含有时滞的汽车主动悬挂系统的减振控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了含有控制时滞的汽车主动悬挂系统的减振控制问题,其研究内容概括如下:
     1、研究汽车在粗糙路面行驶中主动悬挂系统的最优减振控制问题。在考虑控制器时滞的情况下,利用二自由度四分之一悬挂系统动力模型和路面随机激励输入的时域模型,根据汽车驾驶的舒适性和操控稳定性指标设计了汽车主动悬挂系统基于控制器时滞的反馈最优减振控制律,利用模型转换将时滞系统转换为形式上不含有时滞的系统,通过Riccati方程和Sylvester方程求得最优解,并证明了最优解的存在唯一性。数字仿真结果表明设计的控制律使汽车主动悬挂系统可以在有界驱动器时滞存在的情况下保持闭环系统稳定,而且较不考虑时滞的控制器性能其性能有较大的提高。
     2、研究汽车在粗糙路面行驶中具有控制时滞的主动悬挂系统H∞减振控制。假定驱动器时滞是不确定的但是有界。在考虑时滞的情况下,建立了八自由度整车悬挂系统动力模型,然后根据汽车驾驶的舒适性和车轮抓地性指标设计了汽车主动悬挂系统基于驱动器时滞的无记忆状态反馈H∞控制律,并通过基于时滞的矩阵不等式求得最优解。将所设计的控制律运用于具有驱动器时滞的汽车主动悬挂减振控制进行仿真实验,仿真结果验证了它不但能使汽车的主动悬挂系统获得最优性能,而且可以在有界驱动器时滞存在的情况下保持闭环系统稳定。
In this thesis, the disturbance rejection problem for linear systems with control delays is researched. The contents of the research are as follows:
     1. The optimal vibration control for vehicle active suspension systems with controller delay is considered. The time delay for the controller is assumed as uncertain time-invariant but has a known constant bound. The dynamic models for the 2-degree-freedom quarter-car suspension system and the time domain model [1] for the road roughness stochastic power input are established. The control delay is transformed into an equivalent nondelayed one in form by the mode transformation. then according to the standards of road comfort and road holding the optimal state feedback vibration control law is designed, which can be obtained optimally through Riccati and Sylvester equations. The optimal vibration control law is proved to be unique. It is confirmed by the simulations that the designed controller can not only preserve the closed-loop stability in spite of the existence of the actuator time delay within allowed bound but achieve a better performance than the delay-independent controller.
     2. The H∞control for vehicle active suspension systems with controller delay is considered. The time delay for the actuator is assumed as uncertain time-invariant but has a known constant bound, and the dynamic models for the eight-degree-freedom full-car suspension system and the temporal model for the road roughness stochastic power input are established. Then, according to the standards of road comfort and road holding the elay-dependent memoryless state feedback H∞controller is designed, which can be obtained optimally through delay-dependent matrix inequalities. It is confirmed by the simulations that the designed controller can not only achieve the optimal performance for active suspensions but also preserve the closed-loop stability in spite of the existence of the actuator time delay within allowable bound.
引文
[1]Hrovat D. Survey of advanced suspension developments and related optimal control applications. Automatica,1997,33 (10):1781-1817.
    [2]Gao H, Lam J, Wang C. Multi-objective control of vehicle active suspension systems via load-dependent controllers. Journal of Sound and Vibration,2006,290:654-675.
    [3]Chisci L, Rossiter A, Zappa G. Systems with persistent disturbances:Predictive control with restricted constraints. Automatica,2001,37:1019-1028.
    [4]Al-Holou N, Lahdhiri T, et al. Sliding mode neural network inference fuzzy logic control for active suspension systems. IEEE Transactions on Fuzzy Systems,2002,10(2):234-246.
    [5]Du H, Zhang N. H∞ control of active vehicle suspensions with actuator time delay. Journal of Sound and Vibration,2007,301:236-252.
    [6]Mianzo L, Peng H. LQ and H∞ preview control for a durability simulator. American Automation Control Council. Proc of American Control Conference,1997:699-703.
    [7]Yao J T P. Concept of structural control. Journal of Structural Division,1972,98: 1567-1574.
    [8]Kwon W H, Pearson A.E. Feedback stabilization of linear systems with delayed control。 IEEE Transations on Automatic Control,1980, AC-25 (2):266-269.
    [9]Abdel-Rohman。Time-delay compensation in active damping of structures. Journal of Engineering Mechanics, ASCE,1987,113(11):1709-1719.
    [10]Olbrot A W. Stabilizability, detectability, and spectrum assignment for linear autonomous systems with general time delays. IEEE Transations on Automatic Control,1978, AC-23 (5): 887-890.
    [11]Artstein Z. Linear systems with delayed controls:a reduction. IEEE Transations on Automatic Control,1982, AC-27 (4):869-879.
    [12]Fiagbedzi Y A, Pearson A.E. Feedback stabilization of linear autonomous time lag systems. IEEE Transations on Automatic Control,1986, AC-31 (9):847-855.
    [13]郑锋,程勉,高为炳.点时滞系统的反馈镇定.应用数学学报,19(2):165-174.
    [14]Moon Y S, Park P, Kwon W H. Robust stabilization of uncertain input-delayed systems using reduction method. Automatica,2001,37:307-312.
    [15]Riccard J P. Time-delay systems:an overview of some recent advances and open problems. Automatica,2003,39:1667-1694.
    [16]Yue Y. Robust stabilization of uncertain systems with unknown input delay. utomatica,2004, 40:331-336.
    [17]Abdallah C, Dorato P, Benitez-Read J, Byrne R. Delayed positive feedback can stabilize oscillatory systems. American Control Conference,1993, pp.3106-3107.
    [18]Tang G Y tabilization for simple systems via delayed proportional controller. Proc of World Congress on Intelligent Control and Automation,2006, pp.349-353.
    [19]Ma H, Tang G Y, Zhao Y D. Feedforward and feedback optimal control for offshore structures subjected to irregular wave forces. Ocean Engineering,,2006,33 (8-9): 1105-1117.
    [20]Wang W, Tang G Y. Feedback and feedforward optimal control for offshore jacket platforms. China Ocean Engineering,,2004,18 (4):515-526.
    [21]Yang Y S. Robust adaptive fuzzy control and its application to ship roll stabilization. International Journal of Information Science,2002,25 (2):1-18.
    [22]Wells R L, Schueller J K, Tlusty J. Feedforward and feedback control of a flexible robotic arm. IEEE Control Systems Magazine,1990, pp.9-15.
    [23]Chung L L, Lin C C, Lu K H. Time-delay control of structures. Earthquake Engineering and Structural,1995,24:687-701.
    [24]Orccotoma J A, Paris J, Perrier M. Thesis machine controllability:Effect of disturbances on basis weight and first-pass retention. Journal of Process Control,2001,11 (4):401-408.
    [25]Jose J, Taylor R J, De R A. Callafon, F.E. Talke. Characterization of lateral tape motion and disturbances in the servo position error signal of a linear tape drive. Tribology International, 2005,38 (6-7):625-632.
    [26]Tang G Y, Gao D X. Approximation design of optimal controllers for nonlinear systems with sinusoidal disturbances. Nonlinear Analysis:Theory, Methods and Applications,2007, 66 (2):403-414.
    [27]Tang G Y, Zhao Y D. Optimal control for nonlinear time-delay systems with persistent disturbances. Journal of Optimization Theory and Applications,2007,132 (2):307-320.
    [28]Tang G-Y, Zhang S-M. Optimal rejection with zero steady-state error to sinusoidal disturbances for time-delay. Asian Journal of Control,2006,8 (2):117-123.
    [29]Tang G-Y, Sun H Y, Liu Y M. Optimal control for discrete time-delay systems with persistent disturbances. Asian Journal of Control,2006,8 (2):135-140.
    [30]Mascolo S. Smith's principle for congestion control in high-speed data networks. IEEE Transactions on Automatic Control,2000,45 (2):358-364.
    [31]唐功友.时滞系统的降维状态预测观测器及预测控制器设计.控制理论与应用,2004,21(2):295-298.
    [32]Matausek M R, Micic A D. On the modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control,1996,41 (8): 1199-1203.
    [33]Matausek M R, Micic A D. A modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control,1999,44 (8): 1603-1606.
    [34]Stojic M R, Matijevic M S, Draganovic L S. A robust Smith predictor modified by internal models for integrating process with dead time. IEEE Transactions on Automatic Control, 2001,46(8):1293-1298.
    [35]Dahlin E B. Designing and tuning digital controllers. Instruments and Control Systems, 1968,2 (6):77-83.
    [36]Vogel E G, Edgar T F. An adaptive pole placement controller for chemical processes and variable dead time. Computers and Chemical Engineering,1988,12 (1):15-26.
    [37]宗晓萍,冯贺平.基于神经网络的时滞预测控制.控制理论与应用,2005,24(12):6-8.
    [38]Liu Y, Hu S S. Robust H∞ control for multiple time-delay uncertain nonlinear system based on fuzzy model and neural network. ACTA Automatica Sinica,2003,29 (6):859-866.
    [39]Vieira J, Mota A. Smith predictor based neural fuzzy controller applied in a water gas heater that presents a large time-delay and load disturbances. Proc of IEEE Conference Control Applications,2003,362-367.
    [40]Chung L L, Reinhorn A M, Soong T T. Experiments on active control of seismic structures. Journa of Engineering Mechanics,1989,115:1609-1627.
    [41]Kai Q J, Kuand S. Time delay compensation in active closed-loop structural control. Mechanics Research Communications,1995,22 (2):129-135.
    [42]McGreevyS, Soong T T, Reinhorn A M. An experimental study of time delay compensation in active structural control. Proc of the 6th International Model Analysis Conference Society for Experimental Mechanics,1988,733-739.
    [43]嵇春艳,李华军.随机波浪作用下海洋平台主动控制的时滞补偿研究.海洋工程,2004,22(4):95-101.
    [44]Zames G. Feedback and optimal sensitivity, mode reference transformations, multiplicative seminorms and approximate inverse. IEEE Transactions on Automatic Control,1981,26 (2): 585-601.
    [45]Dolye J C, Golver K, Khargonekar P P, Francis B A. State-space solutions to standards H2 and H∞ control problems. IEEE Transactions on Automatic Control,1989,34 (8):831-847.
    [46]Dolye J, Zhou K, Glover K, Bodenheimer B. Mixed H2 and H∞ performance objectives Ⅱ: optimal control IEEE Transactions on Automatic Control,1994,39:1575-1587.
    [47]Stein G, Athans M. The LQG/LTR procedure for multivariable feedback control design. IEEE Transactions on Automatic Control,1987,32:105-114.
    [48]Isidori A, Aslolfi A. Disturbance attenuation and H∞ control via measurement feedback. IEEE Transactions on Automatic Control,1992,37 (9):1283-1293.
    [49]Astrom K J, Wittenmark B. On self-tuning regulators. Automatica,1973,9:185-199.
    [50]Soderstrom T. Feedforward, correlated disturbances and iderntification. Automatica,1999, 35:1565-1571.
    [51]Kandil T H, et al. Adaptive feedforward cancellation of sinusoidal disturbances in superconducting RF cabvities. Nuclear Instruments and Methods in Physics Research A, 2005,550:514-520.
    [52]Lai B W, Sims C S. Disturbance rejection and tracking using output feedfoward control. IEEE Transactions on Automatic Control,1990,35 (6):749-752.
    [53]Tang G-Y. Feedforward and feedback optimal control for linear systems with sinusoidal disturbances. High Technology Letters,2001,7 (4):16-19.
    [54]唐功友,刘鹏,谢楠.具有持续扰动的时滞系统前馈-反馈最优控制.控制与决策,2005,20(5):505-510.
    [55]唐功友,张宝琳.受扰非线性离散系统的前馈-反馈最优控制.控制理论与应用,2006,23(1):25-30.
    [56]Patnaik L M, Viswanadham N, Sarma I G. Computer control algorithms for a tubular ammonia reactor. IEEE Transactions on Automatic Control,1980,25 (4):642-651.
    [57]C.M. Schar C M, Onder C H, Geering H P. Control of an SCR catalytic converter system for a mobile heavy-duty application. IEEE Transactions on Automatic Control,2006,14 (4): 641-653.
    [58]Schrijvert E, Dijkt J V, Nijmeijer H. Equivalence of disturbance observer structures for linear systems. Proc of the 39th IEEE Conference on Decision and Control,2000, 4518-4519.
    [59]Gibson A, Kolmanovsky I, Hrovat D. Application of disturbance observers to automotive engine idle speed control for fuel economy improvement. Proc of the 2006 American Control Conference,2006,1197-1202.
    [60]She J H, Ohyama Y, Nakano M. A new approach to the estimation and rejection of disturbances in servo systems. IEEE Transactions on Automatic Control,2005,13 (3): 378-385.
    [61]唐功友,马慧,张宝琳.受扰线性离散系统的前馈-反馈最优控制.控制与决策,2005,20(3):266-270.
    [62]Lei J, Tang G-Y. Disturbance attenuation for nonlinear systems with control delay via high-gain observer-based control approach. Dynamics Continuous Discrete and Impulsive Systems Series-A-Mathematical Analysis,2006,13 (IS):245-248.
    [63]Francis B A, Wonham W M. The internal model principle of control theory. Automatica, 1976,12:457-465.
    [64]Marino R, Tomei P. Output regulation for linear systems via adaptive internal model. IEEE Transactions on Automatic Control,2003,48 (12):2199-2202.
    [65]Richard R, George W. Internal model based tracking and disturbance rejection for stable well-posed systems. Automatica,2003,39 (9):1555-1569.
    [66]Zhang S-M, Tang G-Y. Optimal tracking control with zero steady-state error for linear systems with sinusoidal disturbances. Impulsive Dynamical Systems and Applications,2006, 13(3, Suppl.):1471-1478.
    [67]Byrnes C I, Isidori A. Limit sets, zero dynamics, and internal model in the problem of nonlinear output regulation. IEEE Transactions on Automatic Control,2003,48 (10): 1712-1723.
    [68]Byrnes C I, Isidori A. Nonliear internal model for output regulation. IEEE Transactions on Automatic Control,2004,49 (12):2244-2247.
    [69]Priscoli F D, Marconi L, Isidori A. Adaptive observers as nonlinear internal model. Systems and Control Letters,2006,55 (8):640-649.
    [70]Huang J, Chen Z. A general framework for tackling the output regulation problem. IEEE Transactions on Automatic Control,2004,49 (12):2203-2218.
    [71]Arcara P, Bittanti S, Lovera M. Periodic control of helicopter rotors for attenuation of vibrations in forward flight. IEEE Transactions on Automatic Control,2000,8 (6):883-894.
    [72]Bodson M. Performance of an adaptive algorithm for sinusoidal disturbance rejection in high noise. Automatica,2001,37 (7):1133-1140.
    [73]Marine R, Santosuosso G L, Tomei P. Robust adaptive compensation of biased sinusoidal disturbances with unknown frequency. Automatica,2003,39 (10):1755-1761.
    [74]Lin C L, Hsiao Y H. Adaptive feedforward control for disturbance torque rejection in seeker stabilizing loop. IEEE Transactions on Automatic Control,2001,9 (1):108-121.
    [75]Richalet J. Model predictive heurictic control:applications to industrial process. Automatica, 1978,14 (5):413-428.
    [76]Mahra R K. Model algorithmic control (MAC):basic theoretical properties. Automatica, 1982,18 (4):401-404.
    [77]Clarke D W, Mohtadi C, TuffsP S. Generaliced predictive control-Ⅰ:the basic algorithm. Automatica,1987,23 (2):137-148.
    [78]Clarke D W, Mohtadi C, Tuffs P S. Generaliced predictive control-Ⅱ:extension and interpretations. Automatica,1987,23 (2):149-160.
    [79]Kothares L O, Morari M. Contractive model predictive control for constrained nonlinear systems. IEEE Transactions on Automatic Control,2000,45 (6):1053-1071.
    [80]Chisci L, Rossiter J A, Zappa G. Systems with persistent disturbances:Predictive control with restricted constraints. Automatica,2001,37 (7):1019-1028.
    [81]Hara S, Yamanoto Y, Omata T, Nakano M. Repetitive control system:a new type servo system for periodic exogenous signals. IEEE Transactions on Automatic Control,1988,33 (7):659-668.
    [82]Guo L, Corporation M. A new disturbance rejection scheme for hard disk drive control. Proc of the 1998 American Control Conference, June,1553-1557.
    [83]Manayathara T J, Tsao T C, Bentsman J. Rejection of unknown periodic load disturbances in continuous steel casting process using learning repetitive control approach. IEEE Transactions on Automatic Control,1996,4(3):259-265.
    [84]Fujimoto H, Hori Y. Vibration suppression and optimal repetitive disturbance rejection control in semi-Nyquist frequency region using multirate sampling control. Proc of the 39th IEEE Conference on Decisiong and Control,2000,3745-3750.
    [85]邵诚,高福荣,杨毅.最优迭代学习控制的鲁棒稳定性及其在注塑机控制中的应用.自动化学报,2003,29(1):72-79.
    [86]Yue D, Han Q-L, Lam J. Network-based robust H∞ control of systems with uncertainty. Automatica,2005,41:999-1007.
    [87]Tadmor G. Robust control in the gap:a state-space solution in the presence of a single input delay. IEEE Transactions on Automatic Control,1997,42 (9):1330-1335.
    [88]Cao Y Y, James L. Robust control of uncertain Markovian Jump systems with time-delay. IEEE Transactions on Automatic Control,2000,45 (1):77-83.
    [89]Fialho I, Balas G J. Design of Nonlinear Controllers for Active Vehicle Suspensions Using Parameter-varying Control Synthesis. Vehicle System Dynamics,2000,12:351-370.
    [90]Jalili N, Esmailzadeh E. Optimum Active Vehicle Suspensions with Actuator Time Delay. Journal of Dynamic Systems, Measurement and control,2001,12:54-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700