注入式有源电力滤波器的关键技术研究与工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谐波的危害已得到了人们越来越多的认识和重视。在电网谐波污染越来越严重、用户对电能质量要求越来越高的背景下,利用有源电力滤波器(APF)这种先进的动态补偿装置对谐波污染严重的厂矿企业配电网进行电能质量的综合治理必将会带来显著的经济效益和社会效益。
     本论文围绕厂矿企业变电站的谐波抑制和大容量无功补偿混合治理问题进行了深入的研究。以江西某铜箔厂110kV变电站10kV配网的谐波治理和无功补偿问题为依托,提出了一种新型的大功率并联混合注入式有源电力滤波器HSHIAPF,着重讨论了其拓扑结构、工作原理、滤波性能、谐波检测、电流跟踪控制和综合设计等问题,并在理论研究基础上提出了基于HSHIAPF的谐波分析与治理一体化系统实现方案,最后在现场进行了HSHIAPF装置的投运,形成了较为完善的厂矿企业变电站谐波治理理论和技术方案,取得了令人满意的效果,为企业创造了良好的经济与社会效益。
     基于厂矿企业变电站的谐波治理背景,在HSHIAPF的设计过程中,将HSHIAPF的有源部分与基波串联谐振支路并联,再与注入支路串联形成一个整体,最后与单调谐无源滤波支路并联接入电网。由于基波串联谐振支路和注入支路的作用,有源部分承受的基波电压非常小,也几乎没有基波电流流入,其容量可以大大降低,适合于高压大容量系统的应用,初期投资也较小,其无源部分还可以承担一定的无功补偿任务。本论文同时还建立了HSHIAPF的控制原理方程,并选择了根据负载谐波电流来控制逆变器输出电压的控制策略。通过对HSHIAPF在负载谐波电流波动、电源谐波电压波动、电网阻抗波动以及电网频率波动这四种因素作用下的补偿特性和谐振抑制能力进行详细分析,证明了HSHIAPF具有很好的补偿性能。
     综合HSHIAPF对于谐波电流参考信号获取过程实时性、准确性的要求以及控制器部分需要谐波电流检测算法容易实现、计算量小的特点,本论文提出了一种基于离散傅立叶变换(DFT)的滑窗迭代电流检测算法。该算法利用将DFT看作一种FIR带通滤波器的思想,根据基波和谐波分次检测的需要,将FIR带通滤波器的中心频率设为相应的基波或谐波频率,采用长度为周期采样次数的滑动窗去迭代计算该带通滤波器的各项系数,不仅在基波电流和谐波电流突变的情况下能迅速、准确的求出其中的待检测成分,而且还能应用于单次谐波的快速分频检测。同时,该算法的软件实现十分方便,计算量很小,适用范围也较广,利用DSP和高速接口器件可以获得很高的检测精度,从而实现检测精度和动态响应速度的一致性。
     针对HSHIAPF的控制问题,本论文首先建立了HSHIAPF的系统模型。由于HSHIAPF的电压型逆变器在本质上是一个天然的变结构系统,因此在HSHIAPF的控制中应用滑模变结构控制有着非常明显的优势。同时,针对控制参考信号为周期量这一特征,采用递推积分PI控制算法可以实现对周期信号的无差跟踪。所以,结合传统滑模变结构控制算法快速性好和递推积分PI控制算法无稳态误差的优点,本论文提出了一种基于递推积分PI的离散滑模变结构控制算法,将递推积分PI控制算法计算出来的控制量作为滑模变结构控制率中的等效控制,使得控制器具有切换边带两侧以及边带内部的三种变化状态,既克服了滑模变结构控制有差调节、电流开关毛刺较大等不足,也避免了递推积分PI控制稳态到达时间较长的缺点,从而兼顾了动态性能和控制精度的统一,而且逆变器开关毛刺也易于被输出滤波器抑制。
     本论文从HSHIAPF的最佳滤波效果和最小经济成本两个角度出发,从主电路各组成部分的参数设计、设备选取、工程应用等方面对采用注入式结构的HSHIAPF进行了综合研究,构建了一整套完善的HSHIAPF优化设计方法,并以计算机仿真实验为基础,证明了HSHIAPF优化设计结果对于现场工况的可行性和有效性。为了更好的实现HSHIAPF的工程应用,本论文还提出了基于HSHIAPF的谐波分析与治理一体化系统的技术与实现方案,使得整个一体化系统不仅具有很强的动态谐波治理能力和大容量的无功静补能力,逆变器容量小,性价比高;同时还具备齐全的谐波分析、人机交互以及谐波信息集成和共享功能,能够为厂矿企业电力系统的运行、管理提供必要的、可靠的信息来源,也能为上级电力部门提供真实的电能质量数据,非常适合厂矿企业变电站谐波治理工程的应用需要。本论文最后研制了HSHIAPF工业应用装置,完成了整个一体化系统软、硬件和网络设备的调试,并在实地进行了投运,取得了良好的应用效果,在根本上实现了一个基于分层分布式结构的电网谐波监测、分析与治理综合系统,为推进大功率APF在我国的实用化进程提供了有益的参考和借鉴。
Nowadays, people pay more attention to the harm of harmonic. However, the harmonic pollution in power grid is getting worse, and power quality requirement is becoming stricter by users. The advanced dynamic compensation device, APF(Active Power Filter), may reduce harmonic and synthetically control power quality in industrial enterprises, which will bring the remarkable economic and social benefit.
     This dissertation focused on the research of harmonic suppression and large-capacity reactive power compensation in industrial substations. According to the harmonic elimination project at the 10kV side of a 110kV substation in a JiangXi copper-foil enterprise, a novel HSHIAPF (High-capacity Shunt Hybrid Injection Type Active Power Filter) was proposed, and some key problems of HSHIAPF were emphatically discussed, such as topology structure, work principle, filter performance, harmonic detection algorithm, current tracking control algorithm and so on. Based on HSHIAPF, an integrated harmonic analysis and elimination scheme was realized. Finally, HSHIAPF was operated and obtained good results in the industrial field, which produced great economic and social benefit for the copper-foil enterprise.
     In the HSHIAPF structure, active part was firstly connected with a FSRC (Fundamental Series Resonant Circuit) in parallel, and then linked in series with an injection circuit, finally connected in parallel with passive power filters and injected into power grid directly. Because of the functions of FSRC and injection circuit, the active part's fundamental-wave voltage and fundamental-wave current were very small, and even close to zero. Therefore, the topology structure of HSHIAPF was very suitable for harmonic suppression in high voltage and large capacity situations, and the initial investment was also small. Moreover, the passive part of HSHIAPF could also provide much reactive power. Meanwhile, the control equation of HSHIAPF was established in this dissertation. According to the theory, that the output of voltage source inverter would be determined by load harmonic current, a kind of basic control strategies was chose for HSHIAPF. Both theoretical analysis and simulation research have been done under the situations of load harmonic current fluctuation, power source harmonic voltage fluctuation, power grid impedance fluctuation, and power grid frequency fluctuation. All the results have shown that HSHIAPF can get perfect harmonic elimination effect.
     To satisfy the demands of the real-time detection and high precision of harmonic current reference signal, and the characters of easy realization and less calculation of harmonic current detection algorithm, a sliding-window and iterative harmonic current detection algorithm was proposed based on DFT (Discrete Fourier Transform). Regarding DFT as a type of FIR band-pass filters, the proposed algorithm set the corresponding fundamental-wave frequency or harmonic frequency as the FIR filter's center frequency to meet the demands of current frequency-division detection. A sliding window was used to iteratively compute the FIR filter's coefficients and the sliding window's width equaled the sampling times in one power-grid cycle. Simulation results have proved that good detection effect can be obtained by the algorithm even under the abrupt changes of fundamental-wave current or harmonic current. In addition, each order of harmonic current could be detected quickly by extending the algorithm. The algorithm could not only decrease the detection calculation greatly, but also be directly applied in three-phase three-wire, three-phase four-wire and single-phase systems. Moreover, the algorithm was fit for software programming and could ensure the consistency of good detection precision and perfect response speed with DSP (Digital Signal Processor) and some high speed devices.
     The mathematical model of HSHIAPF was built in this dissertation. On the one hand, because the voltage source inverter of HSHIAPF was a natural variable structure system, it would bring extremely obvious advantages in fast control with discrete sliding-mode variable structure control algorithm. On the other hand, because control reference signal was a periodic parameter, it could eliminate system steady error well with recursive integral PI control algorithm. Combining the merits of above two algorithms, a novel compound control algorithm was proposed. In the proposed algorithm, the output of recursive integral PI control algorithm was introduced as an equivalent control of sliding-mode variable structure control algorithm. In this manner, there were three alterable controller conditions with three corresponding switching modes—inside a limit band and either outside of the limit band. Sliding-mode control law would be put into use when the tracking error of reference current was out of the limit band. In this way, the tracking error would be reduced rapidly. When the tracking error entered into the limit band, it would be diminished to zero by recursive integral PI control algorithm. Consequently, this novel controller could provide fast respond and high accuracy. In addition, the switching harmonic could be eliminated easily by the output filter.
     In order to obtain better filter performance and less investment, a whole set of optimal design methods has been established including the design of some important parameters in main circuit, the choice of some key components, application experience and so on. Based on these proposed design methods and simulation results, HSHIAPF had been testified its feasibility and validity for industrial applications. Furthermore, an advanced integrated system based on HSHIAPF was proposed to realize harmonic analysis and suppression better in the industrial field. The integrated system had forceful dynamic harmonic suppression abilities and large-capacity reactive power compensation abilities, however, the inverter's capacity could be limited to a small range and the cost was also less. Besides, the integrated system had excellent harmonic analysis abilities, friendly human-machine interfaces and reliable harmonic-data share abilities. Therefore, it could not only provide enterprise managers with necessary information of industrial power-grid, but also send actual power quality data to some upper power departments. Finally, all the developing and debugging tasks have been finished, and the integrated system has been put into use in the industrial field. In essential, the integrated system was equivalent to a layered distributed system which gathered many functions together, such as harmonic watch, data analysis, harmonic suppression, and so on. Furthermore, these proposed design methods, software, hardware and network design ideas, and engineering experience of HSHIAPF would be very useful for large-capacity active power filters' research and applications in china.
引文
[1]Rissik H.The Mercury Arc Current Converter.Pitman,London,1935
    [2]Read J C.The Calculation of Rectifier and Converter Performance Charactedstics.Journal IEF,1945,92,pt.Ⅱ:495-590
    [3]Kimbark E W.Direct Current Transmission(Vol.Ⅰ).John Wiley & Sons,New York,1971
    [4]吴竞昌,孙树勤,宋文南,等.电力系统谐波.北京:水利电力出版社,1988
    [5]许克明,徐云,刘付平.电力系统高次谐波.重庆:重庆大学出版社,1991
    [6]张一中,宁元中,宋永华,朱光永.电力谐波.成都:成都科技大学出版社,1992
    [7]夏道止,沈赞埙.高压直流输电系统的谐波分析及滤波.北京:水利电力出版社,1994
    [8]林海雪,孙树勤.电力网中的谐波.北京:中国电力出版社,1998
    [9]阿里拉加 J,布莱德勒 D A,伯德格尔 P S.电力系统谐波.唐统一译.徐州:中国矿业大学出版社,1991
    [10]阿里拉加 J,布莱德勒 D A,伯德格尔 P S.电力系统谐波.容健纲,张文亮译.武汉:华中理工大学出版社,1994
    [11]王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998
    [12]田葳,荐志清.有色加工企业谐波的产生与治理.东北电力技术,1999年 第7期:48-51
    [13]汤钰鹏,徐建军.高次谐波产生的原因、危害及其抑制措施.电气传动自动化,2000,22(1):3-6
    [14]《中国电力百科全书》编辑委员会.中国电力百科全书(第二版)——电力系统卷.北京:中国电力出版社,2000
    [15]赵旺初.电力网的谐波源及降低谐波的措施.电力建设.1999年 第9期:22-24,29
    [16]Engineering Recommendation G.5/3 Limits for Harmonics in the United Kingdom Electricity Supply System[S].The Electricity Council Chief Engineers Conference,UK,1976
    [17]水利电力部.电力系统谐波管理暂行规定(SD126-84),北京:水利电力出版社,1984
    [18]中国国家标准GB/T14549-93.电能质量 公用电网谐波,北京:中国标准出版社,1994
    [19]林海雪.从IEC电磁兼容标准看电网谐波国家标准.电网技术,1999,23(5):64-67,72
    [20]陈海昆,程浩忠,周小波.变电站谐波测试与治理.华东电力,2003年 第1期:58-60
    [21]IEC 61000-3-6,Assessment of Emission Limits for Distorting Loads in MV and HV Power System[S].IEC,1996
    [22]姚世全.电磁兼容标准实施指南.北京:中国标准出版社,1999
    [23]FACTS Terms & Definitions Task Force of the FACTS Working Group of the DC and FACTS Subcommittee.IEEE Transactions on Power Delivery,1997,12(4):1848-1853
    [24]何大愚.柔性交流输电技术和用户电力技术的新发展.电力系统自动化,1999,23(6):8-13
    [25]N.G.Hingorani.High power electronics and flexible AC transmission system.IEEE Power Engineering Review,1988,July,3-4
    [26]N.G.Hingorani.Flexible AC Transmission Systems(FACTS).CIGRE 1993 Regional Meeting of South-East Asia and Westem Pacific,Gold Coast,Queensland,Australia,Oct 4-8,1993:227-241
    [27]N.G.Hingorani.Power Electronic Equipment:HVDC and FACTS.CIGRE 1994 session,Pads,France,Aug.28- Sept.3,1994
    [28]Sasaki H,Machida T.A New Method to Eliminate AC Harmonic Currents by Magnetic Compensation Consideration on Basic Design.IEEE Trans.on PAS,1971,90(5):2009-2019
    [29]Gyugyi L,Strycula E C.Active AC Power Filters.Proceedings of IEEE/IAS Annual Meeting,1976:529-535
    [30]Akagi H,Kanazawa Y,Nabae A.Generalized Theory of The Instantaneous Reactive Power in Three-phase Circuits.IEEE & JIEE Proceedings IPEC.Tokyo:IEEE,1983:1375-1386
    [31]Akagi H.Trends in active power line conditioners.IEEE Trans on P.E.,1994,9(3):263-268
    [32]Akagi H.New trends in active filters.Proceedings of European Power Electronics conference,Sevilla,Spain,September 1995:17-26
    [33]Akagi H.Trends in active filters for power conditioning.IEEE Trans.Ind.Applicat.,1996,32(6):311-318
    [34]Peng F Z,Akagi H,Nabae A.A New Approach to Harmonic Compensation in Power System.IEEE IAS Conference Record,1988:874-880
    [35]Fujita H,Akagi H.A Practical Approach to Harmonic Compensation in Power Systems-Series Connection of Passive and Active Filters.IEEE IAS Annual Meeting Conference Record,1990:1107-1112
    [36]朱东起,姜新建,马大铭.无源和有源滤波器串联构成的并联型综合电力滤波系统.清华大学学报(自然科学版),1999,39(3):49-52
    [37]颜晓庆,王兆安.并联型电力有源滤波器控制方式对动态特性影响的研究.西安交通大学学报,1998,32(6):26-30
    [38]童梅,项基.一种混合型电力滤波器的变结构控制.电工技术学报,2002,17(1):59-63
    [39]陈国柱,吕征宇,钱照明.典型工业电网谐波及其混合有源滤波抑制.电网技术,2000,24(5):59-63
    [40]李少非,韩同舜,姜建国,载鹏.基于谐波电压检测的矿用混合型电力滤波器的研究.工矿自动化,2002年 第5期:3-5
    [41]卓放.三相四线制有源电力滤波器的研究:[西安交通大学博士学位论文].陕西:西安交通大学电气工程学院,2001
    [42]Akagi H,Nabae A,Atoh S.Control Strategy of Active Power Filters Using Multiple Voltage-source PWM Converter.IEEE Trans.on IA,1986,22(3):460-465
    [43]Peng F Z,Akagi H,Nabae A.A New Approach to Harmonic Compensation in Power System.IEEE IAS Conference Record,1988:874-880
    [44]Peng F Z,Akagi H,Nabae A.A New Approach to Harmonic Compensation in Power System-A Combined System of Shunt Passive and Series Active Filters.IEEETrans.on IA,1990,26(6):983-990
    [45]Peng F Z,Lai J S.Application Considerations and Compensation Characteristics of Shunt Active and Series Active Filters in Power Systems.Proceedings of IEEE ICHQP Ⅶ,Las Vegas,NV,1996
    [46]M.Takeda,K.Ikeda,and Y.Tominaga.Harmonic Current Compensation with an Active Filter.In Conf.Rec.of IEEE-IAS,1987:808-815
    [47]Fujita H,Akagi H.A Practical Approach to Harmonic Compensation in Power Systems-Series Connection of Passive and Active Filters.IEEE IAS Annual Meeting Conference Record,1990:1107-1112
    [48]Atosuo N,Kiyoshi O.Active filter with series resonant circuit.IEEE PESC 88 Record,APRIL 1988:1168-1175
    [49]Nodaki T,Yoshiya O.Active Filter with Series LC Circuit.Proceedings of IEEE ICHPS Ⅵ,Bologna,1994
    [50]Akagi H,et al.A New Power Line Conditioner for Harmonic Compensation in Power Systems.IEEE Trans.on PWRD,1995,10(3):1570-1575
    [51]GRADY,W.M.,SAMOTYJ,M.J.,NOYOLA,A.H.Survey of active power line conditioning methodologies.IEEE Trans.,1990,PWRD-5,(3):1536-1542
    [52]刘春花,周腊吾.基于ip-iq法的混合有源滤波器谐波电流检测方法.继电器,2005,33(5):24-26
    [53]GRADY,W.M.,SAMOTYJ,et al.Survey of active power line conditioning methodologies.IEEE Trans.,1990,PWRD-5(3):1536-1542
    [54]Sanae Rechka,Eloi Ngandui.,Jianhong Xu,Pierre Sicard.Performance evaluation of harmonics detection methods applied to harmonics compensation in presence of common power quality problems.Mathematics and Computers in Simulation 63,2003:363-375
    [55]Sanae Rechka,Eloi Ngandui.,Jianhong Xu,et al.Performance evaluation of harmonics detection methods applied to harmonics compensation in presence of common power quality problems.Mathematics and Computers in Simulation,2003,63:363-375
    [56]叶忠明,董伯藩,钱照明.谐波电流的提取方法比较.电力系统自动化,1997,21(12):21-24
    [57]Sebastien Mariethoz,Alfred C.Rufer.Open Loop and Closed Loop Spectral Frequency Active Filtering.IEEE TRANSACTIONS ON POWER ELECTRONICS,2002,17(4):564-573
    [58]张伏生,耿中行,葛耀中.电力系统谐波分析的高精度FFT算法.中国电机工程学报,1999,19(3):63-66
    [59]祁才君,王小海.基于插值FFT算法的间谐波参数估计.电工技术学报,2003,18(1):92-95
    [60]王建赜,杨梅,纪延超,柳焯.一种递推式单次谐波快速傅立叶算法.继电器,2003,31(5):14-15,22
    [61]李芙英,王恒福,葛荣尚.用准同步离散Fourier变换实现高准确度谐波分析.清华大学学报(自然科学版),1999,39(5):47-50
    [62]易仕军,孙云莲,陈允平.一种新的畸变电流检测方法及其实现.电网技术,2000,24(8):44-47,52
    [63]王卫勤,刘汉奎,徐殿国,等.电力有源滤波器控制回路补偿参考电流的一种检测方法.电工技术学报,1999,14(1):68-72,48
    [64]王群,姚为正,王兆安.一种简单的谐波和无功检测方法.工业仪表及自动化装置,2000年 第3期:37-40
    [65]Fabiana pottker and Ivo Barbi.Power factor correction of non-linear loads employing a single phase active power filter:control strategy,design methodology and experiment.IEEE PESC 97 Record 28th Annual
    [66]Shiguo Luo and Zheneheng Hou.An adaptive detecting method for harmonic and reactive currents.IEEE Trans.Ind.Electron,vol.42,pp85-89,Feb.1995
    [67]Wang Qun,Wu Ning,Wang Zhaoan.Neuron adaptive detecting approach of harmonic current for APF and its realization of analog circuit.IEEE Transactiongs ond Instrumentation and Measurement 501 Feb.2001
    [68]王兆安.三相电路瞬时无功功率理论的研究.电工技术学报.1993年8月
    [69]Fang Zheng Peng.Compensation characteristics of the combined system of shunt passive series active filters.IEEE Trans.Ind.Appl.Vol.29,pp.144-152, Jan/Feb.1993
    [70]Akagi H.New Trends in Active Filters for Power Conditioning.IEEE Trans.on IA,1996,32(6):1312-1322
    [71]杨君,王兆安.三相电路谐波电流两种检测方法的对比研究.电工技术学报,1996,11(2):43-48
    [72]杨君,王兆安,邱关源.不对称三相电路谐波及基波负序电流实时检测方法的研究.西安交通大学学报,1996,30(3):94-100
    [73]G.W.Chang,S.K.Chen,M.Chu.An efficient a-b-c reference frame-based compensation strategy for three-phase active power filter control.Electric Power Systems Research 60(2002):161-166
    [74]Bo Zhang,SongWen Yi,Xiaoming He.A novel harmonic current detection technique based on a generalized dq coordinate transform for active power filter and fault protection of power system.Proceedings of the 5th International Conference on Advances in Power System Control,Operation and Management,APSCOM 2000,Hong Kong,2000.8:543-547
    [75]Jintakosonwit P,Fujita H,Akagi H.Control and Performance of A Fully-digital-controlled Shunt Active Filter for Installation on A Power Distribution System.IEEE Trans.on PE,2002,17(1):132-140
    [76]周丽,蒋平,曹莹,等.基于dq坐标变换的畸变电流矢量检测法.电力自动化设备,2002,22(12):17-19
    [77]Hossein Haghighat,Hossein Seifi,Ali Yazdian.An instantaneous power theory based control scheme for unified power flow controller in transient and steady state conditions.Electric Power Systems Research 64(2003):175-180
    [78]David González,Josep Balcells,Santiago Lovera,Ricardo Lima.Comparison between Unity Power Factor and Instantaneous Power Theory Control Strategies applied to a Three Phase Active Power Filter.IEEE,1998:843-847
    [79]Hyosung Kim,Frede Blaabjerg,Birgitte Bak-Jensen,et al.Instantaneous Power Compensation in Three-Phase Systems by using p-q-r Theory.IEEE TRANSACTIONS ON POWER ELECTRONICS,2002,17(5):701-710
    [80]Chang G W,Chert S K,Chu M.An Efficient a-b-c Reference Frame-based Compensation Strategy for Three-phase Active Power Filter Control.Electric Power Systems Research,2002,60:161-166
    [81]张波,易颂文.基于广义d_k-q_k旋转坐标变换的谐波电流检测方法.电力系统及其自动化学报,2001,13(3):25-26
    [82]Hossein Haghighat,Hossein Seifi,Ali Yazdian.An instantaneous power theory based control scheme for unified power flow controller in transient and steady state conditions.Electric Power Systems Research 64(2003):175-180
    [83]David González,Josep Balcells,Santiago Lovera,Ricardo Lima.Comparison between Unity Power Factor and Instantaneous Power Theory Control Strategies applied to a Three Phase Active Power Filter.IEEE,1998:843-847
    [84]Xiaoming Yuan,Willi Merk,Herbert Stemmler,et al.Stationary-Frame Generalized Integrators for Current Control of Active Power Filters With Zero Steady-State Error for Current Harmonics of Concern Under Unbalanced and Distorted Operating Conditions.IEEE Trans.on Ind.Appl.,2002,38(2):523-531
    [85]周林,易强,秦梅,等.不对称三相四线制系统有害电流的检测方法.重庆大学学报,2002,25(10):9-12,6
    [86]陈君,赵伟,初仁欣.测算电网频率和谐波的新方法,清华大学学报(自然科学版),2000,40(1):25-27
    [87]刘波,王兆安.串联混合型电力有源滤波器及其在单相电路中的应用.电工技术学报.1998,13(1):43-46
    [88]杨君,王兆安,丘关源.单相电路谐波及无功电流的一种检测方法.电工技术学报,2000,15(12):40-44
    [89]Enslin J.A new control philosophy for power electronic converters as fictitious power compensators.IEEE Trans PE,1990,5(1):88-97
    [90]丁洪发,段献忠,何仰赞.同步检测法的改进及其在三相不对称无功补偿中的应用.中国电机工程学报.2000,20(6):17-20,52
    [91]VAN HARMELEN G.L.,ENSLIN J..Real time dynamic control of dynamic power filters in supplies with high contamifiation.IEEE Trans.P.E.,1993,8(3):301-308
    [92]林志一,陈希武,周秀英,等.采用小波变换的功率测量方法,计量学报,2003,24(1):52-55
    [93]吴军基,刘皓明,孟绍良,等.小波滤波器在电力系统谐波检测中的应用.电力系统及其自动化学报,1999,11(5):50-54
    [94]尹晓琦.小波包变换在电网谐波检测中的应用.淮阴师范学院学报(自然科学版),2002,11(2):43-46
    [95]张小玲,郑世喜,丁坚勇.电力系统谐波分析的ANN算法及其误差分析.计量技术,2002年 第12期:3-9
    [96]危韧勇,李志勇,李群湛.一种基于ANN理论的谐波电流动态检测方法研究.铁道学报,2000,22(1):40-44
    [97]R.El Shatshat,M.Kazerani,M.M.A.Salama.Power quality improvement in 3-phase 3-wire distribution systems using modular active power filter.Electric Power Systems Research 61(2002):185-194
    [98]高大威,孙孝瑞.基于神经元网络的用于有源电力滤波器的电流检测.电网技术,2000,24(1):72-75
    [99]王莉娜,姜勇.有源滤波器参考电流的无延时的生成方法.电气传动,2003 年 第1期:61-64
    [100]Mika Salo,Heikki Tuusa.A Current-Source Active Power Filter with a Control Delay Compensation.IEEE 2001:1591-1595
    [101]曾云,陈华丽,颜中原.有源滤波器参考电流的自适应检测方法.供用电,2002,19(6):14-16
    [102]Tai Ling Leung,Sami Valiviita,Seppo J.Ovaska.Adaptive and Delayless Filtering System for Sinusoids with Varying Frequency.IEEE,1999:149-153
    [103]徐向民,刘永强,赖声礼,等.基于电磁变换的电网谐波检测.华南理工大学学报,2001,29(5):1-4
    [104]王群,谢品芳,吴宁,等.模拟电路实现的神经元自适应谐波电流检测方法.中国电机工程学报,1999,19(6):42-46
    [105]危韧勇,李志勇.基于人工神经元网络的电力系统谐波测量方法.电网技术,1999,23(12):20-23
    [106]张波,黄朝凯,王昊,等.基波电流和任意次数谐波电流检测新方法.华南理工大学学报,2000,28(1):70-75
    [107]蔡亮,陈国雄,潘祖善.采用简化的普罗尼谱估计法的谐波电流检测方法.电工技术学报,1999,14(1):73-76
    [108]Pan C T,Chang T Y.An Improved Hysteresis Current Controller for Reducing Switching Frequency.IEEE Trans.on PE,1994,9(1):97-104
    [109]Malesani L,Tenti P.A Novel Hysteresis Control Method for Current-controlled Voltage-source PWM Inverters with Constant Modulation Frequency.IEEE Trans.on IA,1990,26(1):88-92
    [110]王量,郝荣泰.三相不平衡有源无功和高次谐波补偿器控制系统的研究.电工技术学报,1996,11(4):31-35
    [111]Malesani L,Mattavelli P,Tomasin P.High-performance Hysteresis Modulation Technique for Active Filters.IEEE Trans.on PE,1997,12(5):876-884
    [112]Singh B,AL Haddad K,Chandra A.A New Control Approach to Three-phase Active Filter for Harmonics and Reactive Power compensation.IEEE Trans.on PS,1998,13(1):133-138
    [113]曾江,焦连伟,倪以信,等.有源滤波器定频滞环电流控制新方法.电网技术,2000,24(6):1-8
    [114]李卫国,曾国宏,郝荣泰.基于状态优化的单相有源滤波器边带控制方案.电力系统自动化,2002,26(10):36-40
    [115]Doulai P,Ledwich G.Co-ordinated Three-phase Hysteresis-control Scheme for Active Power Filtering.IEE Proceedings of Electric Power Applications,1993,139(5):457-464
    [116]Saetieo S,et al.The Design and Implementation of A Three Phase Active Power Filter Based on Sliding Mode Control.IEEE Trans.on IA,1995,31(5): 993-1000
    [117]冯培悌,童梅.滑模变结构控制在有源电网调节系统中的应用.电工技术学报,1997,12(4):52-56
    [118]邓占锋,朱东起,姜新建.基于滑模控制的混合型电力滤波装置.电工技术学报,2002,17(2):92-96
    [119]高为炳.变结构控制的理论及设计方法.北京:科学出版社,1996
    [120]李玉梅,马伟明.无差拍控制在串联电力有源滤波器中的应用.电力系统自动化,2001,25(8):28-30
    [121]李江,孙海顺,程时杰等.基于灰色系统理论的有源滤波器的预测控制.中国电机工程学报,2002,22(2):6-10
    [122]Buso S,Malesani L,Mattavelli P.Comparison of Current Control Techniques for Active Filter Applications.IEEE Trans.on IE,1998,45(5):722-729
    [123]Schauder C D,Moran S A.Multiple Reference Frame Controller for Active Power Filters and Power Line Conditioners.U.S.Patent 5309353,May 1994
    [124]Bojyup M,Karlsson P,Alakula M.,et al.A Multiple Rotating Integrator Controller for Active Filters.Proceedings of EPE Conference,1999
    [125]Yuan X,Merk W,Stemmler H,et al.Stationary-frame Generalized Integrators for Current Control of Active Power Filters with Zero Steady-state Error for Current Harmonics of Concern Under Unbalanced and Distorted Operating Conditions.IEEE Trans.on IA,2002,38(2):523-532
    [126]童梅,童杰,蒋静坪.有源滤波器的神经网络控制.电工技术学报,2000,15(1):57-60
    [127]Madtharad C,Premrudeepreechacham S.Active Power Filter for Three-phase Four-wire Electric Systems Using Neural Networks.Electric Power Systems Research,2002,60(2):179-192
    [128]Elmitwally A,Abdelkader S,El-Kateb M.Neural Network Controlled Three-Phase Four-Wire Shunt Active Power Filter.IEE Proceedings of Generation,Transmission and Distribution,2000,147(2):87-92
    [129]Chen Y M,O'Connell R M.Active Power Line Conditioner with A Neural Network Control.IEEE Trans.on IA,1997,33(4):1131-1136
    [130]粟时平,刘建华,金维香.并联有源电力滤波器的人工神经网络控制方法.长沙电力学院学报,2002,17(1):18-22
    [131]钱挺,吕征宇.基于单周控制的有源滤波器双环控制策略.中国电机工程学报,2003,23(3):34-37
    [132]周林,蒋建文,周雒维,等.基于单周控制的三相四线制有源电力滤波器.中国电机工程学报,2003,23(3):85-90
    [133]Jou H L,Wu J C,Wu K D.Parallel operation of passive power filter and hybrid power filter for harmonic suppression.IEE Proceedings Volume 148,Issue 1, Jan.2001:8-14
    [134]Wei-Fu Su,Cin E.Lin,Ching-Lien Huang.Hybrid filter application for power quality improvement.Electric Power Systems Research:165-171
    [135]Kuang Li,Guochun Xiao,Jinjun Liu,et al.Comparison of four control methods to active power filters applied in accelerator power supplies.2004 IEEE 35th Annual Volume 1,20-25 June 2004 Page(s):794-799
    [136]Yonghai Xu,Xiangning Xiao,Hao Liu,Hong Wang.Parallel operation of hybrid active power filter with passive power filter or capacitors.2005 IEEE/PES 15-18 Aug.2005 Page(s):1-6
    [137]徐永海,肖湘宁,杨以涵,等.低成本混合滤波方案及特性分析.中国电机工程学报,1999,19(12):5-8
    [138]Po-Tai Cheng,Subhashish Bhattacharya.Divan,Control of Square-Wave Inverters in High-Power Hybrid Active Filter System,IEEE Trans.Ind.Appl.,1998,34(3):458-472
    [139]Wang Z,Wang Q,Yao W,et al.A Series Active Power Filter Adopting Hybrid Control Approach.IEEE Trans.on PE,2001,16(3):301-310
    [140]王群,耿云玲,姚为正.串联型有源电力滤波器的控制策略.国防科技大学学报,2000,22(6):28-33
    [141]张一斌,夏向阳,商红忠.并联混合型有源滤波器控制策略研究.微电机,2006,39(3):103-105
    [142]王莉娜.厂矿企业配电网谐波治理控制策略和工程应用研究:[中南大学博士学位论文].湖南:中南大学信息科学与工程学院,2003
    [143]付清.大功率电网谐波有源治理的控制策略和工程应用研究:[中南大学博士学位论文].湖南:中南大学信息科学与工程学院,2004
    [144]范瑞祥,罗安,周柯,等.并联混合型有源电力滤波器的建模和控制策略分析.中国电机工程学报,2006,26(12):55-61
    [145]黄纯.基于离散傅立叶变换校正的电参量微机测量新算法及应用研究.中国电机工程学报,2005,25(7):86-91
    [146]李自成,孙玉坤.基于离散傅立叶变换的单相电路谐波电流实时检测方法的研究.电测与仪表,2005,42(3):20-22
    [147]雷万钧,李红雨,卓放,等.基于DFT谐波检测方法的大容量并联型有源电力滤波器的研制.电工电能新技术,2004,23(2):69-72
    [148]刘益成,孙祥娥.数字信号处理.北京:电子工业出版社,2004
    [149]MANCHUR G,ERVEN C C.Development of a model for predicting filter from electric arc furnaces.IEEE Trans.on Power Delivery,1992,7(1):416-420
    [150]刘开培,张俊敏.基于DFT的瞬时谐波检测方法.电力自动化设备,2003,23(3):8-10
    [151]唐中琦,谢运祥.有源滤波器补偿电流的检测与控制.电工电能新技术, 1998,17(4):28-31
    [152]唐欣,罗安,涂春鸣.基于递推积分PI的混合型有源电力滤波器电流控制.中国电机工程学报,2003,23(10):38-41
    [153]顾丹珍,徐德瑞.一种地区电网多目标无功优化的新方法.电网技术,1998,22(1):71-74
    [154]郭惠昕,张龙庭,罗佑新,等.多目标模糊优化设计的理想点法.机械设计,2001年 第8期:16-19
    [155]王彩华,朱煜东.多目标优化的模糊解法中目标权重的处理方法.重庆大学学报,1992,15(6):92-97
    [156]赵勇,韩春立,李建华,等.兼顾降低网损和抑制谐波要求的配电系统优化运行.中国电机工程学报,2003,23(1):6-10
    [157]Mitsubishi Semiconductors Power Modules Mos-Using Intelligent Power Modules.
    [158]IGBT designer's manual(General considerations for IGBT and intelligent power modules)[R].International rectifier.1998,USA
    [159]涂春鸣,罗安.无源滤波器的多目标优化设计.中国电机工程学报,2002,22(3):17-21
    [160]李志勇,罗安.混合有源滤波器无源网络的内部电磁兼容性分析.电力系统自动化,2004,28(16):72-74,82
    [161]李志勇,罗安,穆帅.三相LC电力滤波器的EMC分析与研究.电工技术学报,2004,19(11):87-89,93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700