海马CA3SWNN模型及神经元集群编码刺激的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     本论文基于海马CA3区神经元发放的稀疏分布,构建了海马CA3区神经元发放的小世界神经网络(Small World Neural Network,SWNN)模型。应用该模型,仿真了在脉冲输入、Gaussian白噪声输入和两者线性叠加的输入条件下,海马CA3区神经元群电活动的时空序列。应用两种神经元集群编码:频率编码(ratecoding)和基于神经元放电峰峰间隔序列(ISI)相关编码。研究了海马CA3区神经元集群对这三类信息(刺激)的编码,为研究海马神经元集群编码(信息)的研究,提供神经计算的支持。
     方法:
     1.海马CA3区神经元群小世界神经网络模型的构建
     根据海马CA3区特点:兴奋性神经元与抑制性神经元的数量比大约为5:1,海马CA3区神经元群体的稀疏发放(平均发放率小于10%)。在Matlab7.4仿真平台上,构建海马CA3区神经元群小世界神经网络模型。仿真海马CA3区神经元群体放电活动的时空序列。在小世界神经网络模型中每个神经元发放的模型是Hindmarsh-Rose(HR)模型,通过改变HR模型中的γ参数,可以得到兴奋性神经元和抑制性神经元的放电序列。海马CA3区神经元群小世界神经网络模型包含120个神经元,其中兴奋性神经元100个,抑制性神经元20个。神经元之间的联系按WS小世界网络的构建算法生成。
     2.应用小世界网络模型对海马CA3区神经元群放电时空序列的动态仿真
     设定三类典型的输入刺激模式:脉冲刺激、Gaussian白噪声刺激和以上两类刺激的线性叠加信号。在Matlab7.4平台上,对所构建的海马CA3区小世界神经网络模型分别施加上述三种不同的刺激模式,仿真在三种刺激条件下海马CA3区神经元群发放的时空序列40秒时间段,并获取在这三类刺激模式作用下序列中每个神经元放电的峰峰间隔(Inter-Spike Interval,ISI)序列,组成ISIs时空序列。
     3.仿真的海马CA3区神经元集群电活动对刺激的编码
     研究在不同的刺激模式下动态神经元集群对刺激的编码。采用两种神经元集群编码的表达方法:频率编码和ISI相关编码。比较频率编码和ISI相关编码,
     对三类特定刺激神经元集群编码的表征效能。
     对在不同刺激模式下获得的仿真神经元群体发放时空序列,分别应用频率编码和ISI相关编码来划分功能神经元集群。
     (1)神经元集群电活动的频率编码
     时间窗口为200ms(生理窗口),窗口移动步长设置为50ms,统计时空序列中每个神经元在每个移动窗口内的神经元发放的个数。进行归一化处理后,获得表征神经元群体发放时空模式的动态“地形图”。
     (2)基于放电峰峰间隔序列(ISI)的神经元集群相关编码
     ①对神经元群体放电时空序列(spike trains)中每个神经元的放电序列,计算放电脉冲间隔序列ISIs。
     ②连接N个神经元发放时空序列中每个神经元的离散ISIs点,经过曲线拟合后得到N条神经元发放ISI序列的连续曲线。
     ③选取在刺激后神经元平均发放频率最高的神经元发放序列作为参考序列。
     ④设定窗口宽度(选择小于50ms的小窗口),在第k个窗口中计算其它N-1个ISI序列对参考序列的相关值。
     ⑤选择步长为1/3窗口宽度,计算每个移动窗口中ISI中的N-1个相关值。
     ⑥绘制在时间、空间上神经元群体放电的“地形图”,划分编码特定刺激模式的动态神经元集群。
     结果:
     1.本论文在Matlab7.4仿真平台上构建了海马CA3区小世界神经网络模型。应用该模型可以成功仿真海马CA3区神经元群体的放电特性。
     2.在没有刺激输入时,海马CA3区小世界神经网络模型输出的神经元群动作电位发放平均发放率为7.8%,符合海马CA3区神经元群放电的稀疏发放特性(平均发放率小于10%)。
     3.在三类刺激输入模式(脉冲刺激、Gaussian白噪声刺激和上述两类刺激的线性叠加)下,模型输出的神经元群体动作电位发放的特征模式不同。
     对应的神经元集群编码模式如下:
     ①神经元集群频率编码
     (a)在脉冲刺激输入条件下,各个神经元的放电频率范围为[5.14~21.52]Hz,群体(120个神经元)平均放电频率为10.43±0.38 Hz。神经元集群频率编码能够编码脉冲刺激输入模式。
     (b)在Gaussian白噪声刺激信号作用下,各个神经元的放电频率范围为[3.02~15.28]Hz,群体平均放电频率为7.59±0.62Hz。神经元集群频率编码能够编码Gaussian白噪声刺激输入模式。
     (c)在以上两类刺激的线性叠加条件下,神经元的放电频率为[2.27~55.21]Hz,平均放电频率为15.52±0.84Hz。神经元集群频率编码不能编码脉冲刺激和Gaussian白噪声刺激线性叠加输入模式。
     ②神经元集群的ISI相关编码
     (a)神经元集群ISI相关编码能够编码脉冲刺激输入模式。
     (b)神经元集群ISI相关编码能够编码Gaussian白噪声刺激输入模式。
     (c)神经元集群ISI相关编码对脉冲刺激和Gaussian白噪声刺激线性叠加输入模式编码效果不明显。
     结论:
     1.本论文建立的海马CA3区神经元群小世界神经网络模型能够有效地仿真海马CA3区神经元群体电活动,反映其稀疏特性(平均发放率小于10%)。
     2.在三种不同的刺激模式下(脉冲刺激、Gaussian白噪声刺激和上述两类刺激的线性叠加),海马CA3区神经元群动作电位发放的时空序列特征模式不同。
     3.在脉冲刺激和Gaussian白噪声刺激下,频率编码可以划分表征不同单个刺激的神经元集群,神经元集群频率编码只能编码单个刺激模式,对于混合刺激模式,不能编码混合刺激模式中不同的刺激模式。ISI相关编码效能优于频率编码,可以划分表征不同单个刺激的神经元集群,对于两类刺激的线性叠加,编码效果不明显,有待进一步研究。
Objective
     In this paper,a hippocampus CA3 neurons spiking small world neural network(SWNN)model is established on the Matlab7.4 platform based on sparse activity ofhippocampus CA3 neurons.The temporal-spatial sequences of the hippocampus CA3area neurons firing activity are simulated under the stimulus of pulse input,Gaussianwhite noise input and the linear superposition input of the two conditions on theSWNN model.The neuronal ensemble rate coding and ISI correlation codingmethods are used to analyze the simulated spiking trains.The hippocampus CA3 areaneurons ensemble coding of the three types stimulus are investigated in this paper.The results may provide neural computation support for hippocampus neuronalensemble coding.
     Methods
     1.Construction of hippocampus CA3 area neurons spiking SWNN model
     According to the anatomical characteristics of hippocampus CA3 area,the ratioof the excitatory to inhibitory neurons is about 5 to 1.The activity of hippocampusCA3 area neurons is sparse firing (less than 10%).A hippocampus CA3 neuronsspiking small world neural network (SWNN)model is established on the Matlab7.4platform.The temporal-spatial sequences of hippocampus CA3 area neurons firingactivity are simulated by the SWNN model.The Hindmarsh-Rose (HR)modelcould describe different discharge property of an excitatory or inhibitory neuron bychanging the parameterγ.In this paper,HR model is used to be the dynamicalequations of the spiking model neurons.The SWNN model is composed of 120neurons,in which 100 neurons are excitatory and 20 are inhibitory.The differentneurons in the SWNN model are connected with WS small-world network.
     2.The dynamic simulation of hippocampus CA3 area neurons spikingtemporal-spatial sequences by using the SWNN model.
     Set up three types of stimulus input patterns:pulse input,Gaussian white noiseinput and the linear superposition input of the two conditions.The 40 seconds temporal-spatial sequences of hippocampus CA3 area neurons are achieved under thethree different stimulus patterns imposed on the SWNN model.At the same time theinter-spike interval (ISI)of each neuron is get to make up the ISIs temporal-spatialsequences.
     3.The hippocampus CA3 neurons ensemble coding of three types of stimulus
     The dynamic neuronal ensemble coding is investigated under the differentstimulus input pattern.The neuronal ensemble rate coding and ISI correlation codingmethods are used to analyze the simulated temporal-spatial sequences.Theeffectiveness of the above neuronal ensemble coding methods are compared under thethree different stimulus input pattern.
     For the neuronal population firing temporal-spatial sequences simulation dataunder the different stimulus pattern,adopt the rate coding and ISI correlation codingmethods to measure the functional neuronal ensembles.
     (1)The rate coding of neuronal ensemble firing activity
     The bin window is set to be 200ms (physiological window)and the step lengthof bin window is set to be 50ms.The spiking numbers are counted in the movingwindow of each neuron temporal-spatial sequence.The dynamic topography maps ofneuronal population spike trains are achieved after normalizing the spiking numbers.
     (2)The ISI correlation coding of neuronal ensemble firing activity
     ①The inter-spike intervals (ISis)of each neuron firing sequence are computedamong the neuronal population spike trains.
     ②Connect the discrete ISis point of each neuron and get the N continuouscurves of ISI sequence by curve fitting.
     ③The maximum mean firing rate neuronal firing sequence is selected to be thereference sequence.
     ④The bin window length is set to be small scale (less than 50ms)and the ISIcorrelation values are computed in the kth window of N-1 ISI sequence withreference ISI sequence.
     ⑤The step length is set to be 1/3 bin window,and the N-1 ISI correlationvalues are computed in each moving window.
     ⑥The dynamic topography maps of neuronal population spike trains areachieved after normalizing the ISI correlation value.
     Results
     1.A hippocampus CA3 neurons spiking small world neural network (SWNN)model is established on the Matlab7.4 platform in this paper.The SWNN model cansimulate the sparse activity of hippocampus CA3 area neurons successfully.
     2.The mean population firing rate of hippocampus CA3 area is 7.8% when nostimulus acts on the SWNN model.The result is in accordance with the sparse spikefiring characteristic of hippocampus CA3 area (the mean firing rate is less than 10%).
     3.The hippocampus CA3 neuronal population firing patterns are different under thethree types of stimulus input(pulse input,Gaussian white noise input and the linearsuperposition input of the two conditions).The neuronal ensemble coding patterns areas followed:
     ①Neuronal ensemble rate coding
     (a)The firing rate range of neuron is [5.14~21.52] Hz under the pulse inputstimulus acts on the SWNN model.The mean firing rate of neuronal population(120neurons)is 10.43±0.38 Hz.The neuronal ensemble rate coding method canencode the pulse input stimulus pattern.
     (b)The firing rate range of neuron is [3.02~15.28] Hz under the Gaussian whitenoise input stimulus acts on the SWNN model.The mean firing rate of neuronalpopulation is 7.59±0.62 Hz.The neuronal ensemble rate coding method can encodethe Gaussian white noise input stimulus pattern.
     (c)The firing rate range of neuron is [2.27~55.21] Hz under the linearsuperposition input of the pulse input and Gaussian white noise input stimulus acts onthe SWNN model.The mean firing rate of neuronal population is 15.52±0.84 Hz.The neuronal ensemble rate coding method can not distinguish between the pulseinput and Gaussian white noise input stimulus pattern.
     ②Neuronal ensemble ISI correlation coding
     (a)The neuronal ensemble ISI correlation coding method can encode the pulseinput stimulus pattern.
     (b)The neuronal ensemble ISI correlation coding method can encode theGaussian white noise input stimulus pattern.
     (c)The encoding effect of the mix stimulus pattern by the neuronal ensemblerate coding method is not obvious.
     Conclusions
     1.The hippocampus CA3 neurons spiking small world neural network (SWNN)model can simulate the sparse activity of hippocampus CA3 area neuronssuccessfully.The simulation result is accordance with the sparse firing (mean firingrate is less than 10%)character of hippocampus CA3 area.
     2.The temporal-spatial sequence patterns of hippocampus CA3 neurons aredifferent under the three different types of stimulus input pattern (pulse input,Gaussian white noise input and the linear superposition input of the above stimulusinput).
     3.The neuronal ensemble rate coding method can encode the pulse inputstimulus pattern and the Gaussian white noise stimulus pattern.The neuronalensemble rate coding method can not distinguish between the pulse input andGaussian white noise input stimulus pattern.The coding effect of ISI correlation isbetter than the rate coding.The neuronal ensemble ISI correlation coding method canencode the pulse input stimulus pattern and the Gaussian white noise stimulus pattern.But the encoding effect of the mix stimulus pattern by the neuronal ensemble ratecoding method is not obvious.
引文
[1] P. Thagard. Mind : Introduction to Cognitive Science[M]. Cambridge, MA: The MIT Press, 2005.
    [2] M. Meeter. Long-term memory disorders: Measurement and modeling[D]. Amsterdam University, 2003.
    [3] M. H. Bickhard. Mechanism is not enough[J]. Pragmatics and Cognition, 2007, 15:573-585.
    [4] D. O. Hebb. The Organization of Behavior: A neuropsychological theory[M]. New York: Wiley, 1949.
    [5] G.S. Bhumbra, R.E Dyball. Spike coding from the perspective of a neuron[J] Cognitive Processing, 2005, 6:157-176.
    [6]R. Barbieri, L.M. Frank, D.P. Nguyen. Dynamic Analyses of Information Encoding in Neural Ensembles[J]. Neural Computation, 2004, 16:227-307.
    [7]M.J. Schnitzer , M. Meister. Multineuronal firing patterns in the signal from eye to brain[J]. Neuron, 2003, 37: 99-511.
    [8]G.S. Bhumbra, A.N. Inyushkin, M. Syrimi. Spike coding during osmotic stimulation of the rat supraoptic nucleus[J]. Journal of Physiology, 2005,569: 257-274.
    [9] Gong P, van Leeuwen C. Emergence of scale-free network with chaotic units[J].Physica A,2003, 321: 679-688.
    [10] Gong P, van Leeuwen C. Evolution to a small-world network with chaotic units[J]. Europhysics Letters, 2004, 67: 328-333.
    [11] Olaf Sporns, Christopher J. Honey. Small worlds inside big brains[J]. PNAS, 2006, 103(51): 19219-19220.
    [12] Theoden I. Netoff, Robert Clewley, Scott Arno. Epilepsy in Small-World Networks[J]. The Journal of Neuroscience, 2004, 24:8075-8083.
    [13] H.F. Kwok, J. Peter. Robust emergence of small-world structure in networks of spiking neurons[J]. Cogn Neurodyn, 2007, 39-51.
    [14] Masuda N, Aihara K . Global and local synchrony of coupled neurons in small-world networks[J]. Biological Cybernetics, 2004, 90: 302-309.
    [15] Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve [J]. Journal of Physiology, 1951,117:500-544.
    [16]Chay TR, Fan YS, Lee YS. Bursting, spiking, chaos, fractals and universality in biological rhythms [J]. Int. J. Bifurcation and Chaos, 1995, Vol. 5(3):595-635.
    [17]Traub RD, Wong RKS, Miles R, et al. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clam data on intrinsic condctances[J]. J. Neurophysiol., 1991, 66:635-650.
    [18] Giorgio A. Ascoli, John C. Atkeson. Incorporating anatomically realistic cellular-level connectivity in neural network models of the rat hippocampus [J]. BioSystems, 2005, 79:173-181.
    [19] Kunec S, Hasselmo ME. Encoding and retrieval in the CA3 region of the hippocampus: a model of theta-phase separation [J]. J Neurophysiol, 2005 94(1):70-82.
    [20] Motoharu Yoshida. Emergence of sequence sensitivity in a hippocampal CA3-CA1 model[J]. Neural Networks,2007, 20:653-667.
    [21] Eckhorn R , Reiboeck HJ., Arndt M., et al. A Neural Networks for feature linking via synchronous activity: Results from cat visual cortex and from simulations, In Models of Brain Function[M], R.M.J. Cotterill, Ed. Cambridge, Cambridge Univ. Press, 1989
    [22] Eckhom R, Frien A, Bauer, R. et.al. High frequency oscillations in primary visual cortex of awake monkeys[J]. NeuroRep, 1993,4(3):243-246.
    [23] Johnson Jl, Padgett ML. PCNN models and applications[J]. IEEE Transactions on Neural Networks, 1999, 10(3):480-498.
    [24] Izhikevich E.M. and Desai N.S. Relating STDP to BCM[J]. Neural Computation 2003,15:1511-1523.
    [25] Izhikevich E.M., Desai N.S., Walcott E.C., Hoppensteadt F.C Bursts as a unit of neural information: selective communication via resonance[J]. Trends in Neuroscience. 2003, 26:161-167.
    [26]Izhikevich E.M. Synchronization of Elliptic Bursters[J]. SIAM Review, 2001,43:315-344.
    [27]Izhikevich E.M. Resonate-and-Fire Neurons[J]. Neural Networks, 2001 14:883-894.
    [28]Izhikevich E.M. Polychronization: computation with spiks Neurons[J]. Neural Networks, 2006 18:245-282.
    [29] Liu Ting, Tian Xin. Simulation of firings in hippocampus CA3 area with pulse coupled neural network[J]. International Journal of Biomedical Engineering, 2008, 31:11-14.
    [30] Liu Ting, Tian Xin. Pulse Coupled Neural Network Modeling of Firings in Hippocampus CA3[C]. The 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008, 1741-1743.
    [31] O'Reilly RC, McClelland. JL. Hippocampal Conjunctive Encoding, Storage, and Recall: Avoiding a Trade-Off[J]. Hippocampus, 1994 ,4(6): 661-682.
    [32] Meeter M. Long-term memory disorders: Measurement and modeling[D]. 2003
    [33]Meeter, M. & Murre, J.M.J. Simulating episodic memory deficits in semantic dementic dementia with TraceLink model[J]. . Memory, 2004. 12, 272-287.
    [34]Meeter, M., & Murre, J.M.J. Consolidation of long-term memory: Evidence and alternatives[J]..Psychological Bulletin, 2004. 130, 843-857.
    [35]Meeter, M., Talamini, L.M., Murre, J.M.J. Mode shifting between storage and recall based on novelty detection in oscillating hippocampal circuits[J]. Figures Hippocampus, 2004. 14, 722-741.
    [36]Gluck, M.A., Meeter, M. Myers, C.E. Computational models of the hippocampal region: linking incremental learning and epicodic memory [J]. Trends in Cognitive Sciences. 2003, 7, 269-276.
    [37]Meeter, M. Control of consolidation in neural networks : avoiding runaway effects[J]. Connection Science. 2003, 15, 45-61.
    [38]Yuko Wakagi.A Model of Hippocampal Learning with Neuronal Turnover in Dentate Gyrus[J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION. 2008,2(2):215-222.
    [39] Lin L, et al. Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus[J]. Proc Natl Acad Sci USA, 2005,102:6125-6130.
    [40]Thomas Kreuz, Julie S. Haas, Alice Morelli et al. Measuring spike train synchrony[J]. Journal of Neuroscience Methods, 2007, 165:151-161.
    [41]Lila Davachi. The Ensemble That Plays Together, Stays Together[J]. Hippocampus, 2004, 14(1):1-3.
    [42]Longnian Lin, Remus Osan, Joe Z. Tsien. Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes [J]. Trends Neurosci, 2006, 29(1):48-57.
    [43]Chen LC, Gu Y H. Coding theories and analyzing methods of information contained in neuronal spike trains [J].Progress Physiological Sciences, 1999,30(2): 101-106.
    [44] Adrian, ED. The impulses produced by sensory nerve endings[J]. J.Physil. 1926. 61:49-72.
    [45]Gordon T, Tyreman N, Rafuse VF, Munson JB. Limited plasticity of adult motor units conserves recruitment order and rate coding[J]. Prog Brain Res.l999;123:191-202.
    [46] Stein RB. The frequency of nerve action potentials generated by applied currents[J]. Proc R Soc Lond B Biol Sci. 1967,167(6):64-86
    [47]Hoffman, et al. Coordinated Reactivation of Distributed Memory Traces in Primate Neocortex[J]. Science, 2002, 297(5589):2070-2073.
    [48]Martignon, L. et al. Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies [J]. Neural Comput, 2000, 12(11):2621-2653.
    [49]Abeles, M. & Gerstein, G. L. Detecting spatiotemporal firing patterns among simultaneously recorded single neurons[J]. J. Neurophysiol, 1988, 60(3):909-924.
    [50]Brody, C.D. Correlations without synchrony[J]. Neural Comput, 1999, 11:1537-1551.
    [51] Bruno B. Averbeck and Daeyeol Lee. Coding and transmission of information by neural ensembles[J]. Trends Neurosci, 2004, 27 (4): 225-230.
    [52]Engel AK, Konig P, Singer W, et al . Direct physiological evidence for scene segmentation by temporal coding[J]. Proc Natl Acad Sci USA, 1991, 88(20):9136-9140.
    [53] von der Malsburg C. Am I thinking assemblies[M]? In: Palm G, Aertsen A,eds.Brain Theory. Berlin: Springer, 1986, 161-176.
    [54] von der Malsburg C. The correlation theory of brain function[M]. In: Domany E, van Hemmen JL and Schulten K, eds. Models of NeuralNetworks II. Berlin: Springer, 1994, 95-119.
    [55]Fugii H, Ito H, Athara K, et al. Dynamical cell assembly hypothesis-Theoretical possibility of spatiotemporal coding in the cortex[J]. Neural Network, 1996, 9:1303-1350.
    [56] J. Navarro, E. S(?)nchez, A. Canedo. Spatio-temporal information coding in the cuneate nucleus[J]. Neurocomputing, 2006, 69: 1946-1953.
    [57]D.T. Pham, M.S. Packianather, E.Y.A. Charles. A Novel Self-Organised Learning Model with Temporal Coding for Spiking Neural Networks [J]. Intelligent Production Machines and Systems, 2006, 307-312.
    [58]Yun-Hui Ku, Ming Wang, Yao-Hua Li. Repetition rates of specific interval patterns in single spike train reflect excitation level of specific receptor types, shown by high-speed favored-pattern detection method[J]. Brain Research, 2006,1113: 110-128.
    [59]Guo Jianzeng, Guo Aike. Crossmodal interactions between olfactory and visual learning in drosophila[J]. Science,2005,309:307-310.
    [60]Li su,Qi xianglin,Hu hong,Wang yunjiu.Synchronized oscillation in a modular neural network composed of columns[J].Science in China Ser.C Life Sciences,2005,48:16-17.
    [61]梁培基,陈爱华.申经元活动的多电极同步记录及神经信息处理[M].北京工业大学出版社.2003
    [62]Jaap C.Reijneveld Sophie C.Ponten etal.The application of graph theoretical analysis to complex networks in the brain[J].Clinical Neurophysiology,2007,118(11):2317-2331.
    [63]Stam C J,de Bruin EA.Scale-free dynamics of global functional connectivity in the human brain[J].Hum Brain Mapp,2004,22:97-109.
    [64]Barabasi AL,Albert R.Emergence of scaling in random networks[J].Science,1999,286:509-512.
    [65]Bassett DS,Bullmore E.Small-world brain networks[J].Neuroscientist,2006,12:512-523.
    [66]Wang XF,Chen G.Complex networks:small-world,scale-free and beyond[J].IEEE circuits and systems magazine,2003,6-20.
    [67]YUAN WuJie,LUO XiaoShu,JIANG PinQun.Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism[J].Commun.Theor.Phys,2007,47(2):369-373.
    [68]Milgram,S.The small world problem[J].Psychology Today,1967,1(1):60-67.
    [69]Watts DJ,Strogatz SH.Collective dynamics of ‘smallworld' networks[J].Nature,1998,393(6684):440-442.
    [70]Amaral LAN,Scala A,Barthelemy M,Standly HE.Classes of small world networks[J].PNAS,2000,97:11149-11152.
    [71]Masuda N,Aihara K.Global and local synchrony of coupled neurons in small-world networks[J].Biol Cybern,2004,90:302-309.
    [72]James J.Collins and Carson C.Chow.It's a small world[J].Nature,1998,393:409.
    [73]Grigorov MG. Global properties of biological networks[J]. DDT, 2005,10:365-372.
    [74]Spoms O, Zwi JD. The small-world of the cerebral cortex[J]. Neuroinformatics, 2004,2:145-162.
    [75] Humphries MD, Gurney K, Prescott TJ. The brainstem reticular formation is a small-world, not scale-free network[J]. Proc R Soc Lond B, 2006, 273:503-511.
    [76] He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness form MRI[J]. Cereb Cortex, 200717(10):2407-2419.
    [77] Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens Ph. Smallworld networks and functional connectivity in Alzheimer's disease[J]. Cereb Cortex, 2007, 17:92-99.
    [78] Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M, Erimaki S, Zervakis M. Small-world networks and disturbed functional connectivity in schizophrenia[J]. Schizophr Res, 2006, 87:60-66.
    [79]Ponten SC, Bartolomei F, Stam CJ. Small-world networks and epilepsy: graph theoretical analysis of intracranially recorded mesial temporal lobe seizures[J].Clin Neurophysiol 2007, 118:918-927.
    [80] R. Albert ,A.L. Barab(?)si. Statistical mechanics of complex networks[J]. Review of Modern Physis, 2002, 7: 47-97.
    [81]Hindmarsch J, Rose RM. A model of neuronal bursting using three coupled first order differential equations[J]. Transactions of the Royal Society of London, 1984,221:87-102.
    [82] Rose RM, Hindmarsh JL. The assembly of ionic currents in a thalamic neuron. I. The three-dimensional model [J].Proceedings of the Royal Society in London B, 1989, 237:267-288.
    [83]Izhikevich EM. Which model to use for cortical spiking neurons?[J]. IEEE Transactions on Neural Networks, 2004, 155: 1063-1070.
    [84] William J. Meilandt, Edwin Barea-Rodriguez. Role of Hippocampal CA3 μ-Opioid Receptors in Spatial Learning and Memory [J]. J. Neurosci, 2004, 24:2953-2962.
    [85]E.Robert Clark,J.Nicola Broadbent,and R.Larry Squire.The Hippocampus and Spatial Memory:Findings with a Novel Modification of the Water Maze[J].J.Neurosci,2007,27:6647-6654.
    [86]Elliot D.Menschik,Leif H.Finkel.Neuromodulatory control of hippocampal function:towards a model of Alzheimer's disease[J].Artificial Intelligence in Medicine,1998,13(2):99-121.
    [87]G.A.Ascoli,J.C.Atkeson.Incorporating anatomically realistic cellular-level connectivity in neural network models of the rat hippocampus[J].Biosystems,2005,79:173-181.
    [88]George D.,Sommer,F.T.Computing with inter-spike interval codes in networks of integrate and fire.neurons[J].Neurocomputing,2005,65:415-420.
    [89]Bhumbra G,Dyball R.Measuring spike coding in the supraoptic nucleus[J].Journal of Physiology,2004,555:281-296.
    [90]汪云九.神经信息学-神经系统的理论和模型[M].高等教育出版社,2006,第一版,北京.
    [91]YUAN WuJie,LUO XiaoShu,JIANG PinQun.Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism[J].Commun.Theor.Phys,2007,47(2):369-373.
    [92]Xu Xin-Ping.Growing Small-World Networks Based on a Modified BA Model[J].Chinese Phys.Lett.2006,23:750-753.
    [93]A.Barrat,M.Barth(?)lemy,and A.Vespignani.Velocity and hierarchical spread of epidemic outbreaks in scale-free networks[J].Phys.Rev.Lett,2004,92:178701-704.
    [94]Von der Malsburg C.The what and why of binding:The moderler's perspective[J].Neuron,1999,24(1):95-104.
    [95]Carol Hudon,Sylvie Belleville,Serge Gauthier.The assessment of recognition memory using the Remember/Know procedure in amnestic mild cognitive impairment and probable Alzheimer's disease[J].Brain and Cognition,2009,70(1):171-179.
    [96]Gerdien Kramer, Wiesje M. van der Flier, Conny de Langen. EEG functional connectivity and ApoE genotype in Alzheimer's disease and controls[J].Clinical Neurophysiology, 2008, 119(12): 2727-2732.
    [97] Laura Zamarian, Carlo Semenza, Frank Domahs. Alzheimer's disease and mild cognitive impairment: Effects of shifting and interference in simple arithmetic [J]. Journal of the Neurological Sciences, 2007, 263(1):79-88.
    [98] Steven Brenner. Currently Used Medicines for Alzheimer's Disease Are Not Very Effective[J]. The American Journal of Medicine, 2007, 120(12):25-30.
    [1]O'Reilly RC,McClelland.JL.Hippocampal Conjunctive Encoding,Storage,and Recall:Avoiding a Trade-Off.Hippocampus,1994,4(6):661-682.
    [2]Ascoli,GA,Atkeson,JC.Incorporating anatomically realistic cellular-level connectivity in neural network models of the rat hippocampus.BioSystems 2005,79:173-181.
    [3]Norman KA,O'Reilly RC.Modeling Hippocampal and Neocortical Contributions to Recognition Memory:A Complementary-Learning-Systems Approach.Psychological Review.2003,110(4):611-646.
    [4]Bruno B.Averbeck and Daeyeol Lee.Coding and transmission of information by neural ensembles[J].Trends Neurosci,2004,27 (4).: 225-230.
    [5]Fischer Y.,Wittner,L.,Freund T.F.,et al.Simultaneous activation of gamma and theta network oscillations in rat hippocampal slice cultures[J].Journal of Physiology,2002,539(3):857-868.
    [6]Fischer Y.The hippocampal intrinsic network oscillator[J].J.Physiol.2003.554(1):156-174.
    [7]Klimesch W.EEG alpha and θ oscillations reflect cognitive and memory performance:a review and analysis[J].Brain Res.Rev.1999.29:169-195.
    [8]Averbeck BB,Latham PE.,Pouget A.Neural correlations,population coding and computation[J],Nature Reviews,2006,7:358~366.
    [9]梁培基,陈爱华.神经元活动的多电极同步记录及神经信息处理[M].北京工业大学出版社.2003.
    [10]Barbieri R.,Frank L.M.,Nguyen D.P.,et al.Dynamic Analyses of Information Encoding in Neural Ensembles[J].Neural Computation,2004.16:227-307.
    [11]Hopfield,JJ.Neural networks and physical systems with emergent collective computational abilities. PNAS. 1982. 79,2554-2558.
    [12] Hebb. DO The organization of behavior: A neurophysiological theory , Wiley 1949.
    [13] Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve [J]. Journal of Physiology, 1951, 117:500-544.
    [14]Lin L, et al. Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus [J]. Proc Natl Acad Sci USA, 2005,102:6125-6130.
    [15]Lila Davachi. The Ensemble That Plays Together, Stays Together[J]. Hippocampus, 2004, 14(1):1-3.
    [16] Longnian Lin, Remus Osan, Joe Z. Tsien. Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes[J]. Trends Neurosci, 2006, 29(1):48-57.
    [17] Kepecs A, Wang Xiaojing. Analysis of complex bursting in cortical pyramidal neuron models [J]. Neurocomputing, 2000, 32-33:181-187.
    [18]Gerstner, Kistler. Spiking Neuron Models: Single Neurons, Populations, Plasticity[M]. Cambridge University Press, 2002.
    [19] McCulloch, W. S. and Pitts, W. H. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics, 1943, 5:115-133.
    [20] Traub RD, Wong RKS, Miles R, et al. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clam data on intrinsic condctances[J]. J.Neurophysiol., 1991,66:635-650
    [21]Traub RD, Schmitz D, Jefferys JG.R, Draguhn A. High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axo-axonal gap junctions [J]. Neuroscience, 1999, 92, 407-426.
    [22]Traub RD, Bibbig A. A model of high-frequency ripples in the hippocampus,based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons[J]. J. Neurosci., 2000, 20, 2086-2093.
    [23] Hindmarsch J, Rose RM. A model of neuronal bursting using three coupled first order differential equations[J]. Transactions of the Royal Society of London, 1984,221:87-102.
    [24]Rose RM, Hindmarsh JL. The assembly of ionic currents in a thalamic neuron. I. The three-dimensional model[J].Proceedings of the Royal Society in London B, 1989, 237: 267-288.
    [25] William J. Meilandt, Edwin Barea-Rodriguez. Role of Hippocampal CA3 μ-Opioid Receptors in Spatial Learning and Memory [J]. J. Neurosci, 2004, 24: 2953-2962.
    [26] Bruno B. Averbeck , Daeyeol Lee. Coding and transmission of information by neural ensembles[J]. Trends in Neurosciences, 2004, 27(4): 225-230.
    [27]Lexandre Pouget, Peter Dayan and Richard Zemel. Information with population codes[J]. Neuroscience, 2002,11(1): 125-132.
    [28] Alexandre Pouget, Peter Dayan, and Richard S. Zemel. Inference and computation with population codes[J]. Annu. Rev. Neurosci, 2003, 26:381-410.
    [29] Izhikevich EM. Class I neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of puse coupled models [J]. IEEE Transactions Neural Networks, 1999,10(3):499-507.
    [30]Izhikevich EM, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting[M]. The MIT press. 2005
    [31] Izhikevich E.M. and Hoppensteadt F.C. Classification of Bursting Mappings[J]. International Journal of Bifurcation and Chaos, 2004.14:3847-3854
    [32] Izhikevich E.M., Gaily J.A., and Edelman, G.M. Spike-Timing Dynamics of Neuronal Groups[J]. Cerebral Cortex, 2004. 14:933-944
    [33] Izhikevich E.M. and Hoppensteadt F.C. Slowly Coupled Oscillators: Phase Dynamics and Synchronization [J]. SIAM Journal on Applied Mathematics, 200363:1935-1953
    [34]Izhikevich E.M. and Desai N.S. Relating STDP to BCM[J]. Neural Computation 2003. 15:1511-1523
    [35]Izhikevich E.M., Desai N.S., Walcott E.C., Hoppensteadt F.C Bursts as a unit of neural information: selective communication via resonance[J]. Trends in Neuroscience . 2003.26:161-167
    [36]Izhikevich E.M. Synchronization of Elliptic Bursters[J]. SIAM Review, 2001.43:315-344
    [37]Izhikevich E.M. Resonate-and-Fire Neurons[J]. Neural Networks, 2001 14:883-894
    [38]Izhikevich E.M. Polychronization: computation with spiks Neurons[J]. Neural Networks, 2006 18:245-282.
    [39] Giorgio A. Ascoli, John C. Atkeson. Incorporating anatomically realistic cellular-level connectivity in neural network models of the rat hippocampus [J].BioSystems, 2005, 79:173-181.
    [40]Kunec S, Hasselmo ME. Encoding and retrieval in the CA3 region of the hippocampus: a model of theta-phase separation[J]. J Neurophysiol, 2005 94(1):70-82.
    [41]Motoharu Yoshida. Emergence of sequence sensitivity in a hippocampal CA3-CA1 model[J]. Neural Networks,2007, 20:653-667.
    [42]Johnson Jl, Padgett ML. PCNN models and applications[J]. IEEE Transactions on Neural Networks, 1999, 10(3):480-498.
    [43]Stevens C. F., Zador A. M., Input synchrony and the irregular firing of cortical neurons[J], Nature Neurosci. 1998. 1:210-217.
    [44]Izhikevich E.M. Simple Model of Spiking Neuronsl[J]. IEEE Transactions on Neural Networks, 2003,14:1569- 1572.
    [45]Meeter M. Long-term memory disorders: Measurement and modeling[D]. 2003
    [46]Meeter, M. & Murre, J.M.J. Simulating episodic memory deficits in semantic dementic dementia with TraceLink model[J].. Memory, 2004. 12, 272-287.
    [47] Meeter, M, & Murre, J.M.J. Consolidation of long-term memory: Evidence and alternatives[J]...Psychological Bulletin, 2004. 130, 843-857.
    [48] Meeter, M., Talamini, L.M., Murre, J.M.J. Mode shifting between storage and recall based on novelty detection in oscillating hippocampal circuits [J]. Figures Hippocampus, 2004. 14, 722-741.
    [49]Gluck, M.A., Meeter, M. Myers, C.E. Computational models of the hippocampal region: linking incremental learning and epicodic memory[J]. Trends in Cognitive Sciences. 2003. 7, 269-276.
    [50] Meeter, M. Control of consolidation in neural networks : avoiding runaway effects[J]. Connection Science. 2003. 15, 45-61.
    [51]Yuko Wakagi.A Model of Hippocampal Learning with Neuronal Turnover in Dentate Gyrus[J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION. 2008,2(2):215-222.
    [52]Gong P, van Leeuwen C. Emergence of scale-free network with chaotic units[J]. Physica A,2003, 321: 679-688.
    [53]Gong P, van Leeuwen C. Evolution to a small-world network with chaotic units[J]. Europhysics Letters, 2004, 67: 328-333.
    [54]Olaf Sporns, Christopher J. Honey. Small worlds inside big brains[J]. PNAS,2006, 103(51): 19219-19220.
    [55]Theoden I. Netoff, Robert Clewley, Scott Arno. Epilepsy in Small-World Networks[J]. The Journal of Neuroscience, 2004, 24:8075-8083.
    [56]H.F. Kwok, J. Peter. Robust emergence of small-world structure in networks of spiking neurons[J]. Cogn Neurodyn, 2007, 39-51.
    [57] Sporns O, Zwi JD. The small-world of the cerebral cortex[J]. Neuroinformatics, 2004,2:145-162.
    [58]Humphries MD,Gurney K,Prescott TJ.The brainstem reticular formation is a small-world,not scale-free network[J].Proc R Soc Lond B,2006,273:503-511.
    [59]He Y,Chen Z J,Evans AC.Small-world anatomical networks in the human brain revealed by cortical thickness form MRI[J].Cereb Cortex,2007 17(10):2407-2419.
    [60]Stam C J,Jones BF,Nolte G,Breakspear M,Scheltens Ph.Smallworld networks and functional connectivity in Alzheimer's disease[J].Cereb Cortex,2007,17:92-99.
    [61]Micheloyannis S,Pachou E,Stam CJ,Breakspear M,Bitsios P,Vourkas M,Erimaki S,Zervakis M.Small-world networks and disturbed functional connectivity in schizophrenia[J].Schizophr Res,2006,87:60-66.
    [62]Bassett DS,Bullmore E.Small-world brain networks[J].Neuroscientist,2006,12:512-523.
    [63]Wang XF,Chen G.Complex networks:small-world,scale-free and beyond[J].IEEE circuits and systems magazine,2003,6-20.
    [64]YUAN WuJie,LUO XiaoShu,JIANG PinQun.Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism[J].Commun.Theor.Phys,2007,47(2):369-373.
    [65]George D.,Sommer,F.T.Computing with inter-spike interval codes in networks of integrate and fire neurons[J].Neurocomputing,2005,65:415-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700