溃结灵对溃疡性结肠炎大鼠结肠粘膜ITF表达及MEK/ERK通路的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溃疡性结肠炎(UC)是一种主要累及直肠、结肠粘膜的慢性非特异性炎症,临床上至今没有特异性的根治措施,治疗多以抗炎、调节免疫为主。近年研究发现,肠道受到一系列损伤发生溃疡后,机体的修复机制开始启动来促进其快速愈合,其过程有许多生长因子参与。肠三叶因子(ITF)是一种由杯状细胞分泌的特异分布于肠道的新型细胞生长因子,具有很强的细胞保护作用,可明显减轻多种损伤因子介导的肠粘膜损害,它不仅具有一般生长因子所具有的促进细胞增殖与移行能力,还具有独特的生理功能并可同粘液糖蛋白结合,稳定肠粘液层。因此,ITF被认为是肠道的特异保护因子。中医药在UC的治疗上有着明显的优势,开展中药对ITF调节作用的深入研究,有望为UC的治疗提供新的契机。
     脾胃研究所在多年临床经验的基础上,以清热健脾活血为治则,总结出治疗UC的溃结灵复方(KD),临床取得了较好的疗效。前期研究采用三硝基苯磺酸法(TNBS)制作UC大鼠模型,发现KD能明显减少UC大鼠结肠溃疡个数和面积,改善结肠粘膜炎症和水肿等病理变化,同时又能降低模型大鼠血清中促炎因子IL-1β、TNF-α的含量和结肠组织中NF-κBp65蛋白的阳性细胞率,对模型大鼠结肠粘膜TLR2、TLR4基因表达也有抑制作用。本研究拟从促粘膜修复入手,观察KD对ITF的表达及其信号转导通路的关键蛋白MEK、ERK磷酸化的影响,探讨KD治疗UC的深层次作用机理。这一研究将使中医药治疗UC的机理研究深入到基因调控水平,并为开发高质量的抗UC中药新药打下坚实的基础,有着重要的理论意义和广阔的应用前景。
     1 KD对UC大鼠结肠粘膜超微结构的影响
     研究发现UC病变主要限于结肠粘膜和粘膜下层,且以溃疡和炎症变化为主。髓过氧化物酶(MPO)是中性粒细胞中含量较高的一种酶,与炎症变化密切相关。本实验在我们前期病理形态学研究的基础上,进一步观察了KD对UC大鼠结肠粘膜的超微结构影响及MPO含量的改变,以期对其作用机制进行初步的探讨。大鼠随机分为4N:正常组、模型对照组、KD组和阳性药SASP组。治疗十天后处死大鼠并采集结肠组织标本。透射电镜观察,发现UC模型组大鼠结肠粘膜上皮表面的微绒毛脱落,变短,扭曲,细胞器减少,细胞质液化溶解,腺上皮细胞间连接松散,提示炎症及溃疡引起了上皮细胞及细胞连接的损伤。杯状细胞分泌增强,有的细胞内颗粒呈排空状态,可能是在受到炎性介质刺激下,肠道杯状细胞分泌量代偿性增加(包括粘蛋白、三叶因子等),从而启动肠粘膜自身保护机制。经溃结灵治疗后,大鼠结肠粘膜上皮表面的微绒毛基本完整,腺上皮间相互连接紧密,胞浆内粘液颗粒较丰富,并向腺腔排出,表明溃结灵能够减轻结肠粘膜超微结构损伤,促进杯状细胞分泌保护因子,进而加快肠道粘膜重建和溃疡修复过程。MPO检测结果显示,模型组大鼠结肠粘膜MPO活性为0.3516±0.0738U/g,明显高于正常组0.1982±0.0719 U/g(P<0.01);与模型组比较,溃结灵组和SASP组结肠MPO活性显著降低(分别为0.2876±0.0554 U/g,P<0.05;0.2507±0.0303 U/g,P<0.01),提示溃结灵能减轻TNBS大鼠的炎症程度,减少溃疡发生。
     2 KD对UC大鼠结肠粘膜ITF基因和蛋白表达的影响
     ITF被看作是粘膜损伤的快速反应肽,在胃肠道有两个重要功能,即上皮保护和促进粘膜愈合,与肠道炎症性疾病的发生和发展有着密切的关系。本研究观察KD对TNBS法大鼠模型结肠粘膜ITF基因及蛋白表达的作用,深入探讨其作用机制。大鼠随机分组同前,治疗十天后处死大鼠并快速采集结肠标本。选择结肠病变相同部位剪取小块组织,固定包埋切片,免疫组织化学染色,光镜下观察ITF蛋白表达情况,并进行半定量统计分析。余下粘膜用Trizol提取总RNA,RT-PCR法检测ITFmRNA的表达,以GAPDH作为内参,产物进行凝胶电泳分离,用凝胶成像仪自带分析软件进行灰度分析,以ITF与GAPDH的灰度值比值作为ITFmRNA的相对表达量,进行组间比较分析。结果显示,模型组结肠粘膜中ITFmRNA相对表达量为1.027±0.1263,略高于正常组(1.004±0.1046;P>0.05);模型组结肠组织ITF蛋白表达与正常组比较无显著差异(P>0.05)。溃结灵组和SASP组结肠粘膜中ITFmRNA相对表达分别为1.268±0.2113和1.299±0.3117,明显高于模型组(P<0.05);溃结灵组和SASP组结肠组织中ITF蛋白表达也明显高于模型组(P<0.01),提示KD对TNBS法UC大鼠模型结肠粘膜ITF基因及蛋白表达有明显上调作用,这可能是溃结灵治疗作用的一个关键靶位。
     3 KD对UC大鼠结肠粘膜MUC2基因表达的影响
     粘蛋白2(MUC2)也是杯状细胞合成的分泌型蛋白,是维持粘液层厚度及胶体形态的主要成分,在粘膜保护及肠道疾病修复机制中占有重要的地位。本研究观察了KD对TNBS法UC大鼠模型结肠粘膜MUC2mRNA表达的影响,并探讨其中的作用机理。分组和治疗同前述,治疗结束后,刮取结肠粘膜标本并提取总RNA,采用RT-PCR法检测MUC2mRNA的表达,以GAPDH作为内参,产物进行凝胶电泳分离,用凝胶成像仪自带分析软件进行灰度分析,以MUC2与GAPDH的灰度值比值作为MUC2mRNA的相对表达量,进行组间比较分析。结果显示,UC模型组大鼠结肠粘膜MUC2mRNA的相对表达与正常组比较,略有增高,但没有显著差异(分别为0.6423±0.1668和0.5924±0.1758,P>0.05)。与模型组比较,溃结灵和SASP对UC大鼠结肠粘膜MUC2基因的表达都有明显的上调作用(分别为0.9811±0.1828和1.0491±0.2675,P<0.01)。提示,KD能上调MUC2基因表达,从而加强肠道粘膜屏障的保护功能,促进受损区域上皮细胞重建,这可能是溃结灵治疗UC的作用机理之一。
     4 KD对UC大鼠结肠粘膜pERK1/2、pMEK1/2蛋白水平的影响
     Ras-Raf-MEK1/2-ERK1/2等MAPK信号转导通路是广泛存在于真核细胞内的一条重要信号转导通路,参与调节细胞的分化、增生、凋亡等过程。有研究发现生长因子等有丝分裂刺激因素是激活ERK途径的主要细胞外信号,被激活的ERK可诱导细胞产生增殖、分化等核反应。KD对TNBS法UC大鼠模型结肠粘膜ITF基因及蛋白的表达有明显的上调作用,在此基础上本研究对UC大鼠模型结肠粘膜ERK1/2、MEK1/2磷酸化水平进行检测,以期对KD治疗UC的较深层次的作用机理进行探讨。分组和治疗同前,治疗结束后采集结肠粘膜标本并提取全细胞蛋白,运用蛋白免疫印迹(Western blot)方法对pERK1/2、pMEK1/2的蛋白表达水平进行检测,以β-action作为内参,以目的蛋白与β-action的密度比值作为目的蛋白的相对含量,进行组间比较分析。结果显示,模型组大鼠结肠粘膜中pERK1/2、pMEK1/2蛋白相对表达量分别为0.3974±0.1017和0.6994±0.1372,均高于正常组(分别为0.2037±0.1234和0.4092±0.1177,P>0.05,P<0.01)。与模型对照组比较,KD组pERK1/2、pMEK1/2蛋白相对表达量明显增高,分别为0.7060±0.1607和0.8928±0.1801(P<0.01,P<0.05)。阳性药SASP组pERK1/2、pMEK1/2蛋白相对表达量为0.7299±0.2710和0.9053±0.1591,也显著高于模型组(P<0.01,P<0.05)。提示KD对TNBS法UC大鼠模型结肠粘膜pERK1/2、pMEK1/2蛋白表达有显著上调作用,这可能是其治疗UC的作用环节之一。
     5结论
     ITF具有很好的胃肠粘膜保护作用,在炎症性肠病时上调表达,可促进损伤粘膜的修复。其作用机制涉及ITF与粘糖蛋白相互作用,增强粘液凝胶层对粘膜表面有害物质的抵抗,以及促进细胞迁移增殖等。对ITF的深入研究,特别是对其在炎性肠病粘膜修复中作用的研究,颇具应用价值。
     本研究选用清热健脾活血中药复方KD治疗大鼠实验性UC,取得了较好的疗效,结果表明,①KD能明显降低UC模型大鼠结肠中MPO的活性,改善结肠粘膜的超微结构;②显著上调UC模型大鼠结肠粘膜中MUC2基因、ITF基因及蛋白的表达水平;③明显提高UC模型大鼠结肠粘膜中ERK1/2和MEK1/2磷酸化水平。
     综合研究结果分析,KD治疗UC的作用机制,一方面可能是通过上调ITF和MUC2的表达,加强二者相互作用,促进了粘液凝胶层的形成,进而增强肠道粘膜防御屏障的保护能力;另一方面,也可能是通过上调ITF表达从而激活ERK信号转导通路,刺激UC大鼠肠道上皮细胞移行增殖,加速损伤修复的。进一步,我们还需对ITF及MAPK信号传导通路在肠损伤中的作用作更为深入和全面的动态研究,明确其作用的分子机制及具体的靶基因和蛋白,以便为临床UC治疗提供新的思路与方法。
Ulcerative colitis(UC)is a chronic and non-specific inflammatory disease of the rectal and colonic mucosa.Up to now,there have no specific radical measures to cure UC.Anti-inflammatory and regulating immunity are the main treatments of UC.Recently,lots of researches found that after intestinal tract is destroyed by a series of impairments and intestinal ulcers,repair mechanisms of body start to run to enhance the healing of ulcers,which include a number of growth factors.As a new cell growth factor,intestinal trefoil factor(ITF)expressed in intestinal tract is a major secretory product of mucous epithelia.ITF has a strong cells protective effect to alleviate intestinal impairments,such as promoting proliferation and migration of intestinal epithelial cell,increasing the intestinal mucosa defence by associated with mucins.Therefore,ITF is regarded as a specific protective factor.The therapeutic effect of Chinese medicine is superiority than western medicine in the process of UC,so the study of ITF regulated by Chinese medicine is a new way to develop the treatment of UC.
     Kuijieling decoction(KD)was frequently used to treat UC patients in Pi Wei institute.The therapeutic principle of KD is clearing away heat, invigorating the spleen and activating blood.It showed affirmative therapeutic effect on patients.Some experiments about effect of KD on UC model rats induced by TNBS were observed before.The observation showed that the number and area of ulcer in model rats were significantly reduced with the administration of KD.Pathological changes such as inflammatory cell infiltration and edema were improved.It showed affirmative curative effect of KD on treating UC model rats induced by TNBS.At the same time KD could reduce contents of TNF-αand IL-1βin serum of UC model rats and positive rate of NF-κB p65 in colonic mucosa of UC rats.The gene expressions of TLR2, TLR4 in colonic mucosa of UC model rats induced by TNBS were obviously inhibited after using KD.In this article,the gene and protein expressions of ITF and the key elements of MEK/ERK pathway such as the activation of MEK and ERK were observed to evaluate the interventional effect of KD.The mechanism of KD on treating UC would be detected deeply to gene level,which would be helpful to develop theory of TCM.
     1 Effect of KD on ultrastructure in Colonic Mucosa of UC Model Rats
     The researches showed that the features of UC were inflammation and ulcer in the submucosa and mucosa of the colon.Myeloperoxidase is an enzyme association with the changes of inflammation,which is higher existed in the neutrophilic granulocyte.So the changes of MPO contents and epithelial cell ultrastructures in colonic mucosa in UC model rats were studied.UC model rats were induced by TNBS.The rats were divided into four groups randomly as follows: normal control(NC)group,model control(MC)group,Kuijieling dose(KD) group and salicylazosulfapyridine(SASP)group.After 10-days treatment the rats sacrificed to get their colonic tissue.The ultrastructural changes were obsered by transmission electron microscope.In model group,the ultrastructures of colonic mucosa were subversion,the microvilli of epithelium were sparse,shorter,irregularly curled or fall off;the organelles became fewer;the cytoplasm liquefied and dissolved.The links between epithelium were incompact,and some goblet cells showed the stronger function of secretion and evacuation.Above changes in model group hinted that the epithelial cell were impaired by inflammation and ulcer,and the goblet cell might be stimulated by inflammation mediator to secrete more substances including mucin and ITF.So the repair mechanism in colonic mucosa would be stated.In KD groups,the ultrastructural pathological changes were improved, such as the microvilli on the surface of the mucosal epithelium were basically regular and intact,epithelia linked tightly,the goblet cells had affluent mucus particle and evacuation.It showed that KD could improve the morph and function of goblet cells and alleviate the ultrastructure damage in colonic mucosa of UC Model Rats.The levels of MPO in colonic mucosa of model group were 0.3516±0.0738U/g,obviously higher than that of normal control group (0.1982±0.0719 U/g,P<0.01).Compared with model group,the MPO levels of KD and SASP group were decreased significantly(respectively0.2876±0.0554U/g, P<0.05,0.2507±0.0303 U/g,P<0.01).The results showed the anti-inflammatory effect of KD on treating UC model rats induced by TNBS.
     2 Effect of KD on Gene and Protein Expression of ITF in Colonic Mucosa of UC Model Rats
     ITF was regarded as a fast reaction peptide in the course of mucosa impairments.ITF has two important functions in the intestinal tract: protecting the epithelial cell and promoting the repair of mucosa.So ITF plays an important role in the morbility and development of UC.In this article the gene and protein expression of ITF in colonic mucosa of UC model rats was studied to evaluate the treatment mechanism of KD.The grouping and administration were same as before.After 10-days treatment the rats sacrificed to get their colonic tissue.Tissue sections of colon were stained with immunohistochemical staining.Positive expression of ITF was analysised with statistics.Total RNA was isolated from colonic mucosa by Trizol.RT-PCR was used to detect ITF expressions and GAPDH was used as internal index.The products of PCR were separated with agarose gel electrophoresis.The relative expression of ITF was calculated from the gray scale ratio of ITF and GAPDH. The results showed that relative gene expression of ITF in MC group was 1.027±0.1263,slightly higher than that in NC group(1.004±0.1046,P>0.05). Relative protein expression of ITF in MC group was no significantly difference comparing to NC group(P>0.05).Relative gene expression of ITF in KD and SASP were respectively 1.268±0.2113 and 1.299±0.3117,significantly higher than that in MC group(P<0.05).Relative protein expression of ITF in KD and SASP group were significantly higher than that in MC group(P<0.01).The gene and protein expression of ITF in colonic mucosa of UC model rats induced by TNBS were increased after using KD.
     3 Effect of KD on Gene Expression of MUC2 in Colonic Mucosa of UC Model Rats
     Mucin2(MUC2)is also secretory product of mucous epithelia,which is main ingredients of maintaining thickness of slime layer and colloidal shape.So it plays a key role in mucosal protection and repair mechanism of UC.The grouping and administration were same as before.The rats sacrificed after 10-days administration to get their fresh colonic mucosa.Total RNA was isolated from colonic mucosa by Trizol.RT-PCR was used to detect MUC2 expressions and GAPDH was used as internal index.The products of PCR were separated with gel electrophoresis.The relative expression of MUC2 was calculated from the gray scale ratio of MUC2 and GAPDH.The results showed that relative gene expression of MUC2 in MC group was slightly higher than that in NC group(respectively 0.6423±0.1668 and 0.5924±0.1758,P>0.05). Relative gene expression of MUC2 in KD and SASP were 0.9811±0.1828 and 1.0491±0.2675,significantly higher than that in MC group(P<0.01).It showed the gene expression of MUC2 in colonic mucosa of UC model rats induced by TNBS were increased after using KD,which reinforced the protection function of mucosal barrier and could be partial mechanism of treating UC.
     4 Effect of KD on Proteins Level of pMEK1/2 and pERK1/2 in Colonic Mucosa of UC Model Rats
     MAPK pathway is an important message pathway,which generally resides in eukaryotic cells.It participates in regulating the process of cell differentiation、proliferation、cleavage and apoptosis,and so on.At present there are at least four kinds of MAPK pathways in mammalian intestinal cells,the first identificated way is Ras-Raf-MEK1/2-ERK1/2 pathway.Some researches showed that caryocinetic stimulating factors(such as growth factors)are main extracellular signal to activate ERK pathways.The activated ERK could induct cells and then some nuclear reactions take place, such as differentiation and proliferation.The gene and protein expression of ITF in colonic mucosa of UC model rats induced by TNBS were increased after using KD.On base of these,protein levels of pMEK1/2 and pERK1/2 were detected in colonic mucosa of UC model rats for further study.The grouping and administration were same as before.Whole-cell protein was extracted from colonic mucosa.Western blot technique was used to detect protein levels of pMEK1/2and pERK1/2.β-actin was used as internal index.Relative expression of target protein was calculated from the gray scale ratio of target protein andβ-actin.The results showed that relative protein expression of pERK1/2 and pMEK1/2 in MC group were respectively 0.3974±0.1017 and 0.6994±0.1372, higher than that in NC group(respectively 0.2037±0.1234 and 0.4092±0.1177, P>0.05,P<0.01).Relative protein expression of pERK1/2 and pMEK1/2 in KD group were respectively 0.7060±0.1607 and 0.8928±0.1801,significantly higher than that in MC group(P<0.01,P<0.05).Relative protein expression of pERK1/2 and pMEK1/2 in SASP group was 0.7299±0.2710 and 0.9053±0.1591,significantly higher than that in MC group(P<0.01,P<0.05).The relative protein expression of pMEK1/2 and pERK1/2 in colonic mucosa of UC model rats induced by TNBS were enhanced after using KD,which could be its partial mechanism of KD to treat UC.
     5 conclusion
     ITF has better protective function to gastrointestinal mucosa.In IBD, up-regulation expression of ITF could recover the impaired mucosa.The mechanism involves in interaction of ITF and MUC2,such as reinforcing the gel layer to resist noxious substance,promoting cell immigration and proliferation.Therefore,ITF is worth to be studied in IBD.
     KD could be effectual on treating UC model rats with clearing away heat, invigorating the spleen and activating blood therapy.KD could reduce contents of MPO,improve ultrastructural changes;increase gene and protein expression of ITF,raise gene expression of MUC2 and protein expression of pMEK1/2and pERK1/2 in colonic mucosa of UC model rats.
     In short,KD could up-regulate ITF and MUC2 expressions,strengthen the interaction of ITF and MUC2,promote the formation of protective layer to defend the intestinal mucosa of UC.On the other hand,the increasing ITF expression could activate ERK pathways,which induct some nuclear reactions of cells,such as differentiation、proliferation.These results would offer a new target for Chinese medicine and recipe.The deeper dynamic researches on the effect of ITF and MAPK pathway in IBD should be done for next step, which could identify the molecular mechanism and target protein or gene.The study could provide a new idea for clinical to treat UC.
引文
[1]Taupin DR,Kinoshita K,Podolsky DK,et al.Intestinal trefoil factor confers colonic epithelial resistance to apoptosis.Proc Natl Acad Sci USA,2000;97(2):799-804.
    [2]Suemori S,Lynch DK,Podolshy DK.Identification and Characterization of rat intestinal trefoil factor:Tissue and cell specific member of the trefoil protein family.Proc Natl Acad Sci USA,1991;88:11017-11021.
    [3]Hoffman W.A new repetitive protein from Xenopus laevis skin highly homologous to pancreatic spasmolytic polypeptide.J Biol Chem,1988;263:7686-7690.
    [4]Chinery R,Williamson J,Poulsom R.The gene encoding human intestinal trefoil factor(TFF3)is located on chromosome 21q22.3 clustered with other members of the trefoil peptide family[J].Genomics,1996;32(2):281-284.
    [5]Gott P,Beck S,Machado JC,et al.Human trefoil peptides:genomic structure in 21922.3 and coordinated expression.Eur J Hum Genet,1996;4(6):308-315.
    [6]Thim L.Trefoil peptides:from structure to function[J].Ceu Mol Life sci,1997;53(11-12):888-903.
    [7]Taupin D,Pedersen J,Familari M,et al.Augmented intestinal trefoil factor(TFF3)and loss of pS2(TFF1)expression precedes metaplastic different -tiation of gastric epithelium[J].Lab Invest,2001;81(3):397-408.
    [8]Podolsky DK,Lynch-Devaney K,Stow JL,et al.Identification of human intestinal trefoil factor.Goblet cell-specific expression of a peptide targeted for apical secretion.J Biol them,1993;268(9):6694-6702.
    [9]彭曦,谭银玲,陶凌辉,等.肠三叶因子在大鼠肠道中表达的实验研究.第三军医大学学报,2000;22(7):623-626.
    [10]Poulsom R,Hanby AM,Lalani EN,et al.Intestinal trefoil factor(TFF 3)and pS2(TFF1),but not spasmolytic polypeptide(TFF2)mRNAs are coexpressed in normal,hyperplastic,and neoplastic human breast epithelium[J].J Pathol,1997;183(1):30-38.
    [11]Dos Santos Silva E,Ulrich M,Doting G,et al.Trefoil factor family domain 1eptides in the human respiratory tract[J].J Pathol,2000;190(2):133-142.
    [12] Ogata H , Podolsky DK. Trefoil peptide expression and secretion is regulated by neuropeptides and acetylcholine[J]. AmJ Physiol, 1997; 273(2 Pt 1): G348-354.
    [13] Wong WM, Poulsom R, Wright NA. Trefoil peptides. Gut, 1999; 44(6): 890-895.
    [14] Tran CP, Familari M, Parker LM, et al . Short-chain fatty acids inhibit intestinal trefoil factor gene expression in colon cancer cells [J]. Am J Physiol, 1998; 275(1Pt1): G85-94.
    [15] Loncar MB , A12azzeh ED ,Sommer PS , et al. Tumour necrosis factor alpha and nuclear factor kappa B inhibit transcription of human TFF3 encoding agast-rointestinal healing peptide[J]. Gut, 2003; 52(9): 1297-1303.
    [16] Fernandez-Estivariz C, Gu LH, Gu L, et al. Trefoil peptide expression and goblet cell number in rat intestine:effects of KGF and fasting—refeeding [J].Am J Physiol Regul Integr Comp Physiol, 2003; 284(2): R564—573.
    [17] Beck P L, Wong J F, LI Y, et al. Chemotherapy and radiotherapy induced intestinal damage is regulated by intestinal trefoil factor. Gastroenterology, 2004; 126(3): 796-808.
    [18] Marchbank T, Cox HM , et al. Effect of ectopic expression of rat trefoil factor family 3 in the jejunum of transgenic mice[J].J Biol Chem ,2001; 276 (26): 24088-24096.
    [19] Chen YH , Lu Y , De Plaen IG, et al. Transcription factor NF-kappaB signals Antianoikic function of trefoil factoe 3 on intestinal epithelial cells [J].Biochem Biophys Res Commun ,2000; 274(3): 576—582.
    [20] Zhang BH, Yu HG, Sheng ZX, et al.The therapeutic effect of recombinant human trefoil factor 3 on hypoxia induced nucrotizing enterocolitis in imam ture rat[J]. Regul Pept ,2003; 116(1-3): 53-60.
    [21] Vandenbroucke K, Hans W, Van Huysse J, et al. Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology, 2004; 127(2): 502-513.
    [22] Moore FA. The role of the gastrointestinal tract in postinjury multiple orgar failure [J]. Am J Surg, 1999; 178(6): 449-453.
    [23] Coussens L. M. and Werb Z. Inflammation and cancer. Nature , 2002; 420: 860-867.
    [24] Silen W. and Ito S. Mechanisms for rapid re-epithelialization of the gastric mucosal surface. Ann. Rev. Physiol. 1985; 47: 217—229.
    [25] Lacy E. R. Epithelial restitution in the gastrointestinal tract. J. Clin. Astroenterol, 1988; 10 (Suppl. 1): 72-77.
    [26] Lacy E. R. Rapid epithelial restitution in the stomach: an updated perspective. Scand. J. Gastroenterol, 1995; 30(Suppl. 210): 6—8.
    [27] Paimela H., Goddard P. J. and Silen W. Present viewson restitution of gastro-intestinal epithelium. Dig. Dis. Sci, 1995; 40: 2495-2496.
    [28]Wallace J. L. and Granger D. N. The cellular and molecular basis of gastric mucosal defense. FASEB J, 1996; 10: 731-740.
    [29] Wilson A. J. and Gibson P. R. Epithelial migration in the colon: filling in the gaps. Clin. Sci, 1997; 93: 97-108.
    [30] Rickard K. A., Taylor J., Rennard S. T. and Spurzem J. R. Migration of bovine bronchial epithelial cells to extracellular matrix components. Am. J. Respir.Cell Mol. Biol, 1993; 8; 63-68.
    [31] Erjef(a|¨)lt J. S., Erjef(a|¨)lt I., Sundler F. and Persson C. G. A. In vivo restitution of airway epithelium. Cell Tissue Res, 1995; 281: 305—316.
    [32] Biusson A. C., Gilles C., Polette M., et al. Wound repair induced expr — ession of stromelysins is associated with the acquisition of a mesenchymal phenotype in human respiratory epithelial cells. Lab. Invest, 1996; 74: 658—669.
    [33] Zahm J. M., Kaplan H., Herard A. L., et al. Cell migration and proliferation during the in vitro wound repair of the respiratory epithelium. Cell Motil. Cytoskel, 1997; 37: 33-43.
    [34] Rebel J. M., De Boer W. I., Thijssen C. D., et al. An in vitro model of urothelial regeneration: effects of growth factors and extracellular matrix proteins. J. Pathol, 1994; 173: 283-291.
    [35] Hudspeth A. J. Establishment of tight junctions between epithelial cells. Proc. Nat. Acad. Sci. USA, 1975; 72: 2711-2713.
    [36] Podolsky D. K. Healing after inflammatory injury-coordination of a regulatory peptide network. Aliment. Pharmacol. Ther, 2000; 14 (Suppl. 1): 87—93.
    [37] Playford R. J. and Ghosh S. Cytokines and growth factor modulators in intestinal inflammation and repair. J. Pathol, 2005; 205: 417—425.
    [38] Playford R. J. Peptides and gastrointestinal mucosal integrity. Gut, 1995; 37: 595-597.
    [39] Yo J., Lotz M. M. and Matthews J. B. Cytokines in restitution. Gastroint estinal Mucosal Repair and Experimental Therapeutics, 2002; 14-28.
    [40] Tetreault M. P, Chaillier P, Rivard N, et al. Differential growth factor induction and modulation of human gastric epithelial regeneration. Exp. Cell. Res, 2005; 306: 285-297.
    [41] Lacy E. R. and Ito S. Rapid epithelial restitution of the rat gastric mucosa after ethanol injury. Lab. Invest, 1984; 51: 573—583.
    [42] Lotz M. M., Rabinovitz I. and Mercurio A. M. Intestinal restitution: progression of actin cytoskeleton rearrangements and integrin function in a model of epithelial wound healing. Am. J. Pathol., 2000; 156: 985—996.
    [43] Playford R J, Ghosh S. Cytokines and growth factor modulators in intestinal inflammation and repair. J Pathol, 2005; 205(4): 417—425.
    [44] Tetreault M P, Chaillier P, Rivard, et al. Differential growth factor induction and modulation of human gastric epithelial regeneration. Exp Cell Res, 2005; 306(1): 285-297.
    [45] Rao J. N. and Wang J. Y. Ca~(2+) signalling in epithelial restitution. Gastrointestinal Mucosal Repair and Experimental Therapeutics, 2002; 29—42.
    [46] McCormack S. A., Ray R. M. and Johnson L. R. Polyamines in intestinal epithelial restitution. Gastrointestinal Mucosal Repair and Experimental Therapeutics, 2002; 43-56.
    [47] Herard A. L, Pierrot D, Hinnrasky J, et al. Fibronectin and its a5b1-integrin receptor are involved in the wound-repair process of airway epithelium. Am. J. Physiol, 1996; 271: L726-L733.
    [48] Webb DJ, Donais K, Whitmore LA, et al. FAK-Src signalling through Paxillin、 ERK and MLCK regulates adhesion disassembly. Nat Cell Biol, 2004; 6(2): 154-161.
    [49] Cheng AN, Morrison SW, Yang D X, et al. Energy dependence of restitution in the gastric mucosa. Am J Physiol Cell Physiol, 2001; 281(2): 430-438
    [50] W. Hoffmann. TFF (trefoil factor family) peptide-triggered signals promoting mucosal restitution. Cell. Mol. Life Sci, 2005; (62): 2932-2938
    [51] Hoffmann W. and Jagla W. Cell type specifi c expression of secretory TFF peptides: colocalization with mucins and synthesis in the brain. Int. Rev. Cytol. 2002; 213: 147-181.
    [52] Williams R, Stamp G. W. H., Gilbert C., et al. pS2 transfection of murine adenocarcinoma cell line 4104 enhances dispersed growth pattern in a 3-D collagen gel.J.Cell Sci.1996;109:63-71.
    [53]Uchino H.,Kataoka H.,Itoh H.,et al.Overexpression of intestinal trefoil factor in hum an colon carcinoma cells reduces cellular growth in vitro and in vivo.Gastroenterology,2000;118:60-69.
    [54]Emami S,Le Flock N,Bruyneel L,et al.induction of scattering and cellular invasion by trefoil peptides in src-and RhoA-transformed kidney and colonic epithelial cells.FASEB J.2001;15:351-361.
    [55]Meyer zum Büschenfelde D,Hoschützky H,Tauber R.and Huber O.Molecular mechanisms involved in TFF3 peptide-mediated modulation of the E-cadheri n/catenin cell adhesion complex.Peptides,2004:25:873-883.
    [56]Nie SN,Qian XM,Wu XH,et al.Role of TFF in healing of stress-induced gastric lesions[J].World J Gastroenterol,2003;9(8):1772-1776.
    [57]Robinson MJ,Cobb MH.Mitogen-activated protein kinase pathways[J].Curt Opin Cell Bio1,1997;9(1):18.
    [58]Bouhon TG,Yancopeulos GD,Gregory JS,et al.An insulin stimulated protein kinade similar to yeast kinases involved in cell cycle control [J].Sciences,1990;249(4964):64-67.
    [59]Bouhon TG,Nye SH,Robbins D],et al.ERKs:a family of protein serine /threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF[J].Ce11,1991;65(4):663-675.
    [60]Bokemer D,Sorokin A,Dunn MJ.Multiple intercellular MAP kinase signaling cascades[J].K/dney / nt,1996;49:1187.
    [61]Kanai M.,Mullen C.and Podolsky D.K.Intestinal trefoil factor induces inactivation of extracellular signal-regulated protein kinase in intestinal epithelial cells.Proc.Natl.Acad.Sci.USA,1998;95:178-182.
    [62]Boxberger H.J,Behrens A.,Balzer D.and Hoffmann W.Effects of TFF-peptides on epithelial cell migration and intracel]ular signaling in vitro.Eur.J.Cell Biol,1998;75(S48):56.
    [63]Kinoshita T.,Taupin D.R.,Itoh H.and Podolsky D.K.Distinct pathways of cell migration and antiapoptotic response to epithelial injury:struc ture-function analysis of human intestinal trefoil factor.Mol.Cell Biol,2000;20:4680-4690.
    [64]彭曦,汪仕良,尤忠义,等.肠三叶因子对肠上皮细胞增殖的影响及其信号转导机制的实验研究.中华烧伤杂志,2003;19(5):285-288.
    [65]Storesund T,Havashi K,Kolltveit KM,et al.Salivary trefoil factor 3 enhances migration of oral keratinocy. Eur J Oral Sci, 2008; 116 (2) : 135-140.
    [66] Rivat C, Rodrigues S, Bruyneel E, et al. Implication of STAT3 signaling in human colonic cancer cells during intestinal trefoil factor 3 (TFF3)-and vascular endothelial growth factor-mediated cellular invasion and tumor growth. Cancer Res, 2005; 65: 195—202
    [67] Otto W. R., Rao J., Cox H. M., et al. Effects of pancreatic spasmolytic polypeptide (PSP) on epithelial cell function. Eur. J. Biochem, 1996; 235:64-72.
    [68] Sands BE, Podolsky D K. The trefoil peptide family. Annu Rev Physiol, 1996; 58: 253-273.
    [69] Emami S, Le Floch N , Bruyneel E, et al. Induction of scattering and cellular invasion by trefoil peptides in sac and RhoA-transformed kidney and colonic epithelial cells[J]. FASEB J, 2001; 15 (2): 351-361.
    [70] Vestergaard EM, Brynskov J, Ejskjaer K. Immunoassays of human trefoil factors land 2: measured on serum from patients with inflammatory bowel disease. Scand J Clin Lab Invest, 2004; 64(2): 146-56.
    [71] Dossinger V, Kayademir T, Blin N, et al. Down-regulation of TIF expre ssionin gastrointestinal cell lines by cytokines and nuclear factors. Cell Physiol Biochem, 2002; 12(4): 197-206.
    [72] Ciacci C, Di Vizio D, Seth R, et al. Selective reduction of intestinal trefoil factor in unt reated coeliac disease [J]. Clin Exp Immunol, 2002; 130(3): 526-531.
    [73] Podolsky DK. Healing the epithelium: solving the problem from two sides[J]. J Gastroenterol, 1997; 32(1): 122-126.
    [74] Loncar MB, Al-azzeh ED, Sommer PS, et al. Tumour necrosis factor alpha and nuclear factor kappaB inhibit transcription of human TFF3 encoding a gastrointestinal healing peptide[J]. Gut, 2003; 52(9): 1297-1303.
    [75] Renes IB, Verburg M, Van Nispen DJ, et al. Distinct epithelial responses in experimental colitis: implications for ion uptake and mucosal protection[J]. Am J Physiol Gastrointest Liver Physiol, 2002; 283(1): G169-179.
    [76] Verbrug M, Renes IB, Meijer HP, et al. Selective sparing of goblet cells and paneth cells in the intestine of methotrexate treated rats[J]. Am J Physiol Gastrointest Liver Physiol, 2000; 279(5): G1037-1047.
    [77] Mashumo H, Wu DC, Podolsky DK, et al. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor[J].Science,1996;274(5285);262-265.
    [78]Dignass A,Lynch-Devaney K,Kindon H,et al.Trefoil peptides promote epithelial migration through a transforming growth factor beta-independent pathway[J].J Clin Invest,1994;94(1):376-383.
    [79]江学良,权启镇,王东,等.复合法建立大鼠溃疡性结肠炎模型及其免疫和超微结构变化[J].世界华人消化杂志,1999;7:381.
    [80]陆达海.炎症性肠病的病因和发病机制的研究进展[J].中华内科杂志,1996;35(12):836.
    [81]竹田多惠.UC患儿血清中检出大肠杆苗025LPS抗体和Vero毒素(VT)抗体[J].感染杂志,1992;66(8):1192.
    [81]Holtkamp W,Stollberg T,Reis HE.Seruminterleukin-6 is related to disease activity but not disease specificity in inflammatory bowel disease.J Clin Gast roenterol,1995;20(2):123.
    [83]Holub MC,Mako E,Devay T,et al.Increased interleukin-6 levels,interleukin-6 receptor and gp 130 expression in peripheral lymphocytes of patients with inflammatory bowel disease.Scand J Gastroenterol,1998;228:(33 Supp 1)47.
    [84]张可.NF-κ B与炎症性肠病.国外医学·消化系疾病分册,2003;23(2):94-96.
    [85]夏冰.炎症性肠病的遗传学研究进展.国外医学内科学分册,1996;23(12):513.
    [86]Atsangi J,Rosenberg WMC,Jewell DP.The prevalence of inflammatory bowel disease in relatives of patients with the Crohn' s disease.Eurj Gastroen terol Hepatol,1994;6:413.
    [87]彭仲生,胡品津,郭云丽,等.我国溃疡性结肠炎人白细胞抗原-DR基因分型的研究[J].中华消化杂志,2001;21:290-292.
    [88]杜意平,叶红军,王俊萍,等.溃疡性结肠炎患者和人类白细胞抗原-DQA1基因关联的研究[J].临床内科杂志,2003;20(6):314-316.
    [89]韩捷.溃疡性结肠炎病因及中医研究进展[J].中医药信息,2002;9(5):4-6
    [90]Koutroubakis 1E,VlachOnikolis IG,Kouroumalis EA.Role ofappendicitis and appendectomy in the pathogenesis of ulcerative colitis:a critical review.Inflamm Bowel Dis,2002;8:277-286.
    [91]Radford-Smith GL,Edwards JE,Purdie DM,et aI.Protective role of appe ndicectomy on onset and severity of ulcerative colitis and Crohns disease,Gut,2002;51:808-813.
    [92]郑家驹.溃疡性结肠炎的药物治疗.中国处方药,2005;36(3):18-23.
    [93]Knoll U,Stran hs P,Schusser G,et al.Study of the plasma pharmacokinetics and faecal excretion of tlle prodrug olsalazine an d its metabolites after oral administration to horses[J].J Vet Pha/nmcol Ther,2002;25(2):135.
    [94]Mansfield JC,6iafferMH,Cann PA,et al.A doubleblind comparison of balsalazide,6.75g,and sulfasalazine,3g,as sole therapy in the management of ulcerative colitis[J].Aliment Pharmacol Ther,2002;16:69.
    [95]李文波,孙自勤.溃疡性结肠炎治疗药物现状,中国临床医学,2004;11(4):144-147.
    [96]Falasco G,Zinicola R,Forbes A,et al.Review article:Immunosuppressants in distal ulcerative colitis.Alimentary Pharmacology and Therapeutics,2002;16(2):181-187.
    [97]Paoluzi OA,Pica R,Marcheggiano A,et al.Azathioprine or methotrexate in the treatment of patients with steroid-dependent or steroid-resistant ulcerative colitis:results of an openlabel study on efficacy and tolerability in inducing and maintaining remission.Alimentary Pharmacology and Therapeutics,2002;16(10):1751-1759.
    [98]Fraser,Orchard AG,Jewel1TR,et al.The efficacy of azathioprine for the treatment of inflammatory bowel disease:a 30 year review.Gut,2002;50(4):485-489.
    [99]Paoluzi OA,Pica R,Marcheggiano A,et al.Azathioprine or methotrexate in the treatment of patients with steroid-dependent or steroid-resistant u]cerative colitis:results of an open-label study on efficacy and tolerability in inducing and maintaining remission.Alimentary Pharmacology and Therapeutics,2002;16(10):1751-1759.
    [100]Skelly,Maevem LR,Jenkins A,et al.Toxicity of mycophenolate mofetil in patients with inflammatory bowel disease.Inflammatory Bowel Diseases,2002;8(2):93-97.
    [101]Murano M,Maemura K,Hirata I,et al.Therapeutic effect of intracolonically administered nuclear factor κ B(p65)antisense oligonucle otide on mouse dextran sulphate sodium(DSS)-induced colitis.Clin Exp Immunol,2001;20(1):51-63
    [102]郭涛.炎症性肠病的免疫学发病机制与治疗.免疫分册,2003;26(4):190-194.
    [103]Belluzzi A.N-3 Fatty acids for the treatment of inflammatory bowel diseases.Proceedings of the Nutrition society,2002;61(3):391-395.
    [104]徐俊.七味白术散加减治疗非特异性溃汤性结肠炎48例[J].安徽中医临床杂志,1998;10(5):287
    [105]吕永慧,吴崇雅,孙丽红,等.肠炎清治疗湿热内蕴型溃肠性结肠炎的临床研究[J].中国中西医结合脾胃杂志,2000;8(5):273-277
    [106]张正利,蔡淦.溃疡性结肠炎中医治疗及理论探讨[J].陕西中医,2001;22(7):405
    [107]高鹏翔,曹毅荣.通因通用法治疗溃疡性结肠炎267例.中国中西医结合消化杂志,2004;12(3):185.
    [108]叶旭.肠胃康冲剂治疗溃疡性结肠炎196例疗效观察.安徽中医临床杂志,2003;15(1):21.
    [109]张露凡.50例湿热蕴结型溃疡性结肠炎的护理.天津护理,2006;14(2):115-116
    [110]胡凤林.活血化淤治疗溃疡性结肠炎。湖北中医杂志,1996;18(4):47.
    [111]连建学,刘宏平,刘卫华.活血化瘀中药治疗溃疡性结肠炎62例.陕西中医,2006;27(1):47-49.
    [112]程海波,余广玉,滕示超,等.祛瘀化湿汤保留灌肠治疗慢性非特异性溃疡性结肠炎56例[J].河北中医,2003;10(25):740.
    [113]杨玉振,王昕.参苓白术散加大黄治疗慢性溃疡性结肠炎.中国乡村医药杂志,2005;12(10):49-50.
    [114]高向欣.参连汤治疗溃疡性结肠炎50例.河北中医,2002;24(9):674.
    [115]高增云,杨菊芬.中药治疗溃疡性结肠炎52例疗效观察.中华实用中西医杂志,2004;4(17):2741.
    [116]余守雅.四君子汤加味治疗慢性溃疡性结肠炎临床探讨.中成药,2006;28(6):826-827.
    [117]张雅明,张冬梅.自拟健脾清肠方治疗溃疡性结肠炎脾虚湿热型的疗效观察,上海中医药杂志,2007;41(8):35-36.
    [118]张怡,康正祥.健脾清热化湿方治疗脾虚湿热型溃疡性结肠炎30例.江西中医药,2007;38(6):42-43.
    [119]关惠珍.补益脾肾法治疗慢性溃疡性结肠炎38例[J].实用中医药杂志,2001,17(9):10.
    [120]张伟,梁永革.中药治疗慢性溃疡性结肠炎72例.吉林中医药,2004;24(9):22.
    [121]齐嫣,高爱芝.中药治疗溃疡性结肠炎50例.河南中医,2005;25(11):39.
    [122]李铭德.真人养脏汤化裁方治疗慢性溃疡性结肠炎60例.中国民间疗法,2006:14(5):5-6.
    [123]赵文树,杨智荣,姜超,等.溃结灵Ⅲ号治疗肝郁脾虚型溃疡性结肠炎31例.中医药信息,2005;22(3):47.
    [124]林木振.痛泻要方加味治疗溃疡性结肠炎36例,实用中医药杂志,2001;17(7):24
    [125]张天玉.痛泻要方加减治疗溃疡性结肠炎28例.四川中医,2001;19(8):36.
    [126]王建勇.痛泻要方加味治疗慢性非特异性溃疡性结肠炎35例疗效观察[J].河北中医,2001;23(3):201.
    [127]熊之焰,李帅军,桂平.四君子汤合痛泻要方加减治疗肝郁脾虚型溃疡性结肠炎49例临床观察.中医药导报,2006;12(2):39-41.
    [128]程燕萍,林嘉鳞.中药灌肠治疗溃疡性结肠炎[J].江苏中医药;2002,23(4):6.
    [129]梁启明,王惠政.中药保留灌肠治疗溃疡性结肠炎46例[J].陕西中医,2002;23(7):610.
    [130]赵立群,刘同亭.菊花煎保留灌肠治疗溃疡性结肠炎的疗效观察[J].现代中西医结合杂志,2005;14(12):1587.
    [131]黄炳辉,郭根玲.辨证中药灌肠治疗非特异性溃疡性结肠炎40例疗效观察[J].中国肛肠病杂志,2003;23(7):30.
    [132]李磊,石俊旗,宋欣.白头翁汤加减灌肠治疗溃疡性结肠炎.医药论坛杂志,2006:27(15):100.
    [133]王洪儒,贾占民,唐茂民.丹参灌肠液治疗溃疡性结肠炎78例.中医研究,2007;20(4):46-48.
    [134]袁勇,陈华伟.葛根芩连汤加蒲公英灌肠治疗溃疡性结肠炎的临床观察.现代生物医学进展,2007;7(9):1336-1337.
    [135]项家席.黄芪汤保留灌肠治疗溃疡性结肠炎临床观察.中国基层医药,2007;14(7):1187.
    [136]韩捷,梁化龙.白头翁治疗溃疡性结肠炎作用机制的实验研究[J].河南中医药学刊,2001;16(3):23-26.
    [137]陈维雄,陈金联,陈尼维,等.川芎嗪对实验性溃疡性结肠炎治疗作用的研究[J].胃肠病学,2001;6(4):215-217.
    [138]陈诗仁.愈结宁对实验性大鼠溃疡性结肠炎及抗炎、镇痛作用研究,广东药学院学报,2002;18(3):214-216.
    [139]田振国.通腑宁颗粒对醋酸引起小鼠疼痛模型影响的实验研究.辽宁中医杂志,2007:34(5):687
    [140]田振国.通腑宁颗粒对二甲苯引起小鼠耳肿胀模型影响的实验研究.辽宁中医杂志,2007;34(10):1494
    [141]王谦,杨建武.肠安冲剂抗大鼠溃疡性结肠炎及抗炎作用的研究.西北药学杂志,2007;22(5):255-257.
    [142]李薇.白头翁汤治疗大鼠溃疡性结肠炎的免疫机制探讨.甘肃中医,2004;17(6):38-39.
    [143]王真权,谢力子,王爱华.芩柏颗粒剂干预溃疡性结肠炎大鼠可溶性白介素2受体和IgG的实验研究[J].中医药通报,2004;8(4):48-49.
    [144]王淑敏,椿敏.苏木水提物对大鼠溃疡性结肠炎细胞因子影响的实验研究.南华大学学报·医学版,2007;35(1):4-6.
    [145]何小飞,周燕红 银杏叶萃取物对大鼠溃疡性结肠炎IFN-Y、IL-4影响的实验研究.中华临床医药,2004,5(16):19-21.
    [146]黄乃健,贾小强,步瑞兰,等.秦艽椿皮汤治疗溃疡性结肠炎的临床和实验研究[J].中国肛肠病杂志,1998;18(7):6.
    [147]范恒,段雪云,张小红,等.结肠康治疗慢性非特异性溃疡性结肠炎的实验研究[J].湖北中医学院学报,2000;2(2):13.
    [148]吴限,李岩,牛永军,等.结肠灵治疗溃疡性结肠炎的实验研究[J].中医药学报,2001;29(5):47.
    [149]周燕红,于皆平,何小飞.银杏天宝对大鼠溃疡性结肠炎SOD活性和MDA含量影响的实验研究.中华临床医药,2004;5(5):11-13.
    [150]王少华,钟鸣,陈锦先,等.丹参对溃疡性结肠炎大鼠结肠粘膜SOD活性和MDA 含量影响的实验研究[J].中国肛肠病杂志,2000;20(7):3.
    [151]刘万里,单兆伟,沈洪.肠安胶囊治疗溃疡性结肠炎的实验研究[J].长春中医学院学报,2000;16(4):45.
    [152]喻春钊,赵克,刘行稳.结肠康对溃疡性结肠炎大鼠血浆NO、ET影响的实验研究[J].中国肛肠病杂志,2001;21(7):3
    [153]李军华,何小飞,徐细明.雷公藤多苷对溃疡性结肠炎大鼠一氧化氮和一氧化氮合酶的影响.医药导报,2004;23(5):298-300.
    [154]段永强,程畅和,成映霞.痛泻二草方对溃疡性结肠炎模型大鼠血清IL-2含量及肠粘膜NO含量、NOS活性的影响.中国中医药信息杂志,2007;14(1):34-36.
    [155]周燕萍,田维君.健脾理肠片治疗慢性溃疡性结肠炎药理作用的实验研究.武警医学,2003;14(3):179-180
    [156]张军.大黄对溃疡性结肠炎大鼠结肠电活动的影响[J].现代中西医结合杂志,2003;12(16):1.
    [157]张晓峰.中药治疗溃疡性结肠炎的思路与方法.承德医学院学报,2002:19(3): 212-213.
    [158]张晓峰,马贵同,胡宏毅,等 中药清肠栓对实验性溃疡性结肠炎大鼠结肠黏液的影响.中医药学刊,2003;21(1):101-102.
    [159]黄志新,劳绍贤,崔琦珍,等.溃结灵颗粒治疗活动性溃疡性结肠炎的临床和实验研究.中西医结合消化杂志,2003;11(3):141-143.
    [160]杜群,李红,王建华.溃结灵对溃疡性结肠炎模型大鼠治疗作用的病理学观察.中药新药与临床药理,2007:18(3):173-176.
    [161]刘晓玲,王汝俊,杜群,等.康肠灵对异种抗原诱导的大鼠实验性溃疡性结肠炎的治疗作用及机制探讨.中药药理与临床,2005;21(5):38-39.
    [162]赵平,董蕾,罗金燕,等.葡聚糖硫酸钠致溃疡性结肠炎大鼠模型的建立.第四军医大学学报,2005;26(19):1738-1740.
    [163]李志晋,詹丽英,马春曦,等.溃疡性结肠炎大鼠肠粘膜超微结构变化及肠组织中P-选择素表达的研究.广西医科大学学报,2007;24(2):183-185.
    [164]郑礼,王淑仙,崔德玉,等.介绍一种简便的炎症性肠炎疾病的评价方法[J].中国药理学通报,1996;12(5):468-469.
    [165]朱峰,钱家鸣,潘国宗.细胞免疫反应性炎症性肠疾病动物模型的建立[J].中国医学科学院学报,1998;20(4):271-278.
    [166]SAIKI T.Myeloperoxidase Concentrations in the Stool as a new Parameter of Inflammatory Bowel Disease[J].Kurume Med J,1998;45(1):69-73.
    [167]曹永兵,张军东,阎澜,等.肠炎冲剂对溃疡性结肠炎模型大鼠的治疗作用.药学服务与研究,2004;4(2):114-116.
    [168]周泠,刘卓志.雷公藤多甙栓对溃疡性结肠炎大鼠SOD和MPO的影响.医学动物防治,2006;22(6):403-405.
    [169]Shi-Nan-Nie,Xiao-Ming Qian,Xue-Hao Wu,et al.Role of TFF in healing of stress-induced gastric lesions.World Journal of Gastroenterology,2003:9(8):1772-1776.
    [170]石淑青,蔡建庭.三叶因子Ⅰ和Ⅱ在胃癌和癌前状态中的表达.中华内科杂志,2004;43(3):195-197.
    [171]Jorgensen K H,Thim L,Jacobsen H E,et al.Pancreatic spasmolytic polypeptide(PSP):preparation and initial chemical characterization of a new polypeptide from procine pancreas.Regulatory Pepddes,1982,3(1):207-219.
    [172]Sands B E,Pudolsky D K.The trefoil peptide family.Annu RevPhysiol,1996,58:253-273.
    [173]Mashimo H,Wu DC,Podolsky DR,et al.Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor.Science,1996;274(528 5): 262-265.
    [174]杨天,邹开芳.重组肠三叶因子对实验性结肠炎大鼠NO表达、MDA和SOD括性的影响.世界华人消化杂志,2005;13(3):403-405.
    [175]宋敏,李瑾,夏冰.丁酸钠与5-氨基水杨酸联合用药对大鼠结肠炎治疗作用及机制.中华消化杂志,2005;25(10):598-601.
    [176]宋敏,李瑾,夏冰.TNBS诱发大鼠结肠炎中三叶因子3的表达.世界华人消化杂志,2004:12(9):2212-2214.
    [177]Masaki TOMITA,Hiroshi ITOH,Naoto ISHIKAWA,et al.Molecular cloning of mouse intestinal trefoil factor and its expressionduring goblet cell.changes.Biochem.J,1995;311(Pt1):293-297.
    [178]Ingrid B.Renes,Melissa Verburg,Danielle J.P.M.Van Nispen,et al.Distinct epithelial responses in experimental colitis:implications for ion uptake and mucosal protection.Am J Physiol Gastrointest Liver Physiol,2002;283(1):G169-G179.
    [179]Tran CP,Cook GA,Yeomans ND,et al.Trefoil peptide TFF2(spasmolytic polypeptide)potently accelerates healing and reduces inflammation in a rat model of colitis.Gut,1999;44(5):636-642.
    [180]Ji zhen Lin,Ya suhiro Tsuboi,Wei Pan,et al.Analysis by cDNA microarrays of altered gene expression in middle ears of rats following pneumococcal infection.International Journal of Pediatric Otorhinolaryn gology,2002;(65)203-211.
    [181]Williams SJ,Wreschner DH,Tran M,et al.MUC13:a novel human cell surface muein expressed by epithelial and hemopoietie cells.J Biol Chem,2001;276(21):18327.
    [182]CormanML,Allison SI,KuehneJP.Handbook of colon and rectal surgery[M].Philadelphia:Lippineott Williams and Wilkins,2002;720-722.
    [183]Emami S,Le Floch N,Bruyneel E,et al.Induction of scattering and cellular invasion by trefoil peptides in sac and RhoA-transformed kidney and colonic epithelial cells[J].FASEB J,2001;15(2):351-361.
    [184]Tan XD,Liu QP,Hsueh W el al.intestinal trefoil factor binds to intestinal epithelial cells and induces nitric oxide production:priming and enhanceing effects ofmudn.Biochem J,1999;338(Pt3):745.
    [185]Renes IB,Verburg M,Van Nispen DJ,et al.Epithelial proliferation,cell death,and gene expression in experimental colitis:alterations in carbonic anhydrase 1,mucin MUC2,and trefoil factor 3 expression.Int J Colorectal Dis,2002:17(5):317-326.
    [186]piet F,kaija Ⅰ,Juhani A,et al.Angiotensin Ⅱ induces connevtive tissue growth factor gene expression via calcineurindependent pathways.Am J Pathol,2003;163(1):355.
    [187]周联.大黄素等中药单体对TLR4表达及MAPKs信号通路的影响,广州中医药大学2006届博士论文.
    [188]Rivard N,Boucher M J,Asselin C,et al.MAP kinase cascade is required for p27 downregulation and S phase entry in fibroblasts and epithelial cells.Am J Physiol,1999;277(4Ptl):C652-C664.
    [189]Aliaga J C,Deschenes C,Beaulieu J F,et al.Requirement of the MAF kinase cascade for cell cycle progression and differentiation of human intestinal cells.A m J Physiol,1999:277(3Ptl):G631-G641.
    [190]黄文林,朱孝峰.信号转导,北京,人民卫生出版社,2005,第1版:310.
    [191]Oliver B L,Sha' afi R I,Hajjar J.Transforming growth factor-alpha and epidermal growth factor activate mitogen-activated protein kinase and its substrates in intestinal epithelial cells[J].Proc Soc Exp Biol Med,1995;210(2):162-170.
    [192]Kinoshita K,Taupin DR,Itoh H,et al.Distinct pathways of cell migration and antiapoptotic response to epithelial injury:structure-function analysis of human intestinal trefoil factor.Mol Cell Biol.2000:20(13):4680-4690.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700