方便以及依靠子女赡养、经济状况欠佳等原因,就诊延误时间长,对结核病治疗的依从性相对较差。由于宣教开展不够,人们的结核病知识减少或缺乏,从而导致误诊、延误诊断、滥用抗生素、不规则治疗和治疗时间延长,这些均是可能滋生耐药性的重要因素。
    
    2. 药敏测定结果表明,当地总耐药率为32.9%,其中初始耐药率为28.6%,获得性耐药率为48.5%。同时耐STR和INH(31人)是最常见的耐两药或多药类型,其次是耐INH和RIF(26人)。四种抗结核药物的耐药率顺位依次为:INH(26.3%)、STR(24.3%)、RIF(18.4%)、EMB(10.5%)。同时对INH和RIF耐药的耐多药(MDR)率为17.1%,其中初始MDR率为16.0%,获得性MDR率为21.2%。28株RIF耐药株中,有26株同时耐INH,占92.9%,支持RIF耐药可作为MDR-TB标志的观点。本研究现场属于WHO/IUATLD定义的MDR-TB“热点”地区。
    
    3. 在苏北农村与耐药性有关的独立危险因素包括,来自非项目县、TB治疗史、不重视自身健康、就医延误1个月以上。男性一般有较高的耐药率水平,最年轻组和最年老组耐药率低,病人患有慢性病反而不易耐药。TB控制项目在防
    
    
    止耐药性发生中起到了积极的作用,但即使DOTS计划运作良好,耐药TB对治疗结果仍有严重的负面影响,表现为有一定的传播机会。本研究初治病例耐药率和MDR率均高,说明即使在项目县,也可能存在耐药株的传播。
    
    4. 两县的RIF耐药菌株的rpoB基因突变发生率平均为71.4%,敏感株均无突变。编码RNA聚合酶(亚单位的rpoB基因发生突变是M.TB耐RIF的主要分子机制。当地47.5%的INH耐药菌株存在katG S315T基因突变,其中复治病例为66.7%,初治病例为39.3%(P<0.05),没有发现katG基因缺失,INH敏感株中不存在该突变。katG S315T突变是INH耐药的主要机制之一。katG S315T突变的INH耐药菌株中MDR的比例为68.4%,无该突变菌株为61.9%。
    
    5. VNTR方法可以把研究现场的菌株分为不同的菌群。当地菌株VNTR类型成簇率高,优势类型VNTR 42435占菌株总数的38.6%,提示北京菌株在当地流行水平较高。尽管没有显著性,但具有下列因素的病例,其分离株VNTR类型成簇率较高:涂阳、非项目县、初治、年轻、BCG接种。INH耐药菌株成簇的可能性反而小,表明INH耐药株的传播性和致病性可能下降,但katG S315T突变的INH耐药株的致病性并未下降,成簇率高于INH敏感株。VNTR 42435与BCG接种联系不显著,可能不支持BCG造成菌株选择性压力的观点。VNTR 42435类型与耐四种药的联系均未达到显著性,尚不能认为其优势来自对某些抗痨药的耐药。
    
    上述研究结果提示:⑴ 当地农村耐药结核病疫情严重,耐药性的发生趋向于对多种药物同时耐药,尤其是同时对INH和RIF耐药。与耐药性有关的因素包括,来自非项目县、TB治疗史、不重视自身健康、就医延误1个月以上;⑵ 当地农村医务人员仍需进一步培训提高,重点规范结核病的诊治过程,着眼于对病人及其家属进行教育的技能。加强DOTS项目的实施有助于减少耐药结核病的发生和传播;⑶ rpoB基因突变在当地可以成功地用作RIF耐药M.TB菌株快速检测的遗传学标志。以256 bp的rpoB基因片段进行SSCP分析的特异度为100%,灵敏度为71.4%;⑷ 有katG S315T基因突变的M.TB临床分离株仍有致病性,且容易获得对其他抗痨药的耐药。在当地katG S315T突变流行率较高的情况下,不应忽视INH耐药的防治。katG S315T突变在当地可用作M.TB分离株INH耐药快速检测的一种可靠标志;⑸ VNTR分型方法简单快速、分型结果数字化,可以把菌株分为不同的菌株群,用于研究菌株的种群结构和分子流行病学。由于本研究样本量有限,有必要扩大样本进一步研究证实和解释本文的结果。
Tuberculosis (TB) reemergence and spread are of worldwide concern, which is largely due to substantial levels of migration of people, increasing circulation of drug-resistant TB, HIV/AIDS epidemic and neglect of national tuberculosis program. Widespread of drug-resistant tuberculosis is considered an important factor of resurgence of TB in China. During the last decade, TB in China has remained a high drug-resistance rate, which renders China one of the hotspots of MDR-TB according to WHO/IUATLD drug-resistance surveillance project. Rural area is home to about eighty percent of TB patients in China at present time, extensive investigation on drug-resistant tuberculosis is urgent at these sites.
    
    We determined the susceptibility of four first-line anti-tuberculosis drugs for initial isolates from both new and previously treated TB cases from 2 counties in north Jiangsu province by standardized proportion method. The profile of resistance to all the four drugs were analysed. We conducted an extensive survey on determinants of drug-resistant tuberculosis in rural area using a questionnaire designed on the basis of the previous qualitative study. To further understand the molecular mechanism of drug resistance, a PCR-SSCP assay was used to detect mutations in rpoB gene confering resistance to RIF, and a PCR-RFLP assay to detect a particular substitution in codon 315 (katG S315T), which is associated with INH resistance. Also, we tried to use VNTR typing to characterize M.TB isolates from the study sites, analysed the factors for VNTR clustering. The results are as follows.
    
    1. The qualitative study showed that the failure of treatment of tuberculosis is associated with man-made factors in the course of diagnosis and treatment of tuberculosis. Delay in health seeking, poor compliance to treatment is a problem in the county without DOTS program. Aged TB patients generally have longer delay time in health seeking and poor compliance to treatment regimens because of age, disability and bad economic status. Limited health education and propagand about TB led to misdiagnosis, delay in diagnosis, abuse of antibiotics, irregular treatment and a prolonged period of treatment. All of these are possible factors of drug-resistance.
    
    2. Drug susceptibility testing (DST) showed that, among the 152 patients with DST results, 32.9% were resistant to at least one of the first-line anti-tuberculosis drugs. Initial and acquired drug resistance rate were 28.6% and 48.5%, respectively. Resistance to STR and INH (31 cases) is the most common resistance pattern. Resistance rate to INH, STR, RIF and EMB is 26.3%, 24.3%, 18.4% and 10.5%, successively. 17.1% were resistant to both INH and RIF (MDR). Of the 28 RIF resistant isolates 26 (92.9%) were resistant to INH,supporting the idea of using RIF resistance as a surrogate marker for MDR-TB. These study sites should be a hotspot of MDR-TB according to WHO/IUATLD.
    
    3. Determinants of drug-resistance in rural north Jiangsu province included, previous treatment for TB, residence in the county without DOTS program, indifference to their health condition and delay in health seeking for more than 1 month. Male patients have a higher resistance rate, and both the youngest and eldest patients have lower rates of resistance. Patients suffering from chronic disease also have lower drug resistance rate. Tuberculosis control program have positive impact on preventing drug-resistance. In the context of a well-functioning DOTS program, drug-resistant TB still has a profoundly adverse impact on treatment outcome. Drug resistance rate and MDR rate are both high in new TB cases, indicating some possible transmission of drug-resistant strains even in the county with DOTS program.
    
    4. The overall prevalence of muations in rpoB gene of RIF-resistant strains from the two counties is 71.4%. No mutations were detected in the RIF-susceptible strains. Rifampin resistance arises due to mutations in rpoB gene encoding the DNA-dependent RNA polymerase. 47.5% of the INH-resistant strains have katG S315T substit
引文
1. Raviglione MC, Dye C, Schmidt S, et al. Assessment of worldwide tuberculosis control. Lancet, 1997, 350: 624-629.
    2. Kochi A. The global tuberculosis situation and the new control strategy of the World Health Organization 1991. Bull World Health Organ, 2001, 79(1): 71-75.
    3. Dye C, Scheele S, Dolin P, et al. for the Global Surveillance and Monitoring Project:Global burden of tuberculosis:estimated incidence,prevalence and mortality by country. JAMA, 1999, 282: 677-686.
    4. 全国结核病流行病学抽样调查技术指导组,全国结核病流行病学抽样调查办公室. 2000年全国结核病流行病学抽样调查报告.中国防痨杂志, 2002, 24: 65-108.
    5. Dolin PJ, Raviglione MC, Kochi A . Global tuberculosis incidence and mortality during 1990-2000. Bull World Health Organ, 1994, 72: 213-220.
    6. Gangadharam PRJ. Drug resistance in tuberculosis. In: Reichman LB, Hershfield ES, eds.Tuberculosis: a comprehensive international approach.New York: Marcel Dekker; 1993.293-328.
    7. Taylor JP, Bergmire-Sweat D, Suarez L. Epidemiology of drug-resistant tuberculosis in Texas. Am J Epidemiol, 1999, 149(4): 359-365.
    8. Espinal MA, Laserson K, Camacho M, et al. Determinants of drug-resistant tuberculosis: analysis of 11 countries. Int J Tuberc Lung Dis, 2001, 5: 887-893.
    9. The WHO/IUATLD Global Project on Anti-tuberculosis Drug Resistance Surveillance:Anti-Tuberculous Drug Resistance in the World: Report No. 2. Prevalence and Trends.Geneva, World Health Organisation, 2000.
    10. Djuretic T, Herbert J, Drobniewski F, et al. Antibiotic resistant tuberculosis in the United Kingdom: 1993-1999. Thorax, 2002. 57: 477-482.
    11. Catherine Pope, Nick Mays. Qualitative Research: Reaching the parts other methods cannot reach:an introduction to qualitative methods in health and health services research. BMJ, 1995, 311(1): 42-45.
    12. World Health Organization, International Union Against Tuberculosis and Lung Disease. Anti-tuberculosis drug resistance in the world: The WHO/IUATLD Global Project on Anti-tuberculosis Drug Resistance Surveillance. Geneva: WHO/IUATLD, 1997.1-120.
    13. Telenti A, Imboden P, Marchesi F, et al. Detection of rifampincin-resistance
    
    
    mutations in Mycobacterium tuberculosis. Lancet, 1993, 341: 647-650.
    14. Ramaswamy S and Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuberc Lung Dis, 1998, 79(1): 3-29.
    15. Slayden RA, Barry Ⅲ CE. The genetics and biochemistry of isoniazid resistance in Mycobacterium tuberculosis. Microbes Infect, 2000, 2: 659-669.
    16. Lee ACG, Lim IHK, Tang LLH. et al. Contribution of kasA analysis to detection of isoniaxid-resistant Mycobacterium tuberculosis in Singapore. Antimicrob Agents Chemother, 1999, 43: 2087-2089.
    17. Mokrousov I, Narvskaya O, Otten T, et al. High Pevalence of katG Ser315Thr substitution among isoniazid-resistant Mycobacterium tuberculosis clinical isolates from northwestern Russia, 1996-2000. Antimicrob Agents Chemother, 2002, 46(5): 1417-1424.
    18. Marttila HJ, Soini H, Eerola E, et al. A Ser315Thr substitution in katG is predominant in Genetically heterogeneous multidrug-resistant Mycobacterium tuberculosis isolates originating from the St. Petersburg area in Russia. Antimicrob Agents Chemother, 1998, 42(9): 2443-2445.
    19. van Soolingen D, de Haas EW, van Doorn HR, et al. Mutations at amino acid position 315 of the katG gene are associated with high-level resistance to isoniazid, other drug resistance and successful transmission of Mycobacterium tuberculosis in the Netherlands. J Infect Dis, 2000, 182:1788-1790.
    20. Piatek AS, Telenti A, Murray MR, et al. Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: implications for rapid susceptibility testing. Antimicrob Agents Chemother, 2000, 44: 103-110.
    21. Burgos MV, Small PM. Molecular epidemiology of tuberculosis. In: Molecular epidemiology of infectious disease. Thompson eds. Oxford Univ Press. 2000. 113 -125.
    22. Kanduma E, McHugh TD, Gillespie SH. Molecular methods for Mycobacterium tuberculosis strain typing: a users guide. J Appl Microbiol, 2003, 94: 781-791.
    23. van Embden JDA, Cave MD, Crawford JT, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol, 1993, 31: 406-409.
    24. Collyns TA, Gascoyne-Binzi DM, Hawkey PM. Molecular fingerprinting of Mycobacterium tuberculosis:does it help in understanding the epidemiology of
    
    
    tuberculosis. Rev Med Microbiol, 2002, 13(3): 119-127.
    25. Frothingham R, Meeker-O’Connell WA. Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology, 1998, 144: 1189-1196.
    26. Drobniewski F, Balabanova Y, Ruddy M, et al. Rifampin- and multidrug-resistant tuberculosis in Russia civilians and prison inmates: dominance of the Beijing strain family. Emerg Infect Dis, 2002, 8(11): 1320-1326.
    27. http://www.chinatb.org
    28. 刘民, 梁万年, 张孔来. 艾滋病行为研究中的定性研究技术. 医学与社会, 1999, 12(3): 34-36.
    29. Morgan DL. Focus groups as qualitative research: qualitative research methods. Newbuty Park: Sage Publication, 1988.10.
    30. Krueger RA. Focus groups - a practical guide for applied research. Newbuty Park: Sage Publication, 1988.18.
    31. 王英, 张孔来. 专题小组访谈. 中华预防医学杂志, 1997, 31(5): 299-301.
    32. 詹绍康, 龚幼龙. 现场调查技术. 上海医科大学出版社. 2001.
    33. 陈向明. 质的研究方法与社会科学研究. 北京:教育科学出版社. 2000.
    34. 张敦熔. 耐药性结核病. 见:张敦熔, 主编. 现代结核病学. 北京: 人民军医出版社,2000. 418-431.
    35. Pablos-Méndez A, Raviglione MC, Laszlo A, et al. Global surveillance for anti-tuberculosis drug resistance, 1994-1997. N Engl J Med, 1998, 338(23): 1641-1649.
    36. Iseman MD. Treatment of multidrug resistant tuberculosis. N Engl J Med, 1993, 329: 784-791.
    37. Long R. Drug-resistant tuberculosis. CMAJ, 2000, 163(4): 425-428.
    38. Neville K, Bromeberg A, Bromerg R, et al. The third epidemic multidrug resistant tuberculosis. Chest, 1994, 105: 45-48.
    39. 李国利.分枝杆菌培养方法.见:张敦熔主编. 现代结核病学.北京:人民军医出版社,2000.16-20.
    40. 中国防痨协会. 结核病诊断细菌学检验规程.中国防痨杂志, 1996,18(1): 28-31.
    41. Marchal G. Recently transmitted tuberculosis is more frequent than reactivation of latent infections. Int J Tuberc Lung Dis, 1997,1: 192.
    42. Espinal MA, Laszlo A, Simonsen L, et al. Global trends in resistance to anti-tuberculosis drugs. N Engl J Med, 2001, 344(17): 1294-1302.
    
    43. Heep M, Brandstatter B, Rieger U, et al. Frequency of rpoB mutations inside and outside the cluster I region in rifampin-resistant clinical Mycobacterium tuberculosis isolates. J Clin Microbiol, 2001, 39: 107-110.
    44. Watterson SA, Wilson SM, Yates MD, et al. Comparison of three molecular assays for rapid detection of rifampin resistance in Mycobacterium tuberculosis. J Clin Microbiol, 1998, 36: 1969-1973.
    45. Lambregts-van Weezenbeek CSB, Veen J. Control of durg-resistant tuberculosis. Tuberc Lung Dis, 1995, 76: 455-459.
    46. 卫生部疾病控制司, 卫生部医政司. 全国结核病防治工作手册. 1999年修订本.
    47. 张立兴. 结核病现状与对策. 中国全科医学, 2001, 4(9): 677-678.
    48. de Lourdes García-García M, Ponce-de-León A, Jiménez-Corona ME, et al. Clinical consequences and transmissibility of drug-resistant tuberculosis in southern Mexico. Arch Intern Med, 2000, 160: 630-636.
    49. Mitchison DA. How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis. Int J Tuberc Lung Dis, 1998, 2: 10-15.
    50. Dooley SW, Jarvis WR, Martone WJ, et al. Multidrug resistant tuberculosis. Ann Intern Med, 1992, 117: 257-259.
    51. Edlin BR, Tokars JI, Grieco MH, et al. An outbreak of multidrug-resistant tuberculosis among hospitalized patients with the acquired immunodeficiency syndrome. N Engl J Med, 1992, 326: 1514-1521.
    52. Alland D, Kalkut GE, Moss AR, et al. Transmission of tuberculosis in New York City. An analysis by DNA fingerprinting and conventional epidemiologic methods. N Engl J Med, 1994, 330: 1710-1716.
    53. The WHO/IUATLD Global Project on Anti-tuberculosis Drug Resistance Surveillance: Anti-Tuberculous Drug Resistance in the World: Report № 2. Prevalence and Trends. Geneva, World Health Organisation, 2000.
    54. Drobniewski FA, Wilson SM. The rapid diagnosis of isoniazid and rifampin resistance in Mycobacterium tuberculosis-a molecular story. J Med Microbiol, 1998, 47: 189-196.
    55. Espinal MA, Kim SJ, Suarez PG, et al. Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcome in six countries. JAMA, 2000, 283: 2537-2545.
    
    56. Drobniewski FA, Walterson SA, Wilson SM, et al. A clinical, microbiological and economic analysis of a national service for the rapid molecular diagnosis of tuberculosis and rifampincin resistance in Mycobacterium tuberculosis. J Med Microbiol, 2000, 49: 271-278.
    57. Ramaswamy SV, Reich R, Dou SJ, et al. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2003, 47(4): 1241-1250.
    58. Dobner PS, Rusch-Gerdes G, Bretzel K, et al. Usefulness of Mycobacterium tuberculosis genomic mutations in the genes katG and inhA for the prediction of isoniazid resistance. Int J Tuberc Lung Dis, 1997, 1: 365-369.
    59. Fang Z, Doig C, Rayner A, et al. Molecular evidence for heterogeneity of the multiple-drug-resistant Mycobacterium tuberculosis population in Scotland, 1990-1997. J Clin Microbiol, 1999, 37: 998-1003.
    60. Marttila HJ, Soini H, Huovinen P, et al. katG mutations in isoniazid-resistant Mycobacterium tuberculosis isolates recovered from Finnish patients. Antimicrob Agents Chemother, 1996, 40: 2187-2189.
    61. Orita M, Iwahana H, Kazanawa H, et al. Detection of polymorphism of human DNA by gel electrophoresis as single strand conformation polymorphism. Proc Natl Acad Sci USA, 1989, 86: 2766-2770.
    62. Bobadilla-del-Valle M, Ponce-de-Leon A, Arenas-Huertero C, et al. rpoB gene mutations in rifampin-resistant Mycobacterium tuberculosis identified by polymerase chain reaction single-stranded conformational polymorphism. Emerg Infect Dis, 2001, 7(6): 1010-1013.
    63. Lee H, Cho SN, Bang HE, et al. Molecular analysis of rifampin-resistant Mycobacterium tuberculosis isolated from Korea by PCR-SSCP. Int J Tuberc Lung Dis, 1998, 2: 585-589.
    64. 金冬雁,等译. 分子克隆实验指南. 北京:科学出版社,1992. 325-330.
    65. Hirano K, Abe C, Takahashi M. Mutations in the rpoB gene of rifampin-resistant Mycobacterium tuberculosis strains isolated mostly in Asian countries and their rapid detection by line probe assay. J Clin Microbiol, 1999, 37(8): 2663-2666.
    66. Victor TC, Jordaan AM, van Rie A, et al. Detection of mutations in drug resistance genes of Mycobacterium tuberculosis by a dot-blot hybridization strategy. Tuberc Lung Dis, 1999, 79(6): 343-348.
    67. Miller LP, Crawford JT, Shinnick TM. The rpoB gene of Mycobacterium
    
    
    tuberculosis. Antimicrob Agents Chemother, 1994, 38: 805-811.
    68. Rattan A, Kalia A, Ahmad N. Multidrug-resistant Mycobacterium tuberculosis: Molecular perspectives. Emerg Infect Dis, 1998, 4(2): 195-209.
    69. 闫国蕊, 刘国华, 刘传玉. PCR-SSCP技术快速检测结核分枝杆菌rpoB基因突变的研究. 中国防痨杂志, 2000, 22(3): 134-136.
    70. 鱼瑛, 康熙雄, 金玲, 等. 结核分枝杆菌利福平药物敏感性的直接快速检测. 中华结核和呼吸杂志, 1999, 22(5): 299-301.
    71. Quan S, Venter H, Dabbs ER. Ribosylative inactivation of rifampin by Mycobacterium smegmatis is principal contributor to its low susceptibility to this antibiotic. Antimicrob Agents Chemother, 1997, 41: 2456-2460.
    72. Haas WH, Schilke K, Brand J, et al. Molecular analysis of katG gene mutations in strains of Mycobacterium tuberculosis complex from Africa. Antimicrob Agents Chemother, 1997, 41:1601-1603.
    73. Victor TC, Pretorius GS, Felix JV, et al. katG mutations in isoniazid-resistant strains of Mycobacterium tuberculosis are not infrequent. Antimicrob Agents Chemother, 1996,40: 1572.
    74. Escalante P, Ramaswamy S, Sanabria H, et al. Genotypic characterization of drug-resistant Mycobacterium tuberculosis isolates from Peru. Tuberc Lung Dis, 1998, 79: 111-118.
    75. Leung ETY, Kam KM, Chiu A, et al. Detection of katG Ser315Thr substitution in respiratory specimens from patients with isoniazid-resistant Mycobacterium tuberculosis using PCR-RFLP. J Med Microbiol, 2003, 52: 999-1003.
    76. Li Z, Kelly C, Collins F, et al. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J Infect Dis, 1998, 177: 1030-1035.
    77. Pym AS, Saint-Joanis B, Cole ST. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in Humans. Infect and Immunity, 2002, 70(9): 4955-4960.
    78. van Rie A,Warren R, Mshanga I, et al. Analysis for a limited number of gene codons can predict drug resistance of Mycobacterium tuberculosis in a high-incidence community. J Clin Microbiol, 2001, 39(2): 636-641.
    79. van Soolingen D. Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. J Intern Med, 2001, 249: 1-26.
    80. van Soolingen D, Qian L, de Haas PEW, et al. Predominance of a single genotype of
    
    
    Mycobacterium tuberculosis in countries of East Asia. J Clin Microbiol, 1995, 33(12): 3234-3238.
    81. van Soolingen D, Borgdorff MW, de Haas PE, et al. Molecular epidemiology of tuberculosis in the Netherlands: A nationwide study from 1993 through 1997. J Infect Dis, 1999, 180: 726-36.
    82. Bifani PJ, Mathema B, Liu Z, et al. Identification of a W variant outbreak of Mycobacterium tuberculosis via population-based molecular epidemiology. JAMA, 1999, 282(24): 2321-2327.
    83. Yaganehdoost A, Graviss EA, Ross MW, et al. Complex transmission dynamics of clonally related virulent Mycobacterium tuberculosis associated with barhopping by predominantly human immunodeficiency virus-positive gay men. J Infect Dis, 1999, 180: 1245-1251.
    84. Mostr?m P, Gordon M, Sola C, et al. Methods used in the molecular epidemiology of tuberculosis. Clin Microbiol Infect, 2002, 8(11): 694-704.
    85. Kremer K, van Soolingen D, Frothingham R, et al. Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol, 1999, 37(8): 2607-2618.
    86. Tazi L, Kreiswirth B, Carrière C, et al. Molecular epidemiology of Mycobacterium tuberculosis and its relevance to the surveillance and control of TB: an e-debate. Infect Genetics Evol, 2002, 2: 153-158.
    87. Alito A, Morcillo N, Scipioni S, et al. The IS6110 restriction fragment length polymorphism in particular multidrug-resistant Mycobacterium tuberculosis strains may evolve too fast for reliable use in outbreak investigation. J Clin Microbiol, 1999, 37(3): 788-791.
    88. Maiden MC, Bygraves A, Feil E, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic micro-organisms. Proc Natl Acad Sci USA, 1998, 95: 3140-3145.
    89. Molhuizen HOF, Bunschoten AE, Schouls LM, et al. Rapid detection and simultaneous strain differentiation of Mycobacterium tuberculosis complex bacteria by Spoligotyping. Methods Mol Biol, 1998, 101: 381-394.
    90. Philipp WJ, Poulet S, Eiglmeier K, et al. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc Natl Acad Sci USA, 1996, 93: 3132-3137.
    
    91. Sola C, Filliol I, Gutierrez MC, et al. Spoligotype database of Mycobacterium tuberculosis: biogeographic distribution of shared types and epidemiological and phylogenetic perspectives. Emerg Infect Dis, 2001, 7(3): 390-396.
    92. Mokrousov I, Filliol I, Legrand E, et al. Molecular characterization of multipe-drug-resistant Mycobacterium tuberculosis isolates from northwestern Russia and analysis of rifampin resistence using RNA/RNA mismatch analysis as compared to the line probe assay and sequencing of the rpoB gene. Res Microbiol, 2002,153: 213-219.
    93. Glynn JR, Whiteley J, Bifani PJ, et al. Worldwide Occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis, 2002, 8(8): 843-849.
    94. Barlow REL, Gascoyne-binzi DM, Gillespie SH, et al. Comparison of variable number tandem repeat and IS6110-restriction fragment length polymorphism analysis for discrimination of high- and low-copy-number IS6110 Mycobacterium tuberculosis isolates. J Clin Microbiol, 2001, 39(7): 2453-2457.
    95. Gascoyne-Binzi DM, Barlow REL, Essex A, et al. Predominant VNTR family of strains of Mycobacterium tuberculosis isolated from South Asian patients. Int J Tuberc Lung Dis, 2002, 6: 492-496.
    96. Gascoyne-Binzi DM, Barlow RE, Frothingham R, et al. Rapid identification of laboratory contamination with Mycobacterium tuberculosis using variable number tandem repeat analysis. J Clin Microbiol, 2001, 39: 69-74.
    97. Supply P, Mazars E, Lesjean S, et al. Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol, 2000, 36(3): 762-771.
    98. Supply P, Lesjean S, Savine E, et al. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on Mycobacterial interspersed repetitive units. J Clin Microbiol, 2001, 39(10): 3563-3571.
    99. Godfrey-Faussett P, Sonnenberg P, Shearer SC, et al. Tuberculosis control and molecular epidemiology in a South African gold-mining community. Lancet, 2000, 356: 1066-1071.
    100. Munsiff SS, Bassoff T, Nivin B, et al. Molecular epidemiology of multidrug-resistant tuberculosis, New York City 1995-1997. Emerg Infect Dis, 2002, 8(11): 1230-1237.
    101. Burgos M, deReimer K, Small P, et al. Differential transmission of drug-resistant and drug-susceptible Mycobacterium tuberculosis. In: Abstracts of the 36th
    
    
    Tuberculosis and Leprosy Research Conference, July 15-17, 2001: 206-211. abstract.
    102. Frieden TR, Sherman LF, Maw KL, et al, A multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiology and clinical outcomes. JAMA, 1996, 276: 1229-1235.
    103. KrüünerA, Hoffner SE, Sillastu H, et al. Spread of drug-resistant pulmonary tuberculosis in Estonia. J Clin Microbiol, 2001, 39(9): 3339-3345.
    104. Bifani PJ, Mathema B, Kurepina NE, et al. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends in Microbiol, 2002, 10(1): 45-52.
    105. Anh DD, Borgdorff MW, Van LN, et al. Mycobacterium tuberculosis Beijing genotype emerging in Vietnam. Emerg Infect Dis, 2000, 6(3): 302-305.
    106. van Crevel R, Nelwan RHH, de Lenne W, et al. Mycobacterium tuberculosis Beijing genotype strains associated with febrile response to treatment. Emerg Infect Dis, 2001, 7: 880-883.
    107. Niemann S, Richter E, Rüsch-Gerdes S, et al. Double infection with a resistant and multidrug-resistant strain of Mycobacterium tuberculosis. Emerg Infect Dis, 2000, 6: 548-551.
    108. Diaz R, Kremer K, de Haas PE, et al. Molecular epidemiology of tuberculosis in Cuba outside of Havana. July 1994-June 1995: utility of spoligotyping versus IS6110 restriction fragment length polymorphism. Int J Tuberc Lung Dis, 1998, 2: 743-750.
    109. Prodinger WM, Bunyaratvej P, Prachaktam R, et al. Mycobacterium tuberculosis isolates of Beijing genotype in Thailand. Emerg Infect Dis, 2001, 7: 483-484.
    110. Chan MY, Borgdorff M, Yip CW, et al. Seventy percent of the Mycobacterium tuberculosis isolates in Hong Kong represent the Beijing genotype. Epidemiol Infect, 2001, 127: 169-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700