外电场作用下神经元动力学分析与同步控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精神疾病是危害人类健康的主要疾病之一,其主要原因体现在神经元及神经网络放电编码异常,如帕金森症(Parkinson's disease,PD)发病时主要表现为基底核放电同步异常。精神疾病的治疗通常有药物和物理疗法,在物理疗法中,以外部电刺激为手段的深度脑刺激(Deep Brain Stimulation,DBS)已经成为治疗这类疾病的基本医疗手段之一。DBS的基本原理是通过外部电刺激改变神经网络的状态,其机理尚不完全清楚。目前,DBS的治疗处于开环状态,其治疗效果和能量消耗、参数调整等方面仍不能令人满意。因此采用闭环控制DBS来提高其治疗效果、实现能效优化、参数自动整定是十分必要的。通过研究外部刺激下神经元及其网络的放电模式和特性以及神经元网络的同步控制,能够揭示DBS的作用原理,拓展DBS的控制方法,对于研究DBS的机制和提高DBS的治疗水平具有重要意义。
     本文首先分析了神经元放电模式研究与DBS治疗疾病研究的现状,在此基础上建立了外电场作用下神经元放电的最小模型,研究了不同频率、不同幅值的外电场对神经元放电模式的影响,得到了外部刺激与放电模式之间的关系。其次,建立了外电场作用下神经元放电敏感性的简化模型,分析了不同频率、不同幅值的交变信号及噪声与神经元放电之间的关系,证明了神经元对幅值、频率及噪声的敏感特性。第三,分析了不同幅值与不同相位的高频扰动对神经元响应的影响─振动共振,得到一个高频扰动幅值的最优值,在该最优值下神经元对外部低频信号输入的响应最强;研究了化学突触与电突触耦合的神经元对外部低频信号的响应情况,发现当神经系统受到局部刺激时,化学突触对神经信息的传递比电突触更有效率。最后,针对开环DBS现状,将非线性控制理论应用到神经元网络同步和去同步控制,以实现闭环控制。为抑制干扰,提出自适应内模控制神经元网络混沌同步,使神经元达到期望的同步特性;提出利用人工神经网络逼近HH模型,利用H?抑制逼近误差和外部干扰的方法,实现了HH模型的同步控制;引入HH模型离子通道的随机噪声,利用模糊自适应控制实现了在随机噪声作用下HH模型的同步控制;提出采用自适应神经网络H?控制,实现了两个ML神经元模型的同步控制;用ML神经元模型网络模拟神经疾病的同步状态,采用本文提出的控制方法实现了该网络的去同步控制,模拟了DBS闭环控制,通过仿真证明了所提控制算法的有效性。
     本文的研究成果可为DBS治疗精神疾病提供理论基础,并可望应用到临床DBS的闭环控制。
Mental disease is a kind of diseases harmful to human health seriously. It is showed that these diseases are caused mainly by the abnormal firing and encoding of neurons and neural network. For example, Parkinson’s Disease is corresponding to the abnormal synchronization of neurons in basal ganglia. These diseases are generally treated by medical therapies and physical therapies. Deep Brain Stimulation (DBS) has become a basic physical method and been widely applied. DBS would change the states of the neural network, but its mechanism remains uncertain. At present, DBS is modulated manually, and its therapy effects, energy efficiency and parameters adjustment are not satisfied. Therefore, it is necessary to utilize closed-loop control methods to optimize its power efficiency, tune its parameters and enhance its therapeutic outcome. To study firing patterns, features and synchronization control of neurons and neural network are helpful to reveal the principle and extend the ability of DBS, and have potential prospects in investigating the mechanism and the therapy effects of DBS.
     Firstly, this thesis analyzes the progress of neuron model and its firing patterns, also the applications of DBS in the treatment of mental diseases. The minimum neuron firing model under external electrical field is established. The influences of different frequencies and amplitudes of the external electrical field on the firing patterns are studied based on this model, and the relationships between the external stimulus and firing patterns are obtained. The results show that the frequency and amplitude have significant effects on the firing patterns.
     Secondly, a simplified model is established to analyze neural firing sensitivity under external electrical field, the relationships between the firing patterns and alternative signals with different frequencies, amplitudes and noises are analyzed, that shows that neurons are sensitive and certain adaptive to amplitudes, frequencies and noises.
     Then, the influence of high frequency signals with different amplitudes and phases on neural dynamics is analyzed. It is found that there exists an optimal high-frequency amplitude that makes the neuron faithfully response to the external low frequency input. The responses of coupled neurons with chemical synapses and electrical synapses to the external low frequency input are also studied, which proves that the information transferred by chemical synapses is more efficient than electrical synapses when being stimulated locally.
     Finally, the nonlinear control theory is introduced for the synchronization and desynchronization control of neural network to realize the closed-loop control of DBS. The adaptive internal model control method is proposed to achieve chaotic synchronization of the neural network with expected performance. Next, the artificial neural network is adopted to approximate the HH model, and H? is hired to restrain the approximation error and external interference, thus the synchronization control of HH model is realized. Then, the synchronization control of HH model with random noise of ion channel is also achieved through fuzzy adaptive control algorithm. Furthermore the adaptive neural network H? control is proposed to realize synchronization control of ML neural network. The desynchronization of a synchronous neural network simulated by ML models is also realized using the proposed methods mentioned above, and the closed-loop DBS is simulated successfully. The simulation results prove the effectiveness of the proposed control algorithm.
     This thesis’s results will provide theoretical foundation for DBS treating mental illness, and hopeful to be applied to clinical DBS closed-loop control.
引文
[1]陆启韶,刘深泉,刘锋,等.生物神经网络系统动力学与功能研究,力学进展, 2008, 38 (6): 766-793.
    [2] J. R. Terry,P. Ritter,A. Daffertshofer, BrainModes: the role of neuronal oscillations in health and disease, Prog Biophys Mol Biol, 2011, 105(1-2): 1-4.
    [3] S. J. Schiff, Towards model-based control of Parkinson's disease, Philos T R Soc A, 2010, 368(1918): 2269-2308.
    [4] D. Terman, J. E. Rubin, A. C. Yew, et al., Activity patterns in a model for the subthalamopallidal network of the basal ganglia, Journal of Neuroscience, 2002, 22(7): 2963-2976.
    [5] J. E. Rubin,D. Terman, High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model, J Comput Neurosci, 2004, 16(3): 211-235.
    [6] J. Nowacki, H. M. Osinga, J. T. Brown, et al., A unified model of CA1/3 pyramidal cells: an investigation into excitability, Prog Biophys Mol Biol, 2011, 105(1-2): 34-48.
    [7] C. S. Herrmann,I. Frund,D. Lenz, Human gamma-band activity: a review on cognitive and behavioral correlates and network models, Neurosci Biobehav Rev, 2010, 34(7): 981-992.
    [8] J. G. Milton, Epilepsy as a dynamic disease: A tutorial of the past with an eye to the future, Epilepsy Behav, 2010, 18(1-2): 33-44.
    [9] S. N. Kalitzin,D. N. Velis,F. H. L. da Silva, Stimulation-based anticipation and control of state transitions in the epileptic brain, Epilepsy Behav, 2010, 17(3): 310-323.
    [10] S. Raiesdana,S. M. P. Firoozabadi,S. M. H. Gholpayegani, An evolutionary network model of epileptic phenomena, Neurocomputing, 2011, 74(4): 617-628.
    [11] G. S. Pell,Y. Roth,A. Zangen, Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms, Prog Neurobiol, 2011, 93(1): 59-98.
    [12] R. O. Doruk, Feedback controlled electrical nerve stimulation: a computer simulation, Comput Methods Programs Biomed, 2010, 99(1): 98-112.
    [13] A. Longtin,eacute, Autonomous stochastic resonance in bursting neurons, Phys Rev E, 1997, 55(1): 868.
    [14] M. A. Liker, D. S. Won, V. Y. Rao, et al., Deep brain stimulation: An evolving technology, P Ieee, 2008, 96(7): 1129-1141.
    [15] T. W. G. Berger, G.; Liker, M.A.; Soussou, W., The Impact of Neurotechnology on Rehabilitation, Biomedical Engineering, IEEE Reviews, 2008, 1: 157 - 197.
    [16] S. Sunderam, B. Gluckman, D. Reato, et al., Toward rational design of electrical stimulation strategies for epilepsy control, Epilepsy Behav, 2010, 17(1): 6-22.
    [17] S. Santaniello, G. Fiengo, L. Glielmo, et al., Closed-loop control of deep brain stimulation: a simulation study, IEEE Trans Neural Syst Rehabil Eng, 2011, 19(1): 15-24.
    [18] M. I. Rabinovich, P. Varona, A. I. Selverston, et al., Dynamical principles in neuroscience, Rev Mod Phys, 2006, 78(4): 1213-1265.
    [19] B. Cessac, A View of Neural Networks as Dynamical Systems, Int J Bifurcat Chaos, 2010, 20(6): 1585-1629.
    [20] B. Ibarz,J. M. Casado,M. A. F. Sanjuán, Map-based models in neuronal dynamics, Physics Reports, 2011, 501(1-2): 1-74.
    [21] E. M. Izhikevich, Which model to use for cortical spiking neurons?, Ieee T Neural Networ, 2004, 15(5): 1063-1070.
    [22] A. N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biol Cybern, 2006, 95(1): 1-19.
    [23] A. N. Burkitt, A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties, Biol Cybern, 2006, 95(2): 97-112.
    [24] A. L. Hodgkin,A. F. Huxley, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J Physiol, 1952, 116(4): 449-472.
    [25] A. L. Hodgkin,A. F. Huxley, The components of membrane conductance in the giant axon of Loligo, J Physiol, 1952, 116(4): 473-496.
    [26] A. L. Hodgkin,A. F. Huxley, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo, J Physiol, 1952, 116(4): 497-506.
    [27] A. L. Hodgkin,A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J Physiol, 1952, 117(4): 500-544.
    [28] M. H. Higgs,S. J. Slee,W. J. Spain, Diversity of gain modulation by noise in neocortical neurons: regulation by the slow afterhyperpolarization conductance, J Neurosci, 2006, 26(34): 8787-8799.
    [29] B. N. Lundstrom, S. Hong, M. H. Higgs, et al., Two computational regimes of a single-compartment neuron separated by a planar boundary in conductance space, Neural Comput, 2008, 20(5): 1239-1260.
    [30] F. S. Chance,L. F. Abbott,A. D. Reyes, Gain modulation from background synaptic input, Neuron, 2002, 35(4): 773-782.
    [31] J. Benda,A. Longtin,L. Maler, Spike-frequency adaptation separates transient communication signals from background oscillations, J Neurosci, 2005, 25(9): 2312-2321.
    [32] W. Gerstner,W. M. Kistler, Spiking neuron models : single neurons, populations, plasticity, Cambridge, U.K. ; New York: Cambridge University Press, 2002.
    [33] E. M. Izhikevich, Dynamical systems in neuroscience : the geometry of excitability and bursting, Cambridge, Mass.: MIT Press, 2007.
    [34] P. Dayan,L. F. Abbott, Theoretical neuroscience: Computational and mathematical modeling of neural systems, Cambridge, MA: MIT Press, 2001.
    [35] B. Ermentrout,D. H. Terman, Mathematical foundations of neuroscience, New York: Springer, 2010.
    [36]汪云九,神经信息学,北京:高等教育出版社, 2006.
    [37] Q. S. Lu, H. G. Gu, Z. Q. Yang, et al., Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis, Acta Mech Sinica-Prc, 2008, 24(6): 593-628.
    [38] D. A. McCormick,Y. Shu,Y. Yu, Neurophysiology: Hodgkin and Huxley model--still standing?, Nature, 2007, 445(7123): E1-2; discussion E2-3.
    [39] B. Naundorf,F. Wolf,M. Wolgushev, Neurophysiology: Hodgkin and Huxley model--still standing?, Nature, 2007, 445(7123): E1-2; discussion E2-3.
    [40] A. Bernacchia, H. Seo, D. Lee, et al., A reservoir of time constants for memory traces in cortical neurons, Nat Neurosci, 2011, 14(3): 366-372.
    [41] M. E. Sheffield, T. K. Best, B. D. Mensh, et al., Slow integration leads to persistent action potential firing in distal axons of coupled interneurons, Nat Neurosci, 2011, 14(2): 200-207.
    [42] E. Marder,A. L. Taylor, Multiple models to capture the variability in biological neurons and networks, Nat Neurosci, 2011, 14(2): 133-138.
    [43] A. B. Graf, A. Kohn, M. Jazayeri, et al., Decoding the activity of neuronal populations in macaque primary visual cortex, Nat Neurosci, 2011, 14(2): 239-245.
    [44] J. Cafaro,F. Rieke, Noise correlations improve response fidelity and stimulus encoding, Nature, 2010, 468(7326): 964-967.
    [45] N. N. Urban,K. Padmanabhan, Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content, Nat Neurosci, 2010, 13(10): 1276-1282.
    [46] P. J. Uhlhaas,W. Singer, Abnormal neural oscillations and synchrony in schizophrenia, Nat Rev Neurosci, 2010, 11(2): 100-113.
    [47] M. Hausser,T. Branco,B. A. Clark, Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons, Science, 2010, 329(5999): 1671-1675.
    [48] C. Y. Li,M. M. Poo,Y. Dan, Burst spiking of a single cortical neuron modifies global brain state, Science, 2009, 324(5927): 643-646.
    [49] W. Gerstner,R. Naud, How Good Are Neuron Models?, Science, 2009, 326(5951): 379-380.
    [50] A. V. M. Herz, T. Gollisch, C. K. Machens, et al., Modeling single-neuron dynamics and computations: A balance of detail and abstraction, Science, 2006, 314(5796): 80-85.
    [51] M. Courbage,V. I. Nekorkin, Map Based Models in Neurodynamics, Int J Bifurcat Chaos, 2010, 20(6): 1631-1651.
    [52] C. Hauptmann,O. Popovych,P. A. Tass, Multisite coordinated delayed feedback for an effective desynchronization of neuronal networks, Stoch Dynam, 2005, 5(2): 307-319.
    [53] C. Hauptmann,O. Popovych,P. A. Tass, Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: a computational study, Biol Cybern, 2005, 93(6): 463-470.
    [54] K. Dolan,M. Majtanik,P. A. Tass, Phase resetting and transient desynchronization in networks of globally coupled phase oscillators with inertia, Physica D, 2005, 211(1-2): 128-138.
    [55] C. Hauptmann, O. Omel'chenko, O. V. Popovych, et al., Control of spatially patterned synchrony with multisite delayed feedback, Phys Rev E, 2007, 76(6 Pt 2): 066209.
    [56] C. Hauptmann,O. Popovych,P. A. Tass, Delayed feedback control of synchronization in locally coupled neuronal networks, Neurocomputing, 2005, 65-66: 759-767.
    [57] C. Hauptmann, J. C. Roulet, J. J. Niederhauser, et al., External trial deep brain stimulation device for the application of desynchronizing stimulation techniques, J Neural Eng, 2009, 6(6): 066003.
    [58] C. Hauptmann,P. A. Tass, Restoration of segregated, physiological neuronal connectivity by desynchronizing stimulation, J Neural Eng, 2010, 7(5): 056008.
    [59] V. Krachkovskyi,O. V. Popovych,P. A. Tass, Stimulus-locked responses of two phase oscillators coupled with delayed feedback, Phys Rev E Stat Nonlin Soft Matter Phys, 2006, 73(6 Pt 2): 066220.
    [60] B. Lysyansky,Y. L. Maistrenko,P. A. Tass, Coexistence of numerous synchronized and desynchronized states in a model of two phase oscillators coupled with delay, Int J Bifurcat Chaos, 2008, 18(6): 1791-1800.
    [61] A. B. Neiman, D. F. Russell, T. A. Yakusheva, et al., Response clustering in transient stochastic synchronization and desynchronization of coupled neuronal bursters, Phys Rev E Stat Nonlin Soft Matter Phys, 2007, 76(2 Pt 1): 021908.
    [62] O. E. Omel'chenko, C. Hauptmann, Y. L. Maistrenko, et al., Collective dynamics of globally coupled phase oscillators under multisite delayed feedback stimulation, Physica D, 2008, 237(3): 365-384.
    [63] O. E. Omel'chenko,Y. L. Maistrenko,P. A. Tass, Chimera states induced by spatially modulated delayed feedback, Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 82(6 Pt 2): 066201.
    [64] P. Perlikowski, S. Yanchuk, O. V. Popovych, et al., Periodic patterns in a ring of delay-coupled oscillators, Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 82(3 Pt 2): 036208.
    [65] O. V. Popovych,C. Hauptmann,P. A. Tass, Effective desynchronization by nonlinear delayed feedback, Phys Rev Lett, 2005, 94(16): 164102.
    [66] O. V. Popovych,C. Hauptmann,P. A. Tass, Control of neuronal synchrony by nonlinear delayed feedback, Biol Cybern, 2006, 95(1): 69-85.
    [67] O. V. Popovych,C. Hauptmann,P. A. Tass, Impact of Nonlinear Delayed Feedback on Synchronized Oscillators, J Biol Phys, 2008, 34(3-4): 367-379.
    [68] O. V. Popovych,V. Krachkovskyi,P. A. Tass, Phase-locking swallows in coupled oscillators with delayed feedback, Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 82(4 Pt 2): 046203.
    [69] O. V. Popovych,P. A. Tass, Synchronization control of interacting oscillatory ensembles by mixed nonlinear delayed feedback, Phys Rev E, 2010, 82(2): 026204.
    [70] O. V. Popovych,P. A. Tass, Macroscopic entrainment of periodically forced oscillatory ensembles, Prog Biophys Mol Biol, 2011, 105(1-2): 98-108.
    [71] A. N. Silchenko, I. Adamchic, N. Pawelczyk, et al., Data-driven approach to the estimation of connectivity and time delays in the coupling of interacting neuronal subsystems, J Neurosci Meth, 2010, 191(1): 32-44.
    [72] P. Tass, D. Smirnov, A. Karavaev, et al., The causal relationship between subcortical local field potential oscillations and Parkinsonian resting tremor, J Neural Eng, 2010, 7(1): 16009.
    [73] P. A. Tass,C. Hauptmann, Therapeutic rewiring by means of desynchronizing brain stimulation, Biosystems, 2007, 89(1-3): 173-181.
    [74] G. W. Beeler,H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres, J Physiol, 1977, 268(1): 177-210.
    [75] C. Morris,H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys J, 1981, 35(1): 193-213.
    [76] T. R. Chay,J. Keizer, Minimal model for membrane oscillations in the pancreatic beta-cell, Biophys J, 1983, 42(2): 181-190.
    [77] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical J., 1961, 1: 445-466.
    [78] J. L. Hindmarsh,R. M. Rose, A model of neuronal bursting using three coupled first order differential equations, Proc R Soc Lond B Biol Sci, 1984, 221(1222): 87-102.
    [79] E. M. Izhikevich, Neural excitability, spiking and bursting, Int J Bifurcat Chaos, 2000, 10(6): 1171-1266.
    [80] S. A. Prescott, S. Ratte, Y. De Koninck, et al., Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neuron, Journal of Neuroscience, 2006, 26(36): 9084-9097.
    [81]张慧敏,杨明浩,化存才等,鞍-结分岔点附近的神经元自发放电节律和随机共振,动力学与控制学报, 2008, 06(4): 332~336.
    [82] B. Deng, J. Wang, X. Wei, et al., Vibrational resonance in neuron populations, Chaos, 2010, 20(1): 013113.
    [83]陆启韶,分岔与奇异性,上海:上海科学技术出版社, 1995.
    [84]车艳秋,神经元与神经元网络的动力学分析, [博士论文],天津大学, 2008.
    [85] B. Ermentrout, Linearization of F-I curves by adaptation, Neural Comput, 1998, 10(7): 1721-1729.
    [86] J. Rinzel,B. Ermentrout, Analysis of neural excitability and oscillations, Cambridge, Massachusetts: MIT Press, 1998.
    [87] Y.-g. Lv,J. Liu, Interpretation on thermal comfort mechanisms of human bodies by combining Hodgkin-Huxley neuron model and Pennes bioheat equation, Forschung im Ingenieurwesen, 2004, 69(2): 101-114.
    [88] Y. Sun, D. Zhou, A. V. Rangan, et al., Pseudo-Lyapunov exponents and predictability of Hodgkin-Huxley neuronal network dynamics, J Comput Neurosci, 2010, 28(2): 247-266.
    [89] B. N. Lundstrom, M. Famulare, L. B. Sorensen, et al., Sensitivity of firing rate to input fluctuations depends on time scale separation between fast and slow variables in single neurons, J Comput Neurosci, 2009, 27(2): 277-290.
    [90] J. A. Connor,C. F. Stevens, Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma, J Physiol, 1971, 213(1): 31-53.
    [91] H. Fukai, S. Doi, T. Nomura, et al., Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations I. Global organization of bistable periodic solutions, Biol Cybern, 2000, 82(3): 215-222.
    [92] S. Doi,S. Nabetani,S. Kumagai, Complex nonlinear dynamics of the Hodgkin-Huxley equations induced by time scale changes, Biol Cybern, 2001, 85(1): 51-64.
    [93] N. Kocherginsky, Voltage-sensitive ion channels, acidic lipids and Hodgkin-Huxley equations: New ideas 55 years later, Journal of Membrane Science, 2009, 328(1-2): 58-74.
    [94] J. F. Fohlmeister, A nerve model of greatly increased energy-efficiency and encoding flexibility over the Hodgkin-Huxley model, Brain Res, 2009, 1296: 225-233.
    [95] C. Borgers,M. Krupa,S. Gielen, The response of a classical Hodgkin-Huxley neuron to an inhibitory input pulse, J Comput Neurosci, 2010, 28(3): 509-526.
    [96] S. J. Wang, X. J. Xu, Z. X. Wu, et al., Influence of synaptic interaction on firing synchronization and spike death in excitatory neuronal networks, Phys Rev E Stat Nonlin Soft Matter Phys, 2008, 78(6 Pt 1): 061906.
    [97] K. A. Newhall, G. Kovacic, P. R. Kramer, et al., Cascade-induced synchrony in stochastically driven neuronal networks, Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 82(4 Pt 1): 041903.
    [98] L. Han,A. B. Neiman, Spontaneous oscillations, signal amplification, and synchronization in a model of active hair bundle mechanics, Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 81(4 Pt 1): 041913.
    [99] D. Calitoiu,B. J. Oommen,D. Nussbaum, Spikes annihilation in the Hodgkin-Huxley neuron, Biol Cybern, 2008, 98(3): 239-257.
    [100] W. S.Anderson, Studies of stimulus parameters for seizure disruption using neural network simulation, Biological Cybernetics, 2007, 97(2): 22.
    [101] J. H. Tien,J. Guckenheimer, Parameter estimation for bursting neural models, J Comput Neurosci, 2008, 24(3): 358-373.
    [102] W. S. Anderson, P. Kudela, J. H. Cho, et al., Studies of stimulus parameters for seizure disruption using neural network simulations, Biol Cybern, 2007, 97(2): 173-194.
    [103] R. Gutig,H. Sompolinsky, Time-warp-invariant neuronal processing, PLoS Biol, 2009, 7(7): e1000141.
    [104] D. A. Butts,M. S. Goldman, Tuning curves, neuronal variability, and sensory coding, PLoS Biol, 2006, 4(4): e92.
    [105] M. Inman, Tuning in to How Neurons Distinguish between Stimuli, PLoS Biol, 2006, 4(4): e118.
    [106] M. Volgushev, A. Malyshev, P. Balaban, et al., Onset dynamics of action potentials in rat neocortical neurons and identified snail neurons: quantification of the difference, PLoS One, 2008, 3(4): e1962.
    [107] C. D. Fiorillo, Towards a general theory of neural computation based on prediction by single neurons, PLoS One, 2008, 3(10): e3298.
    [108] T. Schwalger, K. Fisch, J. Benda, et al., How noisy adaptation of neurons shapes interspike interval histograms and correlations, Plos Comput Biol, 2010, 6(12): e1001026.
    [109] R. D. Vilela,B. Lindner, Comparative study of different integrate-and-fire neurons: Spontaneous activity, dynamical response, and stimulus-induced correlation, Phys Rev E, 2009, 80(3).
    [110] B. Lindner, Superposition of many independent spike trains is generally not a Poisson process, Phys Rev E, 2006, 73(2): 02290.
    [111] B. Lindner,A. Longtin, Comment on "Characterization of subthreshold voltage fluctuations in neuronal membranes," by M Rudolph and A Destexhe, Neural Computation, 2006, 18(8): 1896-1931.
    [112] M. D. McDonnell,D. Abbott, What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology, Plos Comput Biol, 2009, 5(5): e1000348.
    [113] J. T. Dudman,M. F. Nolan, Stochastically Gating Ion Channels Enable Patterned Spike Firing through Activity-Dependent Modulation of Spike Probability, Plos Comput Biol, 2009, 5(2): e1000290.
    [114] L. S. Borkowski, Multimodal transition and stochastic antiresonance in squid giant axons, Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 82(4 Pt 1): 041909.
    [115] B. Lindner, Some unsolved problems relating to noise in biological systems, J Stat Mech-Theory E, 2009.
    [116]古华光,任维,感觉神经放电中的随机共振现象和噪声的作用,生理科学进展, 2004, 4: 364-367.
    [117] M. Krupa,N. Popovic,N. Kopell, Mixed-mode oscillations in three time-scale systems: A prototypical example, Siam J Appl Dyn Syst, 2008, 7(2): 361-420.
    [118]杨明浩,古华光,李莉等,神经放电加周期分岔中由随机自共振引起一类新节律,生物物理学报, 2004, 06: 465-470.
    [119] C. Laing,G. J. Lord, Stochastic methods in neuroscience, New York: Oxford University Press, 2010.
    [120] A. S. Pikovsky, J. Kurths, uuml, et al., Coherence Resonance in a Noise-Driven Excitable System, Physical Review Letters, 1997, 78(5): 775.
    [121] X. Lang,Q. Lu,J. Kurths, Phase synchronization in noise-driven bursting neurons, Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 82(2 Pt 1): 021909.
    [122] R. Dodla,C. J. Wilson, Coherence resonance due to transient thresholds in excitable systems, Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 82(2 Pt 1): 021105.
    [123] M. Gosak,D. Korosak,M. Marhl, Optimal network configuration for maximal coherence resonance in excitable systems, Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 81(5 Pt 2): 056104.
    [124] S. Jalil,I. Belykh,A. Shilnikov, Fast reciprocal inhibition can synchronize bursting neurons, Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 81(4 Pt 2): 045201.
    [125] T. Omori,T. Aonishi,M. Okada, Switch of encoding characteristics in single neurons by subthreshold and suprathreshold stimuli, Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 81(2 Pt 1): 021901.
    [126] S. Wang,C. Zhou, Rate-synchrony relationship between input and output of spike trains in neuronal networks, Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 81(1 Pt 1): 011917.
    [127] L. S. Borkowski, Response of a Hodgkin-Huxley neuron to a high-frequency input, Phys Rev E Stat Nonlin Soft Matter Phys, 2009, 80(5 Pt 1): 051914.
    [128] R. Fakir, Nonstationary stochastic resonance in a single neuronlike system, Phys Rev E, 1998, 58(4): 5175-5178.
    [129] J. J. Collins,C. C. Chow,T. T. Imhoff, Stochastic resonance without tuning, Nature, 1995, 376(6537): 236-238.
    [130] E. I. Volkov, E. Ullner, A. A. Zaikin, et al., Oscillatory amplification of stochastic resonance in excitable systems, Phys Rev E Stat Nonlin Soft Matter Phys, 2003, 68(2 Pt 2): 026214.
    [131] C. J. Tessone, E. Ullner, A. A. Zaikin, et al., Noise-induced inhibitory suppression of frequency-selective stochastic resonance, Phys Rev E Stat Nonlin Soft Matter Phys, 2006, 74(4 Pt 2): 046220.
    [132] B. J. Gluckman, T. I. Netoff, E. J. Neel, et al., Stochastic Resonance in a Neuronal Network from Mammalian Brain, Phys Rev Lett, 1996, 77(19): 4098-4101.
    [133] R. Dodla,C. J. Wilson, Asynchronous response of coupled pacemaker neurons, Phys Rev Lett, 2009, 102(6): 068102.
    [134] R. Zillmer,N. Brunel,D. Hansel, Very long transients, irregular firing, and chaotic dynamics in networks of randomly connected inhibitory integrate-and-fire neurons, Phys Rev E, 2009, 79(3): 031909.
    [135] Y. Sakumura,K. Aihara, Stochastic resonance and coincidence detection in single neurons, Neural Process Lett, 2002, 16(3): 235-242.
    [136] H. G. Gu, M. H. Yang, Z. Q. Liu, et al., Identifying Distinct Stochastic Dynamics from Chaos: A Study on Multimodal Neural Firing Patterns, Int J Bifurcat Chaos, 2009, 19(2): 453-485.
    [137] M. Gitterman, Bistable oscillator driven by two periodic fields, J Phys a-Math Gen, 2001, 34(24): L355-L357.
    [138] A. A. Zaikin, L. Lopez, J. P. Baltanas, et al., Vibrational resonance in a noise-induced structure, Phys Rev E, 2002, 66(1): 011106.
    [139] E. Ullner, A. Zaikin, J. Garcia-Ojalvo, et al., Vibrational resonance and vibrational propagation in excitable systems, Phys Lett A, 2003, 312(5-6): 348-354.
    [140] J. P. Baltanas, L. Lopez, Blechman, II, et al., Experimental evidence, numerics, and theory of vibrational resonance in bistable systems, Phys Rev E Stat Nonlin Soft Matter Phys, 2003, 67(6 Pt 2): 066119.
    [141] J. Casado-Pascual,J. P. Baltanas, Effects of additive noise on vibrational resonance in a bistable system, Phys Rev E Stat Nonlin Soft Matter Phys, 2004, 69(4 Pt 2): 046108.
    [142]林敏,黄咏梅,双稳系统的振动共振及特性分析,振动与冲击, 2007, 26(12): 151-152.
    [143] H. A. Braun, H. Wissing, K. Schafer, et al., Oscillation and noise determine signal transduction in shark multimodal sensory cells, Nature, 1994, 367(6460): 270-273.
    [144] C. C. Chow,J. A. White, Spontaneous action potentials due to channel fluctuations, Biophysical Journal, 1996, 71(6): 3013-3021.
    [145] J. R. Clay,L. J. DeFelice, Relationship between membrane excitability and single channel open-close kinetics, Biophysical Journal, 1983, 42: 151-157.
    [146] B. Deng,J. Wang,X. Wei, Effect of chemical synapse on vibrational resonance in coupled neurons, Chaos, 2009, 19(1): 013117.
    [147] Y. Moreno, A. Arenas, A. Diaz-Guilera, et al., Synchronization in complex networks, Phys Rep, 2008, 469(3): 93-153.
    [148] S. Boccaletti, J. Kurths, G. Osipov, et al., The synchronization of chaotic systems, Phys Rep, 2002, 366(1-2): 1-101.
    [149] S. Boccaletti, C. Grebogi, Y. C. Lai, et al., The control of chaos: theory and applications, Phys Rep, 2000, 329(3): 103-197.
    [150] C. M. Gray, P. Konig, A. K. Engel, et al., Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties, Nature, 1989, 338(6213): 334-337.
    [151] W. Ditto, Synchronization: A universal concept in Nonlinear sciences, Nature, 2002, 415(6873): 736-737.
    [152] L. M. Pecora,T. L. Carroll, Synchronization in chaotic systems, Phys Rev Lett, 1990, 64(8): 821-824.
    [153] L. M. Pecora,T. L. Carroll, Driving systems with chaotic signals, Phys Rev A, 1991, 44(4): 2374-2383.
    [154] H. Kori, C. G. Rusin, I. Z. Kiss, et al., Synchronization engineering: Theoretical framework and application to dynamical clustering, Chaos, 2008, 18(2): 02611.
    [155] C. G. Rusin, H. Kori, I. Z. Kiss, et al., Synchronization engineering: tuning the phase relationship between dissimilar oscillators using nonlinear feedback, Philos T R Soc A, 2010, 368(1918): 2189-2204.
    [156] A. Pikovsky,M. Rosenblum,J. Kurths, SYNCHRONIZATION A Universal Concept in Nonlinear Sciences, Cambridge University Press, 2001.
    [157] F. T. Arecchi, Chaotic neuron dynamics, synchronization and feature binding, Physica A, 2004, 338(1-2): 218-237.
    [158] V. N. Belykh, G. V. Osipov, V. S. Petrov, et al., Cluster synchronization in oscillatory networks, Chaos, 2008, 18(3): 037106.
    [159] A. Birzu,K. Krischer, Resonance tongues in a system of globally coupled FitzHugh-Nagumo oscillators with time-periodic coupling strength, Chaos, 2010, 20(4): 043114.
    [160] P. Borowski, R. Kuske, Y. X. Li, et al., Characterizing mixed mode oscillations shaped by noise and bifurcation structure, Chaos, 2010, 20(4): 043117.
    [161] M. A. Komarov,G. V. Osipov,J. A. K. Suykens, Variety of synchronous regimes in neuronal ensembles, Chaos, 2008, 18(3): 037121.
    [162] K. Lehnertz, S. Bialonski, M. T. Horstmann, et al., Synchronization phenomena in human epileptic brain networks, J Neurosci Meth, 2009, 183(1): 42-48.
    [163] Q. S. Lu, Q. Y. Wang, G. R. Chen, et al., Chaos synchronization of coupled neurons with gap junctions, Phys Lett A, 2006, 356(1): 17-25.
    [164] T. Nowotny,R. Huerta,M. I. Rabinovich, Neuronal synchrony: peculiarity and generality, Chaos, 2008, 18(3): 037119.
    [165] G. Renversez, Synchronization in two neurons: Results for a two-component dynamical model with time-delayed inhibition, Physica D, 1998, 114(1-2): 147-171.
    [166] X. Shi,Q. S. Lu, Burst synchronization of electrically and chemically coupled map-based neurons, Physica A, 2009, 388(12): 2410-2419.
    [167] X. Sun, M. Perc, Q. Lu, et al., Effects of correlated Gaussian noise on the mean firing rate and correlations of an electrically coupled neuronal network, Chaos, 2010, 20(3): 033116.
    [168] X. Y. Wang,Q. Zhao, Tracking control and synchronization of two coupled neurons, Nonlinear Anal-Real, 2010, 11(2): 849-855.
    [169] T. Wennekers,F. Pasemann, Generalized types of synchronization in networks of spiking neurons, Neurocomputing, 2001, 38: 1037-1042.
    [170]王青云,石霞,陆启韶,神经元耦合系统的同步动力学,北京:科学出版社, 2008.
    [171]刘志强,古华光,杨明浩等,心肌细胞团搏动整数倍节律的非线性动力学机制,生物物理学报, 2004, 20(5): 363-370.
    [172]吴英,徐健学,何岱海等,两个非耦合Hindmarsh-Rose神经元同步的非线性特征研究,物理学报, 2005, 07: 3457-3464.
    [173]吴英,徐健学,靳伍银,参数驱动实现两个非耦合神经元完全同步与相位同步,西安交通大学学报, 2005, 05: 544-547.
    [174]张艳娇,李美生,陆启韶, ML神经元的放电模式及时滞对神经元同步的影响,动力学与控制学报, 2009, 1: 19-23.
    [175]郑艳红,陆启韶,时滞影响下的环式耦合混沌神经元同步,动力学与控制学报, 2008, 6(3): 208-212.
    [176]王青云,陆启韶,兴奋性化学突触耦合的神经元的同步,动力学与控制学报, 2008, 6(1): 35-39.
    [177] E. Shea-Brown, X. J. Feng, B. Greenwald, et al., Optimal deep brain stimulation of the subthalamic nucleus - a computational study, J Comput Neurosci, 2007, 23(3): 265-282.
    [178] Y.-Q. Che, J. Wang, W.-L. Chan, et al., Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control, Nonlinear Dynamics, 2010, 61(4): 847-857.
    [179] L. L. Tian,D. H. Li,X. F. Sun, Nonlinear-estimator-based robust synchronization of Hodgkin-Huxley neurons, Neurocomputing, 2008, 72(1-3): 186-196.
    [180] J. Wang, Y. Q. Che, W. J. Si, et al., Phase-locking and chaos in a silent Hodgkin-Huxley neuron exposed to sinusoidal electric field, Chaos Soliton Fract, 2009, 39(1): 454-462.
    [181] J. Wang, Y. Q. Che, K. M. Tsang, et al., Unidirectional synchronization for Hindmarsh-Rose neurons via robust adaptive sliding mode control, Nonlinear Anal-Real, 2010, 11(2): 1096-1104.
    [182] J. Wang, Y. Q. Che, S. S. Zhou, et al., Robust synchronization control of coupled chaotic neurons under external electrical stimulation, Chaos Soliton Fract, 2009, 40(3): 1333-1342.
    [183] J. Wang, Y. Q. Che, S. S. Zhou, et al., Chaos synchronization of coupled neurons under external electrical stimulation using adaptive H-infinity control, T I Meas Control, 2008, 30(3-4): 225-238.
    [184] J. Wang,L. S. Chen,B. Deng, Synchronization of Ghostburster neuron in external electrical stimulation via H(infinity) variable universe fuzzy adaptive control, Chaos Soliton Fract, 2009, 39(5): 2076-2085.
    [185] J. Wang,C. X. Han,B. Deng, Fire patterns of modified HH neuron under external sinusoidal ELF stimulus, Chaos Soliton Fract, 2009, 41(4): 2045-2054.
    [186] J. Wang,L. Sun,B. Deng, Global synchronization of two Ghostburster neurons via active control, Chaos Soliton Fract, 2009, 40(3): 1213-1220.
    [187] J. Wang,X. L. Wei,B. Deng, Introducing internal model to robust output synchronization of FitzHugh-Nagumo neurons in external electrical stimulation, Communications in Nonlinear Science and Numerical Simulation, 2009, 14(7): 3108-3119.
    [188] Y. K. Wong, H. Y. Li, W. L. Chan, et al., Synchronization of Ghostburster neurons under external electrical stimulation via adaptive neural network H(infinity) control, Neurocomputing, 2010, 74(1-3): 230-238.
    [189] R. Aguilar-Lopez,R. Martinez-Guerra, Synchronization of a coupled Hodgkin-Huxley neurons via high order sliding-mode feedback, Chaos Soliton Fract, 2008, 37(2): 539-546.
    [190] F. M. M. Kakmeni,S. Bowong,C. Tchawoua, Reduced-order synchronization of uncertain chaotic systems via adaptive control, Communications in Nonlinear Science and Numerical Simulation, 2006, 11(7): 810-830.
    [191] S. A. Lazzouni, S. Bowong, F. M. M. Kakmeni, et al., An adaptive feedback control for chaos synchronization of nonlinear systems with different order, Communications in Nonlinear Science and Numerical Simulation, 2007, 12(4): 568-583.
    [192]邓斌,神经元混沌、同步与控制, [博士论文],天津大学, 2007.
    [193]陈良泉, Hodgkin-huxley模型的分岔分析与控制, [硕士论文],天津大学, 2006.
    [194]张镇, Ghostburster模型的混沌分析与控制, [硕士论文],天津大学, 2007.
    [195] B. Doiron, C. Laing, A. Longtin, et al., Ghostbursting: A novel neuronal burst mechanism, J Comput Neurosci, 2002, 12(1): 5-25.
    [196]魏熙乐,非线性系统自适应复合控制的研究, [博士论文],天津大学, 2007.
    [197]张婷,神经元混沌同步与控制, [硕士论文],天津大学, 2007.
    [198] E. Steur,I. Tyukin,H. Nijmeijer, Semi-passivity and synchronization of diffusively coupled neuronal oscillators, Physica D, 2009, 238(21): 2119-2128.
    [199] S. A. Prescott,Y. D. Koninck,T. J. Sejnowski, Biophysical Basis for Tree Distinct Dynamical Mechanisms of Action Potential Initiation, Plos Compt Biol, 2008, 4(10).
    [200] H. G. Rotstein,M. Wechselberger,N. Kopell, Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal Cortex Layer II Stellate Cell Model, Siam J Appl Dyn Syst, 2008, 7(4): 1582-1611.
    [201] M. Krupa, N. Popovic, N. Kopell, et al., Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron, Chaos, 2008, 18(1): 015106.
    [202] H. C. Tuckwell, Introduction to theoretical neurobiology, Cambridge Cambridgeshire, New York: Cambridge University Press, 1988.
    [203] H. S. Wio, Stochastic resonance in a spatially extended system, Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1996, 54(4): R3075-R3078.
    [204] R. Krahe,F. Gabbiani, Burst firing in sensory systems, Nat Rev Neurosci, 2004, 5(1): 13-23.
    [205] A. Longtin, Stochastic resonance in neuron models, J. Stat. Phys, 1993, 70(1-2): 309-327.
    [206] G. Lord,C. R. Laing, Neural coherence and stochastic resonance. In: Stochastic Methods in Neuroscience, London: Oxford University Press, 2009.
    [207] N. Baba,K. Krischer, Mixed-mode oscillations and cluster patterns in an electrochemical relaxation oscillator under galvanostatic control, Chaos, 2008, 18(1): 015103.
    [208] M. Beck, C. K. R. T. Jones, D. Schaeffer, et al., Electrical Waves in a One-Dimensional Model of Cardiac Tissue, Siam J Appl Dyn Syst, 2008, 7(4): 1558-1581.
    [209] M. Brons,T. J. Kaper,H. G. Rotstein, Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis, Chaos, 2008, 18(1): 015101.
    [210] M. Desroches,B. Krauskopf,H. M. Osinga, Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system, Chaos, 2008, 18(1): 015107.
    [211] J. Durham,J. Moehlis, Feedback control of canards, Chaos, 2008, 18(1): 015110.
    [212] B. Ermentrout,M. Wechselberger, Canards, Clusters, and Synchronization in a Weakly Coupled Interneuron Model, Siam J Appl Dyn Syst, 2009, 8(1): 253-278.
    [213] J. Guckenheimer, Return maps of folded nodes and folded saddle-nodes, Chaos, 2008, 18(1): 015108.
    [214] M. Krupa,M. Wechselberger, Local analysis near a folded saddle-node singularity, J Differ Equations, 2010, 248(12): 2841-2888.
    [215] J. Rubin,M. Wechselberger, Giant squid-hidden canard: the 3D geometry of the Hodgkin-Huxley model, Biol Cybern, 2007, 97(1): 5-32.
    [216] J. Rubin,M. Wechselberger, The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales, Chaos, 2008, 18(1): 015105.
    [217] M. Wechselberger, T. Vo, R. Bertram, et al., Mixed mode oscillations as a mechanism for pseudo-plateau bursting, J Comput Neurosci, 2010, 28(3): 443-458.
    [218] M. Wechselberger,W. Weckesser, Homoclinic clusters and chaos associated with a folded node in a stellate cell model, DCDS-S, 2009, 2(4): 829 - 850.
    [219] M. Wechselberger,W. Weckesser, Bifurcations of mixed-mode oscillations in a stellate cell model, Physica D, 2009, 238(16): 1598-1614.
    [220] N. Yu,R. Kuske,Y. X. Li, Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators, Chaos, 2008, 18(1): 015112.
    [221] H. K. Khalil, Nonlinear Systems, New Jersey: Prentice Hall, 2002.
    [222] S. S. Ge, C. C. Hang, T. H. Lee, et al., Stable adaptive Neural Network Control, Boston: Kluwer, 2001.
    [223] L.-X. Wang, Adaptive fuzzy systems and control - Design and stability analysis Englewood Cliffs, NJ PTR Prentice Hall, 1994.
    [224] M. D. A. Leite,M. Golubitsky, Homogeneous three-cell networks, Nonlinearity, 2006, 19(10): 2313-2363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700