基于SCS-CN的“侵蚀源”与“沉积汇”的识别及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是土壤侵蚀最为严重的国家之一。小流域是我国生态环境恢复重建与水土流失综合治理的基本单元,其侵蚀产沙规律及发展趋势预报一直为土壤侵蚀与水土保持学界研究的热点。景观生态学是研究空间格局与生态过程相互关系的科学,对特定的生态过程研究,具有重要的指导作用。在流域产流产沙研究中引入景观生态理论是一个新的研究方法。“源汇”生态过程思想为探讨土地利用格局与土壤流失的关系提供了直接的研究思路。对于水土(养分)流失来说,“源”就是径流、土壤和养分流失的地方。在流域尺度上,目前仅能获得一个流域沟口站的径流和泥沙数据,这些监测数据实际上反映的是一个流域内土地利用空间分布格局对径流和泥沙的影响,如何将这些监测点的数据与流域空间上的土地利用空间分布相联系起来仍旧是一个难点,但又十分重要。
     本文基于SCS降雨径流模型以及RUSLE模型,引入“源汇”的生态理论,模拟不同降雨条件下流域侵蚀产沙分布情况以及空间的输移。主要结论如下:
     (1)研究了基于DEM的流域信息提取方法,并对王家桥流域进行信息提取,主要包括DEM的预处理、流向提取、排水网络的确定、河流分段、子流域划分等。
     (2)根据水文资料,分析不同降雨场次的相关降雨指标,分析其降雨量、I_(10)、I_(30)及降雨动能与流域产沙的关系。结果表明,由于王家桥流域的次降雨量不大,所以降雨量对流域产沙的影响不明显,I_(10)、I_(30)及降雨动能对流域的产沙影响较大。
     (3)基于“源汇”生态理论,建立了“源汇”景观类型区分的方法与指标体系,提出了基于基本计算单元的“源汇”能力值的函数关系式。探讨不同景观因子(降雨、地形、土壤、土地利用等)条件下流域的侵蚀产流产沙过程,分析产沙分布与土壤侵蚀各因子之间的关系。
     (4)根据土壤、土地利用等因素确定了王家桥流域的水文土壤组分类,获得了王家桥流域的CN值空间分布,分析了土壤流失的危险性。
     (5)根据SCS降雨径流模型和“源汇”计算关系式,通过将RUSLE模型修正为次降雨产沙模型,结合GIS技术、计算机编程技术,建立了基于“源汇”景观理论的流域侵蚀产沙模拟模型,该模型能模拟不同降雨条件,不同土地利用,不同土壤条件下的流域产沙情况。
     (6)根据所建的模型,以王家桥流域为研究区域,研究了不同降雨条件下“源汇”的空间分布,定量地分析了“源汇”能力值的空间分布,模拟了径流和泥沙的空间输移。
     研究结果表明:模拟的结果与实际值基本吻合,而且该模型结构简单,输入的
China is one of the countries, which are facing most serious soil erosion. The small basin is the basic unit for rebuilding or restoring our country's ecological environment and comprehensively soil erosion. Its regularity of erosive sediment yield and the forecast of develop trend are continuously hot spot in the study field of soil erosion and soil & water conservation . Landscape ecology is a science that studies the relations between spatial pattern and ecological process, and has an important instructive function to the study of specific ecological process. It is a new study method to introduce the theory of landscape ecology to the study of water and sediment yield in the watershed. The thought of "source sink" ecological process provides a direct research mentality to discuss the relations between land use pattern and soil erosion. Regarding the water and soil loss or nutrient loss, "source" is the place where runoff, soil and the nutrient flow out.
     On the basin scale, we can only obtain the data of runoff and sediment at the ditch mouth at present. In fact these monitoring data reflects the influence of the spatial distribution pattern of land use to the runoff and the silt. How to relate the data of monitoring site with the spatial distribution of land use is still a difficulty, but extremely important.
     Based on the SCS rainfall-runoff model as well as the RUSLE model, introducing the ecological theory of "source-sink", this article carried out simulations of sediment yield distribution and its transport in the watershed under different rainfalls.
     The results that our study achieved are as follows:
     (1) We have studied the method to extract the basin information based on DEM, and carried out information extraction in Wang Jiaqiao watershed. It mainly includes the preparation of DEM, extraction of flow direction, draining network determination, rivers partition, sub-basin division, and so on.
     (2) According to the hydrological data, we analyzed the related rainfall indexes of different rainfall events, then we analyzed the relation between its precipitation, I_(10), I_(30), kinetic energy and sediment yield in the watershed .The result indicated that, because the amount of each rainfall event is not big in the Wang Jiaqiao watershed, its influence to sediment yield in the watershed is not obvious, while the influence of I_(10), I_(30) and its kinetic energy to sediment yield is relatively big.
     (3) Based on the ecological theory of "source-sink", we established a system of method and criterion to discriminate the source landscape and the sink landscape, and proposed functions to calculate the capability of source or sink based on basic computing unit. We also have discussed the yield of runoff and sediment process under different landscape factors condition, rainfall, terrain, soil, land use and so on, analyzed the relation between distribution of sediment yield and various factors of soil erosion.
     (4) According to the factors of soil, land use, and so on, we had determined the classification of hydro-soil group in Wang Jiaqiao watershed, and then we obtained the spatial distribution of the CN value in our study area, and analyzed the risk of soil erosion accordingly.
     (5) According to the SCS rainfall-runoff model as well as the relation functions to calculate the source and the sink, through revising the RUSLE model to adapt to rainfall events, combines the technology of GIS and programming, we have established a model to simulate sediment yield in the watershed based on the ecological theory of "source-sink". This model could simulate the sediment yield situation under different rainfall condition, different land use, and different soil condition.
     (6) According to the established model, taking Wang Jiaqiao watershed as the study area, we have analyzed the spatial distribution of "source-sink" under different rainfall condition, and qualified the spatial distribution of "source-sink" capability, and lastly we simulated the spatial transport of runoff and silt.
     The result indicated that, the simulation result basically agrees with the actual value, moreover its structure is simple, and its input parameters are relatively few. This model can simulate the process of sediment transport well, even includes the output at each fixed-point.
引文
1.蔡崇法,丁树文,史志华等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究.水土保持学报,2000,14(2):19-24.
    2.蔡崇法,丁树文,史志华等.GIS支持下三峡库区典型小流域土壤养分流失量预测.水土保持学报,2001,15(1):9-12.
    3.蔡强国,陆兆熊.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型.地理学报,1996,51(2):108-117.
    4.蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟.北京:科学出版社,1998.
    5.陈利顶,傅伯杰,徐建英等.基于“源-汇”生态过程的景观识别方法-景观空间负荷对比指数[J].生态学报,2003,23(11):2406-2413.
    6.陈利顶,傅伯杰,赵文武.“源”“汇”景观理论及其生态学意义[J].生态学报,2006,26(5):1444-1449.
    7.陈明华,周伏建,黄炎和等.土壤可蚀性因子的研究.水土保持学报,1995,9(1):19-24.
    8.黄平,赵吉国.流域分布型水文数学模型的研究及应用前景展望[J].水文,1997(5):5-10.
    9.黄炎和.闽东南降雨侵蚀力指标R值的研究.水土保持学报,1992,6(4):1-5.
    10.贾仰文.分布式流域水文模型原理于实践[M].北京:中国水利水电出版社.2005.
    11.梁音,史学正.长江以南东部丘陵山区土壤可蚀性K值研究.水土保持研究,1999,6(2):47-52.
    12.刘纪根,蔡强国,刘前进等.地理信息系统与侵蚀产沙模型集成研究述评.水土保持学报,2003,17(6).
    13.潘竟虎,董晓峰.基于GIS与QuickBird影像的小流域土壤侵蚀定量评价.生态与农村环境学报,2006,22(2):1-5.
    14.芮孝芳.流域水文模型研究中的若干问题[J].水科学进展.1997,8(1):94-98.
    15.史志华.基于GIS和RS的小流域景观格局变化及其土壤侵蚀响应.[博士学位论文].武汉:华中农业大学,2003.
    16.史志华,蔡崇法,丁树文等.基于GIS和RUSLE的小流域农用地水土保持规划研究[J].农业工程学报.2002,18(4):172-175.
    17.汤立群.流域产沙模型的研究.水科学进展,1996,7(1):47-53.
    18.汪忠善.应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究.水土保持 研究,1996,3(2):84-97
    19.王纲胜,夏军,牛存稳.分布式水文模拟汇流方法及应用[J].地理研究,2004,23(2):175-182.
    20.王守荣,朱川海等.全球水循环与水资源[M].北京:气象出版社,2003.
    21.王向东,谢树南等.皇甫川流域产流产沙数学模型及水沙变化原因分析[J].泥沙研究,1999(5):56-66.
    22.王中根,刘昌明,左其亭等.基于DEM的分布式水文模型构建方法[J].地理科学进展.2002,21(5):430-439.
    23.王中根,刘昌明,吴险峰.基于DEM的分布式水文模型研究综述[J].自然资源学报,2003,18(2):168-173.
    24.韦玉春,陈锁忠等.地理建模原理与方法[M].北京:科学出版社,2005.
    25.吴险峰,王中根,刘昌明等.基于DEM的数字降雨径流模型-在黄河小花间的应用[J].地理学报,2002,57(6):671-678.
    26.谢云,章文波,刘宝元.用日雨量和雨强计算降雨侵蚀力.水土保持通报,2001,21(6):53-56.
    27.杨树华,王宝荣等.流域生态系统的生态保护及其数字化管理-以云南金沙江流域为例[M].北京:科学出版社,2006.
    28.杨艳生,史德明.长江三峡区土壤侵蚀研究.南京:东南大学出版社,1994:18-41.
    29.张宪奎,许靖华,卢秀琴等.黑龙江省土壤流失方程的研究.水土保持通报,1992,12(4):1-9.
    30.章文波,谢云,刘宝元.利用日雨量计算降雨侵蚀力的方法研究.地理科学,2002,22(6):705-711.
    31.周斌,何延波.基于GIS的岩溶地区水土流失遥感定量监测研究.矿物学报,2006.
    32.Anton Van Rompaey,Paolo Bazzoffi,Robert J.A.Jones,et al.Modeling sediment yields in Italian catchments.Geomorphology 65(2005):157-169.
    33.ARS/NRCS Curve Number Work Group.ATTACHMENT1.2002
    34.AseoughllJC,Baffout C,Nearing M A,et al.The WEPP watershed:model description.Trans.ASAE.1997,40(9):1489-1497.
    35.Ashish Pandey,V.M.Chowdary,B.C.Mal,et al.Estimation of runoff for agricultural watershed using SCS Curve Number and Geographic Information System.Map India 2003,Agriculture.
    36.Bas van Wesemael,Xavier Rambaud,Jean Poesen,et al.Spatial patterns of land degradation and their impacts on the water balance of rainfed treecrops:A case study in South East Spain. Geoderma 133 (2006) 43-56.
    37. Chen L D, Fu B J, Xu J Y, et al. Location-weighted landscape contrast index: a scale independent approach for landscape pattern evaluation based on "Source-Sink" ecological processes. Acta Ecologica Sinica, 2003, 23(11): 2406-2413.
    38. DRAFT: User's reference guide-Revised Universal Soil Loss Equation. Version 2(RUSLE2).Washington, D.C.December 22, 2004.
    39. Dunn S M, Mc Alister E, Ferrier R C. Development and application of a distributed catchment scale hydrological model for the River Ythan, NE Scotland[J]. Hydrological Processes. 1998 (12):401-416.
    40. Foster G R. USDA-water Erosion Prediction Project, Hillslope Profile and Watershed Model Documentation. W Lafayette ind: Purdue University, 1995
    41. Foster G R, McCool D K, K.GRenard, et al. Conversion of the universal soil loss equation to SI metric units. Journal of soil and water conservation. 1981.
    42. Gyozo Jordan, Anton van Rompaey, Peter Szilassi, et al. Historical land use changes and their impact on sediment fluxes in the Balaton basin (Hungary). Agriculture Ecosystems and Environment, 108(2005): 119-133.
    43. George R.Foster. DRAFT: Science Documentation-Revised Universal Soil Loss Equ ation, Version 2(RUSLE2). Washington, D.C.January 1, 2005.
    44. Gleick, P.H. The development and testing of a water balance model for climate impact assessment: modeling the Sacramento Basin[J]. Water Resour.Res. 1987, 23 (6): 1049-1061.
    45. Horton R E. An approach toward a physical interpretation of infiltration capacity. Soil Science Society of America Proc, 1940, (5): 399-417.
    46. Iris Peeters, Tom Rommens, Gert Verstraeten,et al. Reconstructing ancient topography through erosion modelling. Geomorphology 78 (2006) 250-264.
    47. Imeson A C, Prinsen H A M. Vegetation patterns as biological indicators for identifying runoff and sediment source and sink areas for semi-arid landscapes in Spain. Agriculture, Ecosystems and Environment 104 (2004) 333-342.
    48. John P, Wilson, John C. Gallant. EROS: A grid-based program for estimating spatially-distributed erosion indices.Computer & Geoscience, 1996, 22(7): 707-712.
    49. John.M. Latlen, et al. WEPP-a new gerneration of erosion prediction technology. Journal of soil and water conservation. 1991(1).
    50. Josef Krasa, Tomas Dostal, Anton Van Rompaey, et al. Reservoirs' siltation measurments and sediment transport assessment in the Czech Republic, the Vrchlice catchment study. Catena 64 (2005): 348-362.
    51. Kristof Van Oost, Gerard Govers & Phillipe Desmet. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage[J]. Landscape ecology. 2000, 15:577-589.
    52. Laflen J M, Lwonard J L, Foster G R. WEPP-a new generation of erosion Predietion technology. J of soil andwater Cons, 1991, 46(1): 34-38.
    53. Liu B Y, Nearing M A, Shi P J, et al. Slope length effects on soil loss for steep slopes. Soil Sci. Soc. Am. J., 2000, 64:1759-1763.
    54. Liu B Y, Nearing M A, Risse L M. Slope gradient effects on soil loss for steep slopes. Trans. ASAE 1994, 37: 1835-1840.
    55. Mc Cool, D K, Brown, L.C., Foster, G. R, et al. Revised slope steepness factor for the Universal Soil Loss Equation. Trans. ASAE, 1987, 30: 1387-1396.
    56. Mc Cool, D K, Foster, G. R, Mutchler, C.K. et al. Revised slope length factor for the Universal Soil Loss Equation. Trans. ASAE, 1989, 32: 1571-1576.
    57. Moor I D, G J Burch. Physical basis of the length-slope factor in the Universal Soil loss Equation. Soil Science society of America Journal, 1986, vol(50): 1295-1298.
    58. Moore I D. Modelling Erosion and Deposition: Topographic Effects Trans. ASAE, 1986,9(6): 1624-1630.
    59. Nash J E, Sutcliffe J V. Riverflow forecasting through conceptual models[J]. J.Hydrol,1970, (10): 282-290.
    60. Nearing M A. A single, continuous function for slope steepness influence on soil loss. Soil Sci. Soc. Am. J. 1997, 61: 917-919.
    61. Renard K G., Foster G. R., Weesies G. A., et al. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agric. Handb. No.703. US Department of Agriculture, Washington D C. 1997.
    62. Renard K G, Foster G R, Weesies G A, et al. RUSLE a guide to conservation planning with the revised universal soil loss equation. USDA Agricultural Handbook, 1997 :703.
    63. Shi Z H, Cai C F, Ding S W, et al. Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China. Catena 55(2004): 33-48.
    64. Mishra S K, Tyagi J V, Singh V P, et al. SCS-CN-based modeling of sediment yield. Journal of Hydrology, 324(2006): 301-322.
    65. USDA-Agricultural Research service. User's Guide-Revised Universal Soil Loss Equation.Version 2. Washington D.C.2003
    66.USDA-NRCS.RUSLE2 - Instructions & User Guide.2004
    67.Van Oost K,Govers G,Cerdan O,et al.Spatially distributed data for erosion model calibration and validation:The Ganspoel and Kinderveld datasets[J].Catena.61(2005):105-121.
    68.Van Rompaey A J J,Verstraeten G,Van Oost K,et al.Modeling mean annual sediment yield using a distributed approach[J].Earth surface processes and landforms,2001,26(11):1221-1236.
    69.Van Rompaey A,Krasa J,Dostal T & Govers G..Modelling sediment supply to rivers and reservoirs in Eastern Europe during and after the collectivisation period.Hydrobiologia,2003,494:169-176.
    70.Van Rompaey,Krasa J,Dostal T.Modeling the impact of land cover changes in the Czech Republic on sediment delivery[J].Land use policy(2006),1-8.
    71.Verstraeten G,Van Oost K,Van Rompaey A,et al.Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modeling[J].Soil use and management.2002,18(4):386-394.
    72.Verstraeten G.,Van Rompaey A,Poesen J,et al.Evaluating the impact of watershed management scenarios on changes in sediment delivery to rivers? Hydrobiologia 494:153-158,2003.
    73.Wischmeier W H,Mannering J V.Relation of soil properties to its erodibility.Soil Science Society of American Proceedings,1969,33(1):131 - 137.
    74.Wischmeier W H,Smith D D.Predicting rainfall erosion losses,a guide to conservation planning.USDA Agricultural Hand book No.537,US Department of Agriculture,Washington,DC.1978:537.
    75.Wischmeier W H,Johnson C B,Cross B V.A soil erodibility homograph for farmland and construction cites[J].Journal of Soil and Water Conservation,1971,26(5):189-193.
    76.Young R A,Onstad C A,Bosch D D,et al.AGNPS:A nonpoint-source pollution modelfor evaluating agriculture watersheds.Soil Water.Conserv,1989,44(2):168-173
    77.http://www.yugan.com.cn/ygzc html/lltt02/20060511328.htm
    78.http://fargo.nserl.purdue.edu/rusle2 dataweb/RUSLE2 Index.htm?action=Go+to+th e+official+NRC S+RUSLE2+website

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700