水泥窑共处置危险废物的生命周期评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用水泥窑共处置废弃物不仅可以有效地处置废弃物,而且可以减少资源、能源消耗和污染的排放,该技术已得到国内外的广泛关注。共处置过程对环境的影响需要进行全面评估才能得出其优于其他处置方法的证据。生命周期评价法(LCA)作为全面评价产品或工艺的环境影响评价方法,在社会各个领域得到广泛应用,本研究采用生命周期评价法对水泥窑共处置典型危险废物的处置效果进行全面评价。
     本文首先建立了水泥窑共处置危险废物生命周期的环境影响模型,以湖北省某水泥厂共处置的废弃农药和辽宁省某水泥厂共处置的废白土为研究对象,与焚烧炉焚烧这两种危险废物作对比,取得了二者的生命周期能耗物耗和污染清单数据,应用LCA进行系统研究和分析,从人类健康(HH)、生态系统质量(EQ)和资源(R)对危险废物的不同处理处置系统的环境影响做出了定性和定量的评估。
     结果表明:水泥窑共处置危险废物利于环境的可持续发展,而焚烧炉焚烧总体表现为对环境的破坏性。功能单位废弃农药总环境负荷在水泥窑共处置系统和焚烧炉焚烧系统分别为-27.5 yr.p和0.379 yr.p,前者的环境负荷比后者减少了7.36×103%,各个指标的减少率为:HH:372%,EQ:5.84×103%,R:-40.0%,尽管资源表现为增加的环境负荷,但在整体影响中所占的比例很小,并不会影响水泥窑共处置的环境友好性。功能单位废白土总环境负荷分别为-1.03 yr.p和0.273yr.p,前者的环境负荷比后者减少了479%,相应各个指标的减少率为:HH:413%,EQ:479%,R:36.9%。
     总体来看,EQ是水泥窑系统和焚烧炉系统最敏感的影响类别,前者表现为避免的影响,后者则是破坏的影响。水泥窑共处置系统中,矿山开采是环境影响的关键阶段,避免的影响达97%以上;废弃农药焚烧炉系统中,焚烧过程的污染排放是造成环境影响的主要因素,避免柴油、蒸汽生产是避免HH和R影响的主要阶段;废白土焚烧系统中,电力生产对三大影响都有很高的贡献率;而蒸汽回收主要避免R的影响。
     对影响因子的识别发现:二噁英、苯、重金属是水泥窑共处置危险废物的主要影响因子;NOx和粉尘是废弃农药焚烧炉系统的主要影响因子;粉尘和重金属对废白土焚烧处置系统的影响较大。采用热值高的废物可使水泥企业得到更高的环境效益。
     论文系统地对水泥窑共处置典型危险废物与常规的焚烧炉焚烧系统的环境影响进行了分析、比较和评价,对改善水泥生产过程的环境行为、为危险废物寻找更利于环境友好的处理处置方法等具有重要的现实意义,同时也为今后的水泥窑共处置技术评价方法和评价标准的建立提高了技术借鉴。
It well knows that co-processing technology in cement kilns could disposed wastes effectively, as well as it could reduce the depletion of the abiotic, energy and large quantity discharge of pollution, this technology has been gained wide attention both broad and home. We need more evidences to prove co-processing in cement kiln is the best available technique for waste disposal, therefore a complete assessment should be taken to evaluate the environmental impact of this technics. As a complete way of environmental impact assessment to product and technics, Life Cycle Assessment (LCA in short) has been applied for all the social fields. The article use LCA as a tool to evaluate the typical hazardous wastes co-processing in cement kilns.
     First of all, this article set up a LCA method of hazardous wastes co-processing technique. Then it taked the co-processing test burn of obsoleted pesticide in a cement plant of Hubei Province and spent bleaching clay in a cement plant of Liaoning Province as the research object, and compared to treatment in common incinerators, then we got the energy and material consumption and emission inventory of environmental pollutant of the two treatment system. By using a serial of methologies mentioned by LCA, it assessed the environmental impact of the treatment technics quality and quantity from the aspect of human health (HH), ecosystem quality (EQ) and resource (R).
     The results showed that co-processing hazardous wastes in cement kilns were more beneficial to sustainable development of environment, by contraries, incinerators treatment system were impact to environment. The environment burden of functional unit of obsoleted pesticide in co-processing system and incinerating system were -27.5 yr.p and 0.379 yr.p respectively. The whole burden of the forer was reduced by 7.36×103% comparing with the later. Each impact index reduced as: HH: 372%, EQ: 5.84×103%, and R: -40.0%, in despite of it showed that resource was increased, but this would not influence the environmental friendiness of co-processing in cement kilns because of the least proportion of resource in total burden. As the same, the environment burden of functional unit of spent bleaching clay in co-processing system and incinerating system were -1.03 yr.p and 0.273 yr.p respectively. The whole burden of the forer was reduced by 479% comparing with the later. Each impact index reduced as: HH: 413%, EQ: 479%, and R: 36.9%.
     Totality, EQ was the most sensitive impact category for both co-processing system and incinerating system. In the co-processing system, mining was the most important phase to environment that reached for 97% of total avoidable burden. In the obsoleted pesticide incinerating system, avoidance of production of diesel oil and steam was the main phase of avoiding HH and R, the pollutants emission in combusting and electricity producting were the main factors of HH and EQ impact. In spent bleaching caly incinerating system, electricity production was the main phase contributed to all impact items, steam production was the only phase avoided impact, which contributed to resource avoidance mainly.
     After identifying the impact factors, it indicated that dioxin, benzene and heavy metals were the most important reason to co-processing hazardous wastes in cement kilns. NOx and dust were the main impact factors to obsoleted pesticide treatment system in incinerator, while dust and heavy metals were more sensitive to spent bleaching clay incinerating system. For co-processing hazardous wastes in cement kilns, those wastes with high calorific value would be more beneficial for cement plant in environmental aspect.
     In this paper, the environmental impact with the use of hazardous wastes in the cement kiln system was analyzed and compared to. It has great significance of the improvement of the environmental behavior of cement production, and gain of best available technique for hazardous waste treatment. At the same time, this provides the reference for the foundation of co-processing technics evaluation methof and evaluation standard.
引文
[1]国家环保总局.中国环境公报2000—2006. [EB/OL]. http://www.sepa.gov.cn/plan/zkgb/
    [2]陈扬,杨艳,陈刚.我国危险废物污染控制技术现状及发展. [J].中国环境保护产业,2004(11):16-17
    [3] Sauer G. S.W.O.T. Analysis for Cement and Concrete Industries. [R]. Engineering Foundation Conference on Advances in Cement and Concrete. 1998 (7)
    [4]胡兴军.水泥行业发展现状及市场机遇. [J].中国水泥,2007, (5): 44-46
    [5] 2006年中国环境统计年报. [EB/OL]. http://www.sepa.gov.cn/plan/hjtj/nb/2006tjnb/200801/P020080131409484323822.pdf
    [6]张国平,周恭明.危险废物管理及其焚烧处理综述. [J].能源研究与信息, 2003, (3):172-179
    [7]刘翼翎.危险废物安全处置过程中需关注的问题. [J].环境可惜导刊, 2008, (2):63-65
    [8]闵海华,王琦,刘淑玲.危险废物安全填埋场的研究与探讨. [J].环境卫生工程,2005, (8):4-6
    [9]黄争鸣,李俞瑾.深圳市危险废物管理模式的探索. [J].中国环境管理, 2001, (2):33-34
    [10] CEMBUREAU. Best Available Techniques for the Cement Industry. [EB/OL]. http://www.cembureau.be/Documents/Publications/CEMBUREAU_BAT_Reference_Document_2000-03.pdf
    [11]韩仲琦.我国水泥工业处置废物的发展现状. [J].水泥技术, 2006, (6): 23-28
    [12]李海涛,郭献军,吴武伟.新型干法水泥生产技术与设备. [M].北京:化学工业出版社, 2005
    [13]陈全德,兰明章.新型干法水泥技术原理与应用讲座—国内外预分解技术评价与分析. [J].建材发展导向,2005, (3):25-31
    [14]范毓林.我国新型干法水泥水泥生产技术的创新历程. [J].水泥技术,2007, (2): 21-24
    [15] Mournighan R E. Hazardous Waste Combustion in Industrial Cement and Lime Kilns. [J]. Waste Management and Research, 1988, (12): 400-402
    [16] GTZ-Holcim Public Private Partnership. Guidelines on Co-processing Waste Materials in Cement Production. [EB/OL]. http://www.holcim.com/gc/CORP/uploads/GuidelinesCOPROCEM_web.pdf
    [17] Fare R, Grosskopf S. Measuring Output Efficiency. [J]. Eruopean Journal of Opearations Research, 1983, 13: 173
    [18] Benestad C. Incineration of Hazardous Waste in Cement Kilns. [J]. Waste Management & Research, 1989, (7): 351-361
    [19] Karstensen K. H, Kinh N. K, Thang L. B, etc. Environmentally Sound Destruction of Obsolete Pesticides in Developing Countries Using Cement Kilns. [J]. Environmental Science & Policy, 2006 (9): 577-586
    [20]张建新,吴承杰.一种处置废弃物的有效途径—利用水泥窑协同处置废弃物专家研讨会综述. [J].中国水泥,2006, (3): 8-10
    [21] Batelle. Toward a Sustainable Cement Industry. [EB/OL]. http: //www.wbscd.ch /DocRoot/ VZpgC7RnJ4V20goVx8jW/ cement-safety-guide.pdf
    [22] CEMBUREAU. Sustainable Cement Production– Co-processing of Alternative Fuels and Raw Materials in the European Cement Industry. [EB/OL].http://www.cembureau.be/Documents/Press%20Release/Sustainable%20cement%20production%20Brochure.pdf
    [23] World Business Coucil for Sustainable Development. The Cement Sustainalbility Initiative. [EB/OL]. http://www.wbcsd.org/DocRoot/nlYHAK4ECDi7EEcarBSH/csi-brochure.pdf
    [24]乔龄山.水泥厂利用废弃物的有关问题(一)——国外有关法规及研究成果. [J].水泥,2002, (10): 1-5
    [25]乔龄山.水泥厂利用废弃物的有关问题(五)——水泥厂利用废弃物的基本准则. [J].水泥,2003,(5):1-9
    [26]李志刚.LCA在城市规划中应用的可能性分析.[J].规划师.2003,(8): 71-73
    [27]易晓娥,张江山.LCA方法在城市垃圾管理中的应用.[J].安全与环境工程.2004, (6):42-44
    [28]韩润平,魏爱卿,陆雍森.环境影响评价的工具——生命周期评价.[J]. 2003, (6):83-88
    [29]邓南圣,王小兵.生命周期评价. [M].北京:化学工业出版社。2003: 14
    [30] Forbes McDougall等著,诸大建,邱寿丰等译.城市固体废弃物综合管理—生命周期的视角. [M].上海:同济大学出版社, 2006: 12-15
    [31]曹标,郑建国.环境协调材料LCA评价方法简介. [J].环境技术与工程, 2006(7):1869-1871
    [32] Wynn L., Lee E. Guidelines for Assessing the Quality of Life Cycle Inventory Analysis. [M]. EPA 530-R-95-010, 1995, 3
    [33]席德立,彭小燕. LCA中清单分析数据的获得. [J].环境科学,1997,18(5): 84-87
    [34] Young S. B., Turnbull S, Russell A. Toward a Sustainable Cement Industry: What LCA Can Tell Us about the Cement Industry? [EB/OL]. http://www.wbcsd.org/DocRoot/ieJTe1OdxbAGpMg3r6E8/final_report6.pdf
    [35]王飞儿,陈英旭.生命周期评价研究进展.[J].环境污染与防治,2001, (10): 249~252
    [36]王超.电石渣水泥和石灰石水泥生命周期评价的比较研究. [D].成都:西南交通大学,2007
    [37]李文斌,胡慧伦.环境冲击之生态足迹研究. [EB/OL].资源与环境学术研讨会,台湾省花莲市,2006。http://www.erm.dahan.edu.tw/re_and_en_paper/2006/03_2006_05.pdf
    [38] Goedkoop M., Schryver A. D., Oele M. Introduction to LCA with SimaPro 7. [EB/OL]. Netherlands: PréConsultants, 2007. http://users.rowan.edu/~everett/courses/soclii/LCA/EI99_manual_v3.pdf
    [39] Goedkoop M, Effting S, Collignon M. The Eco-indicator 99: A Damage Oriented Method for Life Cycle Impact Assessment. [EB/OL].
    [40]孙万佛.基于LCA的材料产品环境成本评价模型. [D].西安:西北工业大学, 2006
    [41]杨建新,王如松.生命周期评价的回顾与展望. [J].环境科学进展. 1998, 6(2): 21~28
    [42]李贵奇,聂祚仁,左铁镛.环境协调性评价(LCA)方法研究进展. [J].材料导报, 2002, 16(1): 7-10
    [43]姜金龙,吴玉萍,马军等.生命周期评价的技术框架及研究进展. [J].兰州理工大学学报。2005, 31(8): 23-26
    [44]王俊.垃圾填埋场清单分析的关键技术研究. [D].苏州:苏州科技学院, 2008
    [45]乔琦,刘景洋,孙启宏.生命周期评价在我国的应用. [J].产业与环境,2003,增刊:90~93
    [46]赵辉.中国产品生命周期影响评价——终点破坏类型模型框架建立及案例应用. [D].大连:大连理工大学,2005
    [47]蒋明磷.水泥工业能耗现状与节能途径. [J].新世纪水泥导报,2007(5):25-27
    [48] G?bel K, Tillman A.-M. Simulating operational alternatives for future cement production. [J]. Journal of Cleaner Production, 2005, 13: 1246-1257
    [49] Navia R., Rivela B. et al. Recycling contaminated soil as alternative raw material in cement facilities: Life cycle assessment. [J]. Resources, Conservation and Recycling, 2006, 48: 339-356
    [50]富丽.生态水泥生命周期评价研究. [D].北京:北京工业大学,2004
    [51]杨建新.面向产品的环境管理工具:产品生命周期评价. [J].环境科学, 1999, 20(1):100-103
    [52] Houillon G., Jolliet O.. Life Cycle Assessment of Processes for the Treatment of Wastewater Urban Sludge: Energy and Global Warming Analysis. [J]. Journal of Cleaner Production. 2005, 13: 287-299
    [53] Boughton B., Horvath A. Environmental assessment of shredder residue management. [J]. Resources, Conservation and Recycling, 2006, 47: 1-25
    [54] Suzanne de Vos, Jochen G?rtzen, Cvert Mulder,etc. LCA of Thermal Treatment of Waste Streams in Cement Clinker Kilns in Belgium–Comparison to Alternative Treatment Options. [EB/OL]. Report No. I&T-A R 2007/036, TNO Institute of Environmental Sciences, Netherlands Organization for Applied Scientific Research, Apeldoom, Netherlands
    [55] GB 4915-2004.水泥工业大气污染排放标准. [S]
    [56]秦凤贤.啤酒包装生命周期评价研究. [D].长春:吉林大学,2006
    [57] Werner F., Richer K. Economic Allocation in LCA: a Case Study about Aluminium Window Frames. The International Journal of Life Cycle Assessment, 2000, 5(2): 79-83
    [58] GB/T 24042-2002/ISO 14042 :2000.环境管理生命周期评价. [S]
    [59] Goedkoop M., Spriensma R. The Eco-indicator 99: A Damage Oriented Method for Life Cycle Impact Assessment– Methodology Report. [EB/OL]. http://simapro.rmit.edu.au/LIT/LCA/EI99_METHODOLOGY_V2.PDF
    [60]刘维屏.农药环境化学. [M].北京:化学工业出版社,2006
    [61]王翠珍,周广柱,冯承莲.活性白土对溶液中重金属离子的吸附性能研究. [J].中国非金属矿工业导刊,2005, (4):49-51
    [62] US EPA Federal Register. Method 18– Measurement of Gaseous Organic Compound Emissions by Gas Chromatagraphy. [S]. http://www.epa.gov/ttn/emc/promgate/m-18.pdf
    [63] NIOSH (The National Institute for Occupational Safety and Health). Hydrocarbons, Aromatic Method 1501. [S]. http://www.cdc.gov/niosh/nmam/pdfs/1501.pdf
    [64] GB 16157-1996.固定污染源排气中颗粒物测定和气态污染物采样方法. [S]
    [65] HJ/T 66-2001大气固定污染源氯苯类化合物的测定气相色谱法. [S]
    [66] HJ/T 365-2007危险废物(医疗废物)焚烧处置设施二恶英排放监测技术规范. [S]
    [67] GB 18484-2001危险废物焚烧污染控制标准. [S]
    [68] US EPA Federal Register. Method 301–Determination of Metals Emissions from Stationary Sources. [S]. http://www.epa.gov/ttn/emc/promgate/m-301.pdf
    [69] US EPA Federal Register. Method 29–Determination of Metals Emissions from Stationary Sources. [S]. http://www.epa.gov/ttn/emc/promgate/m-29.pdf
    [70]柴晓利,赵爱华,赵由才.固体废物焚烧技术. [M].北京:化学工业出版社,2004
    [71]蒋昌潭,杨三明,郑建军等.危险废物焚烧中污染防治的过程控制. [J].四川环境,2008, 27(4): 47-51
    [72] Bogner J., Pipatti R., Hashimot S., etc. Mitigation of Global Greenhouse Gas Emissions from Waste: Conclusions and Strategies from the Intergovenmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitagation). [EB/OL]. SAGE Publications.http://wmr.sagepub.com/cgi/content/abstract/26/1/11
    [73]王晓峰.危险废物理化特性分析及其对废物焚烧的影响. [D].上海:同济大学,2006
    [74] Eurppean Commission. Integrated Polluted Prevention and Control- Reference Document on Best Available Techniques for Waste Incineration. [EB/OL]. August, 2006. http://ftp.jrc.es/eippcb/doc/wi_bref_0806.pdf
    [75]刘顺妮.水泥-混凝土体系环境影响评价及其应用研究. [D].武汉:武汉理工大学,2002
    [76] Guo Q., Eckert J. O. Heavy Meatal Outputs from a Cement Kiln Co-fired with Hazardous Waste Fuels. [J]. Journal of Hazardous Materials, 1996, 51: 47-65
    [77]狄向华,聂祚仁,左铁镛.中国火力发电燃料消耗的生命周期排放清单. [J].中国环境科学,2005, 25(5): 632-635
    [78]刘颖昊,刘涛,沙高原等.货物运输的生命周期清单模型. [J].安徽工业大学学报,2008, 25(2): 205-207
    [79]薛艳冰,马大炜,王烈.列车牵引能耗计算方法. [J].中国铁道科学, 2007, 28(3): 48, 58, 68, 78
    [80]王贤.改善机车燃油机排放的试验研究. [J].内燃机车, 2006, (4): 1-5
    [81]狄向华.材料环境协调性评价的标准流程方法研究. [D].北京:北京工业大学,2001
    [82]袁宝荣,聂祚仁,狄向华等.中国化石能源生产的生命周期清单(II)——生命周期清单的编制结果. [J].现代化工, 2006, 26(4): 95-97
    [83]王炳辰.然用燃油的燃气轮机电厂改造原油(重油)的经济评价. [J].燃气轮机技术, 1991, 4(2): 23-30
    [84]乔龄山。水泥厂利用废弃物的有关问题(二)——微量元素在水泥回转窑中的状态特性[J]。水泥,2002 (12):1-8
    [85]杨建新.产品生命周期评价方法及其应用. [M].北京:气象出版社,2002
    [86]池冬华.垃圾焚烧飞灰在水泥中的固化稳定化研究. [D].上海:东华大学,2004
    [87]吴红,崔素萍,王志宏.中国水泥工业环境负荷分析. [J].中国建材科技,2006, (6): 50-54
    [88]黄海耀. LCA法比较太阳能热水器和燃煤锅炉系统的环境效益. [D].天津:天津大学,2004
    [89] Hougton J. T., Meira Filho L.G., Lim B., et al. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual(Volume 3.) [M]. Bracknell: UK Meteorological Office, 1997
    [90]袁宝荣,聂祚仁,狄向华等.中国化石能源生产的生命周期清单(I)——能源消耗与直接排放. [J].现代化工,2006,26(3): 59-63
    [91]夏旭彬,黄锡坚.限制油料中含硫量是确保烟气达标排放的有效途径. [J].中国环境监测,2001,17(2): 47-49
    [92] Kato N., Akimoto H. Anthropogenic Emissions of SO2 and NOx in Asia: Emission Inventories. [J]. Atomosphere Environment, 1992, 26: 2997-3017
    [93]王玉彬.大气环境工程师使用手册. [M].北京:中国环境科学出版社,2003
    [94] Obersteiner G., Binner E., Mostbauer P., etc. Landfill Modelling in LCA– A Contribution Based on Empirical Data. [J]. Waste Management, 2007, 27: 58-74
    [95] Suzuki K., Anegawa A., Endo K., etc. Performance Evaluation of Intermediate Cover Soil Barrier for Removal of Heavy Metals in Landfill Leachate. [J]. Chemosphere, 2008 (73): 1428-1435
    [96]曾敏.基于生命周期评价的废旧家电资源化研究及其案例分析. [D].广州:广东工业大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700