神经元网络的同步、共振及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大脑约有1000亿个神经元,它们之间相互作用构成复杂的神经网络,以实现记忆、认知、情感、行为等功能。神经网络的动力学行为与脑功能密切相关。大脑对神经信息的处理是通过不同脑区的大量神经元协同完成的,同步是神经信息处理的重要机制。而同步异常是脑功能疾病的主要体现,通过外界刺激改变神经同步状态是治疗脑疾病的有效手段。另外,噪声普遍存在于神经网络中,所引发的共振是神经元进行信息传递的重要机制。因此,本文研究神经网络的同步化机制、共振特性及同步控制等问题。
     本文首次采用映射神经元模型构造离散的模块化小世界神经网络,研究其同步化机制。发现当神经元之间的耦合强度超过某个阈值时,所有神经元在簇放电时间尺度上实现同步,而在峰放电时间尺度上是不同步的,即产生混沌相同步现象。另外,发现增大随机重连概率有利于增强小世界神经网络同步放电,而提高神经元之间的耦合强度和子网络之间的连接概率都可引发模块化神经网络的同步行为发生转迁。
     基于上述模型本文首次研究了模块化神经网络中的随机共振和振动共振现象。发现对于施加了弱低频信号的兴奋性神经系统,存在合适强度的外界刺激(噪声和高频信号),使得系统输出对输入信号的线性响应达到峰值。网络结构和参数对系统共振特性有重要影响。存在最优的连接结构,使得整个神经网络对弱信号的检测和传递能力最强。
     鉴于大脑中神经元异常的同步化放电会导致神经生理疾病,如帕金森氏症、癫痫症等,本文采用外界周期信号刺激和延迟反馈控制两种方法有效抑制神经元的同步化放电活动,且不改变神经元本身的放电特征。特别是基于平均场的时滞反馈控制法在系统达到去同步状态后刺激信号减弱到零,不具有侵害性,适用于深度脑刺激技术。
     本文所得结论有助于理解大脑中神经信息的传递和处理机制,并为治疗同步异常导致的神经系统疾病提供了新思路。
The brain has about100billion neurons each of which interacts with others toconstitute complex neural networks, so that functions of memory, cognition, emotion,and behavior are generated. The dynamical behavior of neuronal networks is closelyrelated to brain functions. Neural information processing in the brain is based on thecoordinated interactions of large numbers of neurons within different brain areas.Synchronization is an important mechanism for neural information processing. But,abnormal synchronization of individual neurons plays a key role in the emergence ofsome pathological brain functions. An effective treatment for these brain diseases iscontrolling the pathological synchronization processes of the brain by externalstimulation. Moreover, noise is widespread in neuronal networks, and resonance playsan significant role in neural information transmission. Therefore, synchronization,rensonance and synchronization control on complex neuronal networks are studied inthis work.
     A discrete modular neuronal network of small-world subnetworks is pioneeringlyconstructed based on a map-based neuron model to investigate its synchronizationmechanisms. It is shown that all neurons realize the chaotic phase synchronization onthe bursting time scale when the coupling strength exceeds a threshold, while on thespiking time scale, they behave asynchronously. Furthermore, phase synchronizationon small-world neuronal networks is greatly facilitated by a large random rewiringprobability. The variations of coupling strengths and the probability of random linksbetween different subnetworks can always induce synchronization transitions inmodular neuronal networks.
     Based on this model, the phenomena of stochastic resonance and vibrationalresonance on the modular neuronal networks are studied. It is found that there existsan optimal intensity of external stimulation (noise or high-frequency driving signal),by which the dynamical response of excitable neural systems to a subthresholdlow-frequency signal reaches the peak. The resonant effect of neural systems dependsextensively on the network structure and parameters. There exists an optimaltopological structure, such that the ability of neuronal networks for weak signaldetection and transmission achieves best.
     Considering that abnormal synchronization of neurons may induce somepathological conditions in the brain, such as Parkinson’s disease or epilepsy, weinvestigate effective suppression of such synchronized neural activity using anexternal periodic signal and delayed feedback control, but without changing theintrinsic activities of individual neurons. In particular, the delayed feedback controlbased on mean-field activity of the neuronal network is noninvasive, since thestimulation signal tends to zero once desynchronized state is attained, which is anadvantage for practical application in deep brain stimulation.
     The presented results in this work could have important implications for themechanisms of neural information transmission and processing in the brain, also thetreatment of neurological diseases induced by abnormal synchronization.
引文
[1] I. B. Levitan, L. K. Kacmarek,神经元:细胞和分子生物学(舒斯云,包新民),北京:科学出版社,2001,1-237.
    [2]顾凡及,梁培基,神经信息处理,北京:北京工业大学出版社,2007,1-175.
    [3]汪云九,神经信息学,北京:高等教育出版社,2006,1-135.
    [4]焦贤发,神经信息处理的相变机制与神经控制方法研究:[博士学位论文],东华大学,2007.
    [5]陆启韶,刘深泉,刘峰,等,生物神经网络系统的动力学与功能研究,力学进展,2008,38(6):766-793.
    [6]盛祖杭,陆佩华,神经元突触传递的细胞核分子生物学,上海:上海科学技术出版社,2008,1-12.
    [7]寿天德,神经生物学,北京:高等教育出版社,2002,1-41.
    [8] A. Longstaff,神经科学,韩济生等译,北京:科学出版社,2000,1-120.
    [9] E. M. Izhikevich, Neural excitability spiking and bursting, InternationalJournal of Bifurcation and Chaos,2000,10:1171-1266.
    [10] E. R. Kandel, J. H. Schwartz, T. M Jessell, Principles of neural science,London: Prentice-Hall International Inc.,1991.
    [11] M. I. Rabinovich, P. Varona, A. I. Selverston, et al., Dynamical principles inneuroscience, Reviews of Modern Physics,2006,78:1213-1265.
    [12]阮炯,顾凡及,蔡志杰,神经动力学模型方法和应用,北京:科学出版社,2002,1-79.
    [13] A. L. Hodgkin, A. F. Huxley, Currents carried by sodium and potassium ionsthrough the membrane of the giant axon of Loligo, Journal of Physiology,1952,116:449-472.
    [14] A. L. Hodgkin, A. F. Huxley, The components of membrane conductance inthe giant axon of Loligo, Journal of Physiology,1952,116:473-496.
    [15] A. L. Hodgkin, A. F. Huxley, A quantitative description of ion currents and itsapplications to conduction and excitation in nerve membranes, Journal ofPhysiology,1952,117:500-544.
    [16]柴玉珍,非线性神经元电活动的数学模型及其分析方法与计算机仿真研究:[博士学位论文],太原理工大学,2009.
    [17] J. L. Hindmarsh, R. M. Rose, A model of neuronal bursting using threecoupled first order differential equations, Proc. R. Soc. London, Ser. B,1984,221:87-102.
    [18] G. W. Beeler, H. Reuter, Reconstruction of the action potential of ventricularmyocardial fibres, Journal of Physiology,1997,235:103-131.
    [19] C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber,Biophysical Journal,1981,35:193-213.
    [20] T. R. Chay, J. Rinzel, Bursting, beating, and chaos in an excitable membranemodel, Biophysical Journal,1985,47:357-366.
    [21] T. R. Chay, J. Keizer, Minimal model for membrane oscillations in thepancreatic beta-cell, Biophysical Journal,1983,42:181-190.
    [22] R. E. Plant, Mathematical description of a bursting pacemaker neuron by amodification of the Hodgkin-Huxleye quations, Biophysical Journal,1976,16:227-244.
    [23] T. R. Chay, Eyring Rate theory in excitable membranes:application to neuronaloscillations, The Journal of Physical Chemistry B,1983,87:2935-2940.
    [24] R. FitzHugu, Mathematical models of threshold phenomena in the nervemembrane, The Bulletin of Mathematical Biophysics,1961,17:257-278.
    [25] L. Lapicque, Recherches quantitatives sur l’excitation electrique desnerfstraitee comme une polarization, J. Physiol. Pathol. Gen.,1907,9:620-635.
    [26] W. Gerstner, W. M. Kistler, Spiking neuron models, New York: CambridgeUniversity Press,1999.
    [27] E. M. Izhikevich, Simple Model of Spiking Neurons, IEEE Transactions onNeural Networks,2003,14(6):1569-1572.
    [28] B. Ibarz, J. M. Casado, M. A. F. Sanjuán, Map-based models in neuronaldynamics, Physics Reports,2011,501:1-74.
    [29] M. Courbage, V. I. Nekorkin, Map Based models in neurodynamics,International Journal of Bifurcation and Chaos,2010,20(6):1631-1651.
    [30] D. R. Chialvo, Generic excitable dynamics on the two-dimensional map,Chaos, Solitons and Fractals,1995,5:461-480.
    [31] M. Courbage, V. I. Nekorkin, L. V. Vdovin, Chaotic oscillations in amap-based model of neural activity, Chaos,2007,17:043109.
    [32] N. F. Rulkov, Modeling of spiking-bursting neural behavior usingtwo-dimensional map, Physical Review E,2002,65:041922.
    [33] A. L. Shilnikov, N. F. Rulkov, Subthreshold oscillations in a map-basedneuron model, Physical Review Letters,2004,328:177-184.
    [34] A. L. Shilnikov, N. F. Rulkov, Origin of chaos in a two-dimensional mapmodeling spiking busting neural activity, International Journal of Bifurcationand Chaos,2003,13(11):3325-3340.
    [35] N. F. Rulkov, Regularization of synchronized chaotic bursts, Physical ReviewLetters2001,86:183-186.
    [36] M. V. Simkin, V. P. Roychowdhury, Re-inventing willis, Physics Reports,2011,502:1-35.
    [37] P. Erdos, A. Renyi, On the evolution of random graphs, Publ. Math. Inst.Hungar. Acad. Sci.1960,5:17-60.
    [38] S. H. Strong, Exploring complex networks, Nature,2001,41:268-376.
    [39]汪小帆,李翔,陈关荣,复杂网络理论及其应用,北京:清华大学出版社,2006,8-11.
    [40] A. L. Barabasi, The new science of networks, Massachusetts: PersusPublishing,2002.
    [41] A. L. Barabasi, R. Albert, Emergence of scaling in random networks, Science,1999,286(5439):509-512.
    [42] D. J. Watts, S. H. Strogatz, Collective dynamics of ‘small-world’ networks,Nature,1998,393:440-442.
    [43] S. N. Dorogovtsev, J. F. F. Mendes, Evolution of networks, Advances inPhysics,2002,51:1079-1181.
    [44] X. F. Wang, G. Chen, Complex networks: Small world, scale free and beyond,IEEE Circuit and System Magazine,2003,3(1):6-21.
    [45] G. Zamora-López, C. Zhou, J. Kurths, Cortical hubs form a module formultisensory integration on top of the hierarchy of cortical networks, Frontiersin Neuroinformatics,2010,4:1.
    [46] L. Zemanová, C. S. Zhou, J. Kurths, Structural and functional clusters ofcomplex brain networks, Physica D,2006,224:202-212.
    [47] C. C. Hilgetag, M. Kaiser, Clustered organisation of cortical connectivity.Neuroinformatics,2004,2:353-360.
    [48] G. Zamora-López, C. S. Zhou, J. Kurths, Graph analysis of cortical networksreveals complex anatomical communication substrate, Chaos,2009,19:015117.
    [49] E. Bullmore, O. Sporns, Complex brain networks: graph theoretical analysis ofstructural and functional systems, Nature Reviews Neuroscience,2009,10:186-198.
    [50] D. R. Chialvo, Critical brain networks, Physica A,2004,340:756-765.
    [51] O. Sporns, D. R. Chialvo, M. Kaiser, et al., Organization, development andfunction of complex brain networks, Trends in Cognitive Sciences,2004,8:418-425.
    [52] J. C. Reijneveld, S. C. Ponten, H. W. Berendse, et al., The application of graphtheoretical analysis to complex networks in the brain, ClinicalNeurophysiology,2007,118(11):2317-2331.
    [53] C. J. Stam, J. C. Reijneveld, Graph theoretical analysis of complex networks inthe brain, Nonlinear Biomedical Physics,2007,1(1):3.
    [54] C. J. Honey, R. Kotter, M. Breakspear, et al., Network structure of cerebralcortex shapes functional connectivity on multiple time scales, Proc. Natl. Acad.Sci. U. S. A.2007,104:10240-10245.
    [55] M. P. van der Heuvel, C. J. Stam, M. Boersma, et al., Small-world andscale-free organization of voxel-based resting-state functional connectivity inthe human brain, Neuroimage,2008,43:528-539.
    [56] M. D. Humphries, K. Gurney, T. J. Prescott, The brainstem reticular formationis a small-world, not scale-free, network. Proceedings of the Royal Society(London) B,2006,273:503-511.
    [57] R. Salvador, J. Suckling, M. R. Coleman, et al., Neurophysiologicalarchitecture of functional magnetic resonance images of human brain, CerebralCortex,2005,15:1332-1342.
    [58] H. Hong, M. Y. Choi, B. J. Kim, Synchronization on small-world networks,Physical Review E,2002,65:026139.
    [59] C. H. Park, S. Y. Kim, Y.-H. Kim, et al., Comparison of the small-worldtopology between anatomical and functional connectivity in the human brain,Physica A,2008,387:5958–5962.
    [60] L. H. Hartwell, J. J. Hopfield, S. Leibler, et al., From molecular to modular cellbiology, Nature,1999,402: C42-C52.
    [61] J. D. Han, N. Bertin, T. Hao, Evidence for dynamically organized modularityin the yeast protein-protein interaction network, Nature,2004,430:88-93.
    [62] J. W. Scannell, M. P. Young, The connectional organization of neural systemsin the cat cerebral cortex, Current Biology,1993,3:191-200.
    [63] J. W. Scannell, C. Blakemore, M. P. Young, Analysis of connectivity in the catcerebral cortex, The Journal of Neuroscience,1995,15:1463–1483.
    [64] C. C. Hilgetag, G. A. Burns, M. A. O’neill, et al., Anatomical connectivitydefines the organization of clusters of cortical areas in the macaque monkeyand the cat. Philos. Trans. R. Soc. Lond., B, Biol. Sci.,2000,355:91-110.
    [65] C. C. Hilgetag, M. Kaiser, Clustered organisation of cortical connectivity,Neuroinformatics,2004,2:353-360.
    [66] M. F. Bear, B. W. Connors, M. A. Paradiso, Neuroscience: Exploring theBrain, Baltimore: Lippincott Williams and Wilkins,2006.
    [67] A. K. Engel, W. Singer, Temporal binding and neural correlates of sensoryawareness, Trends in Cognitive Sciences,2001,5:16-25.
    [68] G. Zamora-López, C. Zhou, J. Kurths, Graph analysis of cortical networksreveals complex anatomical coommunication substrate, Chaos,2009,19:015117.
    [69] O. Sporns, C. J. Honey, R. K tter, Identifi cation and classifi cation of hubs inbrain networks, PloS One,2007,10: e1049.
    [70] C. S. Zhou, L. Zemanová, G. Zamora-López, et al., Structure-functionrelationship in complex brain networks expressed by hierarchicalsynchronization, New Journal of Physics,2007,9:178.
    [71] N. V. Manyakov, M. M. Van Hulle, Synchronization in monkey visual cortexanalyzed with an information-theoretic measure, Chaos,2008,18:037130.
    [72] R. C. Elson, A. I. Selverston, R. Huerta, et al., Synchronous Behavior of TwoCoupled Biological Neurons, Physical Review Letters,1998,81:5692-5695.
    [73] K. Kryukov, V. S. Petrov, L. S. Averyanova, et al., Synchronizationphenomena in mixed media of passive, excitable, and oscillatory cells, Chaos,2008,18:037129.
    [74] P. N. Steinmeta, A. Roy, P. J. Fitzgerald, et al., Attention modulatessynchronized neuronal firing in primate soma tosensory cortex, Nature,2000,404:187-190.
    [75] J. Fell, G. Fernandez, P. Klaver, et al., Is synchronized neuronal gammaactivity relevant for selective attentions? Brain Research Reviews,2003,42:265-272.
    [76] E. Niebur, S. S. Hsiao, K. O. Johnson, Synchrony: a neuronal mechanism forattentional selection, Current Opinion in Neurobiology,2002,12:190-194.
    [77] W. Singer, Synchronization of cortical activity and its putative role ininformation processing and learning, Annual Review of Physiology,1993,5:349-374.
    [78] E. M. Izhikevich, Neural excitability, spiking and bursting, InternationalJournal of Bifurcation and Chaos,2000,10:1171-1266.
    [79] E. M. Izhikevich, F. C. Hoppensteadt, Classfication of bursting mapping,International Journal of Bifurcation and Chaos,2004,14:3847-3854.
    [80] M. Rosenblum, A. Pikovsky, J. Kurths, Phase synchronization of chaoticoscillators, Physical Review Letters,1996,76:1804-1807.
    [81]王海侠,神经元放电模式和同步的动力学研究:[博士学位论文],北京航空航天大学,2006.
    [82]石霞,神经元耦合系统的同步动力学研究:[博士学位论文],北京航空航天大学,2005.
    [83]王青云,耦合神经元的同步和时滞影响的动力学研究:[博士学位论文],北京航空航天大学,2006.
    [84]王青云,石霞,陆启韶,神经元耦合系统的同步动力学,北京:科学出版社,2008,1-100.
    [85] M. A. Komarov, G. V. Osipov, J. A. K. Suykens, Veriety of synchronousregimes in neuronal ensembles, Chaos,2008,18:037121.
    [86]石霞,化学突触耦合神经元的簇放电同步,力学季刊,2010,31(1):52-57.
    [87] X. Shi, Q. Lu, Burst synchronization of electrically and chemically coupledmap-based neurons, Physica A,2009,388,2410-2419.
    [88]王青云,陆启韶,兴奋性化学突触耦合的神经元的同步,动力学与控制学报,2008,6(1):35-39.
    [89] H. Cao, M. A. F. Sanjuan, A mechanism for elliptic-like bursting andsynchronization of bursts in a map-based neuron network, CognitiveProcessing,2009,10:23-31.
    [90] M. V. Ivanchenko, G. V. Osipov, V. D. Shalfeev, et al., Phase synchronizationin ensembles of bursting oscillators, Physical Review Letters,2004,93:134101.
    [91] Q. Y. Wang, Q. S. Lu, Phase synchronization in small world chaotic neuralnetworks, Chinese Physics Letters,2005,22:1329-1332.
    [92] C. A. S. Batista, A. M. Batista, J. A. C. de Pontes, et al., Chaotic phasesynchronization in scale-free networks of bursting neurons, Physical Review E,2007,76:016218.
    [93] C. A. S. Batista, A. M. Batista, J.A.C. de Pontes, et al., Burstingsynchronization in scale-free networks, Chaos, Solitons and Fractals,2009,41:2220-2225.
    [94] X. Sun, J. Lei, M. Perc, et al., Burst synchronization transitions in a neuronalnetwork of subnetworks, Chaos,2011,21:016110.
    [95] E. R. Kandel, J. H. Schwartz, T. M. Jessell, Principles of neural science,Amsterdam: Elsevier,1991.
    [96] M. Dhamala, V. K. Jirsa, M. Z. Ding, Enhancement of neural synchrony bytime delay, Physical Review Letters,2004,92:074104.
    [97] Q. Y. Wang, Q. S. Lu, Time-delay enhanced synchronization angregularization in two coupled chaotic ML neurons,Chinese Physics letters,2005,22:543-546.
    [98] Q. Wang, M. Perc, Z. Duan, et al., Impact of delays and rewiring on thedynamics of small-world neuronal networks with two types of coupling,Physica A,2010,389:3299-3306.
    [99] O. Kwon, H. T. Moon, Coherence resonance in small-world networks ofexcitable cells, Physics Letters A,2002,298:319-324.
    [100] Q. Wang, G. Chen, Delay-induced intermittent transition of synchronization inneuronal networks with hybrid synapses, Chaos,2011,21:013123.
    [101] U. Ernst, K. Pawelzik, T. Geisel, Synchronization induced by temporal delaysin pulse-coupled oscillators, Physical Review Letters,1995,74:1570-1573.
    [102] U. Ernst, K. Pawelzik, T. Geisel, Delay-induced multistable synchronization ofbiological oscillators, Physical Review E,1998,57:2150-2162.
    [103] X. Liang, M. Tang, M. Dhamala, et al., Phase synchronization of inhibitorybursting neurons induced by distributed time delays in chemical coupling,Physical Review E,2009,80:066202.
    [104] J. A. White, J. T. Rubinstein, A. R. Kay, Channel noise in neurons, Trends inNeurosciences,2000,23(3):131-138.
    [105] A. A. Faisal, L. P. J. Selen, D. M. Wolpert, Noise in the nervous system,Nature Reviews Neuroscience2008,9(4):292-303.
    [106] S. Fauve, F. Heslot, Stochastic resonance in a bistable system, Physics LettersA,1983,1:5-7.
    [107] B. McNamara, K. Wiesenfeld, R. Roy, Observation of Stochastic Resonance ina Ring Laser, Physical Review Letters,1988,60:2626-2629.
    [108]康艳梅,徐建学,谢勇,单模非线性光学系统的弛豫速率与随机共振,物理学报,2003,52(11):2712-2717.
    [109]祝恒江,李蓉,温孝东,利用随机共振在强噪声下提取信息信号,物理学报,2003,52(10):2404-2408.
    [110]林敏,黄咏梅,调制与解调用于随机共振的微弱周期信号检测,物理学报,2006,55(7):3277-3282.
    [111]朱光起,丁珂,张宇,赵远,基于随机共振进行弱信号探测的实验研究,物理学报,2010,59(5):3001-3006.
    [112] J. E. Levin, J. P. Miller, Broadband neural encoding in the cricket cercelsensory system enhanced by stoachastic resonance, Nature,1996,380:165-168.
    [113] K. Kitajo, K. Yamanaka, L. M. Ward, et al., Stochastic resonance in attentioncontrol, Europhysics Letters,2006,76(6):1029-1035.
    [114] L. K. Rimskaya-Korsakova, Stochastic resonance at the periphery of auditorysystem: a simulation experiment, Acoustical Physics,2004,50(2):201-211
    [115] M. Usher, M. Feingold, Stochastic resonance in the speed of memory retrieval,Biological Cybernetics,2000,83:11-16.
    [116] M. D. McDonnell, L. M. Ward, The benefits of noise in neural systems:bridging theory and experiment, Nature Reviews Neuroscience,2011,12,415-426.
    [117] M. N. Shadlen, W. T. Newsome, Noise, neural codes and cortical organization,Current Opinion in Neurobiology,1994,4:569-579.
    [118] J. Cafaro, F. Rieke, Noise correlations improve response fidelity and stimulusencoding, Nature,2010,468:964–967.
    [119] M. J. Chacron, A. Longtin, L. Maler, The effects of spontaneous activity,background noise, and the stimulus ensemble on information transfer inneurons, Network: Comput. Neural Syst.,2003,14:803-824.
    [120] P. Jung, G. Mayer-Kress, Spatiotemporal stochastic resonance in excitablemedia, Physical Review Letters,1995,74:2130-2133.
    [121] L. Gammaitoni, P. H nggi, P. Jung, et al., Stochastic resonance, Reviews ofModern Physics,1998,70(1):223-287.
    [122] M. Morillo, J. Gomez-Ordonez, J. M. Casado, Stochastic resonance in amean-field model of cooperative behavior, Physical Review E,1995,52:316-320.
    [123] R. Benzi, A. Sutera, A. Vulpiani, The mechanism of stochastic resonance,Journal of Physics A,1981,14(11): L453-L457.
    [124] S. G. Lee, S. Kim, Parameter dependence of stochastic resonance in thestochastic Hodgkin-Huxley neuron, Physical Review E,1999,60:826-830.
    [125]张广军,徐建学,线性动力系统分岔点邻域内随机共振的特性,物理学报,2005,54(2):557-564.
    [126]张广军,徐健学,王相波,姚宏, FitzHugh-Nagumo神经元模型非阈下响应的随机共振,空军工程大学学报,2006,7(4):79-81.
    [127] T. Shimokawa, K. Pakdaman, S. Sato, Time-scale matching in the response ofa leaky integrate-and-fire neuron model to periodic stimulus with additivenoise, Physical Review E,1999,59:3427-3443.
    [128]焦贤发,王俊琦,王如彬,突触噪声作用下的IF阈值神经元模型的随机共振,动力学与控制学报,2010,8(3):273-276.
    [129]汪茂胜,二维映射神经元模型中频率依赖的随机共振,物理学报,2009,58(10):6833-6837.
    [130]贾洪军,王江,于海涛,等, Courbage神经元映射模型的随机共振研究,动力学与控制学报,2011,9(3):263-267.
    [131]张晓燕,徐伟,周丙常,色高斯噪声驱动双稳系统的多重随机共振研究,物理学报,2011,60(6):060514.
    [132]张良英,曹力,吴大进,具有色关联的色噪声驱动下单模激光线性模型的随机共振,物理学报,2003,52(5):1174-1178.
    [133] S. M. Bezrukov, I. Vodyanov, Noise-induced enhancement of signaltransduction across voltage-dependent ion channels, Nature (London),1995,378,362-364.
    [134] J. K. Douglass, L. Wilkens, E. Pantazelou, et al., Noise enhancement ofinformation transfer in crayfish mechanoreceptors by stochastic resonance,Nature (London),1993,365:337-340.
    [135] D. F. Russell, L.A. Wilkens, F. Moss, Use of behavioural stochastic resonanceby paddle fish for feeding, Nature,1999,402:291-294.
    [136] A. Longtin, A. Bulsara, F. Moss, Time-interval sequences in bistable systemsand the noise-induced transmission of information by sensory neurons,Physical Review Letters,1991,67:656-659.
    [137] J. S. Anderson, I. Lampl, D. C. Gillespie, et al., The contribution of noise tocontrast invariance of orientation tuning in cat visual cortex, Science,2000,290:1968–1972.
    [138] D. G. Wang, X. M. Liang, J. Wang, et al., Harmonic stochastic resonance-enhanced signal detecting in NW small-world neural network, Chinese PhysicsB,2010,19:110515.
    [139] Z. Gao, B. Hu, G. Hu, Stochastic resonance of small-world networks, PhysicalReview E,2001,65:016209.
    [140] W. J. Yuan, X. S. Luo, R. H. Yang, Stochastic resonance in neural systemswith small-world connections, Chinese Physics Letters,2007,24(3):835-838.
    [141] Y. Gong, M. Wang, Z. Hou, et al., Optimal Spike Coherence andSynchronization on Complex Hodgkin–Huxley Neuron Networks, Chem. Phys.Chem.,2005,6:1042-1047.
    [142] M. Ozer, M. Uzuntarla, T. Kayikcioglu, et al., Collective temporal coherencefor subthreshold signal encoding on a stochastic small-world Hodgkin–Huxleyneuronal network, Physics Letters A,2008,372:6498-6503.
    [143] Q. Y. Wang, Q. S. Lu, G. R. Chen, Subthreshold stimulus-aided temporalorder and synchronization in a square lattice noisy neuronal network,Europhysics Letters,2007,77:10004.
    [144]周小荣,罗晓曙,蒋品群,袁五届,小世界神经网络的二次超谐波随机共振,物理学报,2007,56(10):5679-5683.
    [145] X. Li, J. Wang, W. Hu, Effects of chemical synapses on the enhancement ofsignal propagation in coupled neurons near the canard regime, PhysicalReview E,2007,76:041902.
    [146] A. Pikovsky, A. Zaikin, System size resonance in coupled noisy systems and inthe ising model, Physical Review Letters,2002,88:050601.
    [147] M. Perc, M. Gosak, Pacemaker-driven stochastic resonance on diffusive andcomplex networks of bistable oscillators, New Journal of Physics,2008,10:053008.
    [148] A. M. Katz, Physiology of the Heart, Kluwer: Philadelphia,2000.
    [149] R. E. Haddock, C. E. Hill, Rhythmicity in arterial smooth muscle, The Journalof Physiology,2005,566:645-656.
    [150] M. Perc, Stochastic resonance on excitable small-world networks via apacemaker, Physical Review E,2007,76:066203.
    [151] M. Ozer, M. Perc, M. Uzuntarla, Stochastic resonance on Newman–Wattsnetworks of Hodgkin–Huxley neurons with local periodic driving, PhysicsLetters A,2009,373:964-968.
    [152] Q. Wang, M. Perc, Z. Duan, et al., Delay-induced mutiple stochasticresonances on scale-free neuronal networks, Chaos,2009,19:023112.
    [153]刘秋香,于海涛,王江,二维映射神经元模型中的振动共振,动力学与控制学报,2012,10(1):92-96.
    [154] M. Gitterman, Bistable oscillator driven by two periodic fields. Journal ofPhysics A: Mathematical and Theoretical,2001.34: L355-L357.
    [155] P. S. Landa, P. V. E. McClintock, Vibrational resonance, Journal of Physics A:Mathematical and Theoretical,2000,33: L433-L438.
    [156] V. N. Chizhevsky, G. Giovanni, Experimental and theoretical study ofvibrational resonance in a bistable system with asymmetry, Physical Review E,2006,73:02210.
    [157] V. N. Chizhevsky, G. Giovanni, Vibrational resonance and the detection ofaperiodic binary signals, Physical Review E,2008,77:051126.
    [158] E. Ullner, A. Zaikin, J. García-Ojalvo, et al., Vibrational resonance andvibrational propagation in excitable systems, Physics Letters A,2003,312:348-354
    [159] S. Rajasekar, K. Abirami, M. A. F. Sanjuan, Novel vibrational resonance inmultistable systems, Chaos,2011,21:033106.
    [160]林敏,黄咏梅,双稳系统的振动共振及特性分析,振动与冲击,2007,26(12):151-153.
    [161] J. H. Yang, X. B. Liu, Controlling vibrational resonance in a multistablesystem by time delay, Chaos,2010,20:033124.
    [162] J. H. Yang, X. B. Liu, Delay induces quasi-periodic vibrational resonance,Journal of Physics A: Mathematical and Theoretical,2010,43:122001.
    [163]杨建华,刘先斌,线性时滞反馈引起的周期性振动共振分析,物理学报,2012,61(1):010505
    [164] B. Deng, J. Wang, X. Wei, et al., Vibrational resonance in neuron populations,Chaos,2010,20:013113.
    [165] B. Deng, J. Wang, X. Wei, Effect of chemical synapse on vibrationalresonance in coupled neurons, Chaos,2009,19:013117.
    [166] Y. Qin, J. Wang, C. Men, et al., Vibrational resonance in feedforward network,Chaos,2011,21:023133.
    [167] W. A. MacKay, Synchronized neuronal oscillations and their role in motorprocesses, Trends in Cognitive Sciences,1997,1:176-183.
    [168] N. Koshiya, J. C. Smith, Neuronal pacemaker for breathing visualized in vitro,Nature,1999,400:360-363.
    [169] J. Fell, N. Axmacher, The role of phase synchronization in memory processes,Nature Reviews Neuroscience,2011,12,105-118.
    [170] J. Wang, B. Deng, K. M.Tsang, Chaotic synchronization of neurons coupledwith gap junction under external electrical stimulation. Chaos, Solitons andFractals,2004,22:469-476.
    [171] Q. Y. Wang, Q. S. Lu, G. R. Chen, et al., Chaos synchronization of coupledneurons with gap junctions, Physics Letters A,2006,356:17-25.
    [172] Y. Q. Che, J. Wang, W. L. Chan, et al., Chaos synchronization of coupledneurons under electrical stimulation via robust adaptive fuzzy control,Nonlinear Dynamics,2010,61(4):847-857.
    [173] Y. Q. Che, J. Wang, K. M. Tsang, et al., Unidirectional synchronization forHindmarsh-Rose neurons via robust adaptive sliding mode control, NonlinearAnalysis: Real World Applications,2010,10(2):1096-1104.
    [174] J. Wang, B. Deng, X. Y. Fei, Synchronizing two coupled chaotic neurons inexternal electrical stimulation using backstepping control, Chaos, Solitons andFractals,2006,29:182-189.
    [175] J. Wang, B. Deng, X. Y. Fei, Chaotic synchronization of two coupled neuronsvia nonlinear control in external electrical stimulation, Chaos, Solitons andFractals,2006,27:1272-1278.
    [176] Y. Q. Che, J. Wang, S. S. Zhou, et al., Robust synchronization control ofcoupled chaotic neurons under external electrical stimulation, Chaos, Solitonsand Fractals,2009,40:1333-1342.
    [177]刘玉亮,外电场作用下神经元动力学分析与同步控制:[博士学位论文],天津大学,2011.
    [178] T. Zhang, J. Wang, X. Fei, et al., Synchronization of coupledFitzHugh-Nagumo systems via MIMO feedback linearization control, Chaos,Solitons and Fractals,2007,33:194-202.
    [179] W. W. Albert, E. J. Wright, B. Feinstein, Cortical potentials and Parkinsoniantremor, Nature,1969,221:670-672.
    [180] H. J. Freund, Motor unit and muscle activity in voluntary motor control,Physiological Reviews,1983,63:387-436.
    [181] R. Levy, W. D. Hutchison, A. M. Lozano, et al., High-frequencysynchronization of neuronal activity in the subthalamic nucleus ofParkinsonian patients with limb tremor, The Journal of Neuroscience,2000,20:7766-7775.
    [182] H. Bergman, T. Wichmann, B. Karmon, et al., The primate subthalamicnucleus. II. neuronal activity in the MPTP model of Parkinsonism, Journal ofNeurophysiology,1994,72:507-520.
    [183] D. Pare, R. Curro’Dossi, M.Steriade, Neuronal basis of the parkinsonianresting tremor: a hypothesis and its implications for treatment, Neuroscience,1990,35:217-226.
    [184] J. E. Rubin, D. Terman, High frequency stimulation of the subthalamic nucleuseliminates pathological thalamic rhythmicity in a computational model,Journal of Computational Neuroscience,2004,16:211-235.
    [185] A. Nini, A. Feingold, H. Slovin, et al., Neurons in the globus pallidus do notshow correlated activity in the normal monkey, but phase-locked oscillationsappear in the MPTP model of parkinsonism, Journal of Neurophysiology,1995,74:1800-1805.
    [186] A. Renart, J. de la Rocha, Peter Bartho, et al., The asynchronous state incortical circuits, Science,2010,327:587-590.
    [187] A. L. Benabid, P. Pollak, C. Gervason, et al., Long term suppression of tremorby chronic stimulation of ventral intermediate thalamic nucleus, Lancet,1991,337:403-406.
    [188] L. Timmermann, L. Wojtecki, J. Gross, et al., Ten-Hertz stimulation ofsubthalamic nucleus deteriorates motor symptoms in Parkinson’s disease,Movement Disorders,2004,19:1328-1333.
    [189] N. Fogelson, A. A. Kuhn, P. Silberstein, et al., Frequency dependent effects ofsubthalamic nucleus stimulation in Parkinson’s disease, Neuroscience Letters,2005,382:5-9.
    [190] J. S. Perlmutter, J. W. Mink, Deep brain stimulation, Annual Review ofNeuroscience,2006,29:229-257.
    [191] L. Rocchi, L. Chiari, F. B. Horak, Effects of deep brain stimulation andlevodopa on postural sway in Parkinson’s disease, Journal of Neurology,Neurosurgery, and Psychiatry,2002,73:267-274.
    [192] P. A. Starr, J. L. Vitek, R. A. Bakay, Ablative surgery and deep brainstimulation for Parkinson's disease, Neurosurgery,1998,43:989-1013.
    [193] A. Stefani, E. Fedele, S. Galati, Deep brain stimulation in Parkinson’s diseasepatients: Biochemical evidence, Journal of Neural Transmission, Supplementa,2006,70:401-408.
    [194] C. C. McIntyre, M. Savasta, Kerkerian-Le, et al., Uncovering the mechanism(s)of action of deep brain stimulation: activation, inhibition, or both, ClinicalNeurophysiology,2004,115(6):1239-1248.
    [195] A. L. Benabid, A. Benazzous, P. Pollak, Mechanisms of deep brain stimulation,Movement Disorders,2002,17:73-74.
    [196] D. Terman, J. E. Rubin, High frequency stimulation of the subthalamic nucleuseliminates pathological thalamic rhythmicity in a computational model,Journal of Computational Neuroscience,2004,16:211-235.
    [197] M. C. Rodriguez-Oroz, J. A. Obeso, A. E. Lang, et al., Bilateral deep brainstimulation in parkinson’s disease: amulticentre study with4years follow-up.Brain,2005,128(10):2240-2249.
    [198] R. Kumar, A. M. Lozano, E. Sime, A. E. Lang. Long-term followup ofthalamic deep brain stimulation for essential and parkinsonian tremor,Neurology,2003,61(11):1601-1604
    [199] P. A. Tass, Phase resetting in medicine and biology: stochastic modelling anddata analysis, New York: Springer,1999.
    [200] P. A. Tass, Effective desynchronization by means of double-pulse phaseresetting, Europhysics Letters,2001,53:15-21.
    [201] P. A. Tass, Desynchronizing double-pulse phase resetting and application todeep brain stimulation, Biological Cybernetics,2001,85:343-354.
    [202] P. A. Tass, A model of desynchronizing deep brain stimulation with ademand-controlled coordinated reset of neural subpopulations, BiologicalCybernetics,2003,89:81-88.
    [203] P. A. Tass, Effective desynchronizationwith a resetting pulse train followed bya single pulse, Europhysics Letters,2001,55:171-177.
    [204] P. A. Tass, Desynchronization of brain rhythms with soft phaseresettingtechniques, Biological Cybernetics,2002,87:102–115
    [205] P. A. Tass, Effective desynchronizationwith bipolar double-pulse stimulation,Physical Review E,2002,66:036226.
    [206] P. A. Tass, Stochastic phase resetting of two coupled phase oscillatorsstimulated at different times, Physical Review E,2003,67:051902
    [207] K. Pyragas, Continuous control of chaos by self-controlling feedback, PhysicsLetters A,1992,170:421-427.
    [208] K. Pyragas, Analytical properties and optimization of time-delayed feedbackcontrol,Physical Review E,2002,66:0262207.
    [209] M. G. Rosenblum, A. S. Pikovsky, Delayed feedback control of collectivesynchrony: An approach to suppression of pathological brain rhythms,Physical Review Letters,2004,92:041904.
    [210] M. G. Rosenblum, A. S. Pikovsky, Controlling synchronization in an ensembleof globally coupled oscillators, Physical Review Letters,2004,92:114102.
    [211] M. Rosenblum, N. Tukhlina, A. Pikovsky, et al., Delayed feedbacksuppression of collective rhythmic activity in a neuronal ensemble,International Journal of Bifurcation and Chaos,2006,16:1989-1999.
    [212] M. Rosenblum, N. Tukhlina, A. Pikovsky, Delayed feedbcak suppression ofcollective rhythmic activity in a neuronal ensemble, International Journal ofBifurcation and Chaos,2006,7:1989-1999.
    [213] C. A. S. Batista, S. R. Lopes, R. L. Viana, et al., Delayed feedback control ofbursting synchronization in a scale-free neuronal network, Neural Networks,2010,23:114-24.
    [214] O. V. Popovych, C. Hauptmann, P. A. Tass, Control of neuronal synchrony bynonlinear delayed feedback, Biological Cybernetics,2006,95:69-85.
    [215] O. V. Popovych, C. Hauptmann, P. A. Tass, Effective desynchronization bynonlinear delayed feedback, Physical Review Letters,2005,94:164102.
    [216] O. V. Popovych, C. Hauptmann, P. A. Tass, Desynchronization anddecoupling of interacting oscillators by nonlinear delayed feedback,International Journal of Bifurcation and Chaos,2006,16:1977-1987.
    [217] O. V. Popovych, P. A. Tass, Synchronization control of interacting oscillatoryensembles by mixed nonlinear delayed feedback, Physical Review E,2010,82:026204.
    [218] M. Luo, J. Xu, Suppression of collective synchronization in a system ofneuronal groups with washout-filter-aided feedback, Neural Networks,2011,24(6):538-543.
    [219] M. Luo, Y. Wu, J. Peng, Washout filter aided mean field feedbackdesynchronization in an ensemble of globally coupled neural oscillators,Biological Cybernetics,2009,101:241-246.
    [220] C. A. S. Batista, A. M. Batista, J. A. C. de Pontes, et al., Burstingsynchronization in scale-free networks, Chaos, Solitons and Fractals,2009,41:2220-2225.
    [221] N. F. Rulkov, M. Bazhenov, Oscillations and synchrony in large-scale corticalnetwork models, Journal of Biological Physics,2008,34(3-4):279-299.
    [222] N. F. Rulkov, I. Timofeev, M. Bazhenov, Oscillations in large-scale corticalnetworks: Map-based model, Journal of Computational Neuroscience,2004,17:203-223.
    [223]党亚瑞,阮炯,广义Rulkov模型的分支分析,复旦学报,2008,47(2):177-183.
    [224] L. Huang, K. Park, Y. Lai, et al., Abnormal Synchronization in ComplexClustered Networks, Physical Review Letters,2006,97:164101.
    [225] L. Huang, Y. Lai, R. Gatenby, Alternating synchronizability of complexclustered networks with regular local structure, Physical Review E,2008,77:016103.
    [226] K. Park, Y. Lai, S. Gupte, J. Kim, Synchronization in complex networks with amodular structure, Chaos,2006,16:015105.
    [227] T. Zhou, M. Zhao, G. Chen, et al., Phase synchronization on scale-freenetworks with community structure, Physics Letters A,2007,368:431-434.
    [228] S. Guan, X. Wang, Y. Lai, et al., Transition to global synchronization inclustered networks, Physical Review E,2008,77:016103.
    [229] A. Pikovsky, S. Ruffo, Finite-size effects in a population of interactingoscillators, Physical Review E,1999,59,1633-1636.
    [230] E. Sakyte, M. Ragulskis, Self-calming of a random network of dendriticneurons, Neurocomputing,2011,74:3912-3920.
    [231]温金鑫,基于映射模型的小世界神经网络同步特性的研究:[硕士学位论文],天津大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700