多关节自治机器人系统分布式协作运动规划方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多关节自治机器人协作系统属于多智能体机器人系统的范畴,在承载能力、操作精确性、灵活性、系统的可靠性、对变化不确定环境的适应性等方面都比传统的机器人有更大的优越性。协作系统具有空间分布、功能分布、时间分布等特点,通过共享资源(信息、知识等)弥补了单机器人能力的不足,扩大完成任务的能力范围。系统内机器人资源的冗余性提高完成任务的可能性、增加了系统的可靠性与稳定性。
     运动规划是机器人决策的重要环节之一,多个关节式机器人的协同工作对协作运动规划提出了更高的要求。现有的集中式规划方法和分散规划—集中协调的统一协调式规划方法难以满足应用系统对空间—时间综合优化、速度约束、协作任务多样化和系统可靠性等多方面的综合要求,无法发挥分布式自治多机器人协作系统的优势。
     本论文提出了一种多关节自治机器人协作系统的分布式协作运动规划方法。系统中各机器人个体的规划子系统相对独立、平等地根据各自的局部信息进行自身的运动规划,仅通过少量异步通信,获取其它机器人的决策信息,完成相互避碰和特定的协同作业等任务,系统总体能够实现空间—时间的综合优化目标,规划系统对于一定程度上的通讯不可靠具有抗干扰性。因此在多机器人外太空作业和外星球探险、野外自主协同作业、深海协同作业等新的机器人应用领域具有重要的应用价值。
     本文的主要研究工作包括:
     1、给出了待求解的多关节自治机器人协作系统运动规划问题的数学描述。从优化角度,明确了多关节自治机器人协作运动规划的优化目标和运动路径综合评价标准,详细分析了影响机器人运动的各类约束条件。论证了空间优化与时间优化的一致性和可分离性问题,说明空间—时间综合优化指标的重要意义。提出了对协作运动规划方法的性能要求。
     2、针对多关节自治机器人协作系统,提出一种新的分布式协作运动规划(Distributed Cooperative Motion Planning,DCMP)方法,在同一规划层次上实现空间—时间运动路径综合优化。以分布式求解为目标,通过严格的数学推导,将多关节自治机器人协作系统的整体运动规划任务分解为各机器人个体的独立子规划。在满足综合优化目标的前提下,推导出能够分布式迭代计算的子系统优化模型。DCMP方法解耦了各机器人协作运动子规划的同步性,使其可以异步并行进行。对DCMP方法的性能,尤其是抗通讯干扰的能力,进行了分析研究。DCMP方法在协作运动规划的体系结构和协作机制方面进行了有益的尝试和创新。
     3、利用协同进化计算作为DCMP方法的算法实现工具。在满足数学严谨性的基础上,采用计算智能方法求解各机器人协作运动子规划。DCMP方法充分利用了协同进化算法的并行计算能力、在优化搜索方面的启发功能和对约束条件的处理方法,实现了运动路径的空间—时间综合优化,并解决了其它方法难以实现的多关节式机器人动态约束(如速度约束)问题。
     4、从多关节自治机器人协作运动规划的特点出发,讨论了基于协同进化计算的DCMP方法在个体编码方法、遗传操作算子、约束条件处理方法、评价函数计算、以及预估值的更新计算等方面的具体实现。该算法具有普适的计算框架,适用于各种机器人协作工作任务。针对同时启动不同时终止、同时启动同时终止和末端距离约束等不同的协作任务,给出了不同的处理办法。最终通过仿真实验证明算法有效性。
     5、本文以浙江大学信息科学与工程学院智能系统与决策研究所多机器人协作控制实验室的多关节自治机器人协作项目为应用背景。在DCMP方法基本原理和基于协同进化计算的算法实现基础上,针对实际系统的特点,发展基于DCMP方法的相关实用技术。针对高维C空间搜索困难的问题,借鉴路标法的降维概念及路标点选择技术,提高DCMP方法在高维空间的优化搜索能力;为了适应多协作任务的运动规划要求,改进DCMP方法,为高层次的协作任务规划提供更多的选择余地。藉此提高算法的现实可行性和实用价值。最终通过实验验证DCMP方法的有效性、DCMP方法与协作任务规划器配合的能力、以及通讯不可靠情况下的工作能力。
Autonomous multi-joint robot system, which belongs to the Multi-Agent Robot System (MARS), has advantages over traditional robots in load bearing, accurate operating, flexibility, and adaptability in uncertain environment. The robots in cooperative system are spatial, timing and functional distributed. As a result of resources sharing, say, information and knowledge, the system overcomes the lack in capability of single robot, broadens the application fields of robots. Redundancy in robot resource improves reliability, stability, and the possibility to accomplish tasks.
     Motion planning is an important issue in robot decision making. In multi-robot cooperation, the demanding for cooperative motion planning is much higher. Centralized planning and decoupled planning have difficulties in space-time integrated optimization, velocity constraints handling, cooperative task diversity, and system reliability. They can not take full advantage of the distributed cooperative robot system.
     A distributed cooperative motion planning (DCMP) for autonomous multi-joint robot system is proposed in this paper. The motion planning subsystems of individuals in the system are independent and equal. They conduct collision-free motion planning according to limited decision information of other robots, which is acquired by asynchronous communication, therefore fulfill given cooperative tasks. The planning method has the ability to realize space-time integrated optimization, and to work under certain unreliable communication. It is valuable in many new application fields, such as outer-space exploration, interstellar exploration, autonomous cooperative fieldwork and deep-water cooperation
     In this dissertation, the main research is focused on the following works:
     1) The problem of cooperative motion planning for autonomous multi-joint robot system is described mathematically. Optimization goal, evaluation criteria of path, constraints that influence the motion of robots are singled out in detail. By analyzing the consistency and separability of time optimization and space optimization in cooperative motion planning, the importance of the space-time integrated optimization criteria is emphasized. The performance requirements of cooperative motion planning method are specified.
     2) A new distributed cooperative motion planning (DCMP) method is proposed for cooperation of multiple autonomous multi-joint robots. The space-time integrated optimization is achieved on the same planning hierarchy. Objective to distribute problem-solving of the cooperative motion planning, the system is decomposed, by mathematical derivation strictly, into subsystems of each robot that can be calculated iteratively and independently in an asynchronous way. The performance of DCMP method, especially the resistance capability to the communication interference, is analyzed. cooperative motion planning method are specified. The DCMP method try to improve the collaboration architecture and coordination mechanism of cooperative motion planning.
     3) Based on mathematical strictness, cooperative co-evolutionary method is exploited in the DCMP method for optimal solution finding in sub-planning of each robot. Benefit from its parallel computation, heuristic search and constraints handling ability, the DCMP method realizes space-time integrated optimization naturally, and solves the problem of dynamic constraints, such as velocity constraint, which is very difficult for most cooperative planning methods.
     4) According to the characteristics of cooperative motion planning of autonomous multi-joint robot system, key points in the DCMP implementation, such as real-valued problem-specific chromosome representation, problem-specific evolutionary operators design, constraints handling, fitness evaluation method and estimation updating, are discussed in detail. The planner is a general framework and can be used for different kinds of tasks, such as simultaneous start-asynchronous stop, simultaneous start-simultaneous stop, and terminal distance keeping. The effectiveness of the DCMP method is proved by simulation results.
     5) A motion planning based on the DCMP method is applied to a pilot multiple autonomous multi-joint robot system in the Multi-robot Cooperative Control Lab, of which is the Institute of Intelligent Systems & Decision Making of Zhejiang University. Based on the principles of the DCMP method and its cooperative co-evolutionary implementation, some practical techniques are developed to enhance its practical feasibility and value. Motivated by the reducing dimension concept and point selection technology of the roadmap method, the capability of DCMP method in exploring in very high dimensional composite configuration space is enhanced. The DCMP is improved to satisfy the requirements of high-level cooperative mission planning and to provide more choice. The effectiveness, as well as its ability to work with the cooperative mission planning and under unreliable communication, are validated on a number of experiments.
引文
Alami, R., Roboert, F., Ingrand, F., Suzuki, S., 1995. Multi-Robot Cooperation through Incremental Plan-Merging. IEEE Int. Conf. on Robotics and Automation, 2573-2579.
    
    Alexopoulos, C. & Griffin, P.M., 1992. Path planning for a mobile robot. IEEE Trans on System, Man, and Cybernetics, 22(2): 318-322.
    
    Al-Hmouz, R., Gulrez, T., Al-Jumaily, A., 2004. Probabilistic road maps with obstacle avoidance in cluttered dynamic environment. Conf. on Intelligent Sensors, Sensor Networks and Information, 241-245.
    
    Amato, N.M. & Wu, Y., 1996. A Randomized Roadmap Method for Path and Manipulation Planning. IEEE Int. Conf. on Robotics and Automation, 113-120.
    
    Amato, N.M., Bayazit, O.B., Dale, L.K., Jones, C., Vallejo, D., 1998. Choosing Good Distance Metrics and Local Planners for Probabilistic Roadmap Methods. IEEE Int. Conf. on Robotics and Automation, 630-637.
    
    Arai, Y., Suzuki, S., Kotosaka S., 1996. Collision Avoidance among Multiple Autonomous Mobile Robots using LOCISS. IEEE Int. Conf. on Robotics and Automation, 2091-2096.
    
    Asama, H., Matsumoto, A., Ishida, Y., 1989. Design of an Autonomous and Distributed Robot System: ACTRESS. IEEE Int. Workshop on Intelligent Robots and Systems, 283-290.
    
    Azarm, K. & Schmidt, G., 1996. A decentralized Approach for the Conflict-Free Motion of Multiple Mobile Robots. IEEE Int. Conf. on Intelligent Robots and Systems, 1667-1675.
    
    Balch, T. & Arkin, R.C., 1995. Communication in reactive multiagent robotic systems. Autonomous Robots, 1(1): 27-52.
    
    Balch, T. & Arkin, R.C., 1998. Behavior-Based Formation Control for Multirobot Teams. IEEE Trans on Robotics and automation, 14(6): 926-939.
    
    Barbehenn, M. & Hutchinson, S., 1995. Efficient search and hierarchical motion planning by dynamically maintaining single-source shortest paths trees. IEEE Trans. on Robotics & Automation, 11(2): 198-214.
    
    Barraquand, J. & Latombe, J.C., 1991. Robot Motion Planning: A Distributed Representation Approach. Int. Journal of Robotics Research, 10(6): 628-649.
    
    Barraquand, J., Langlois, B., Latombe, J.C., 1992. Numerical potential field techniques for robot path planning. IEEE Trans. on System, Man & Cybernetics, 22(2): 223-241.
    
    Barraquand, J. & Latombe, J.C., 1993. Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles. Algorithmica, 10(2): 121-155.
    
    Beni, G., 1988. The Concept of Cellular Robotic System. IEEE Int. Sym on Intelligent Control, 57-62.
    
    Beni, G. & Wang, J., 1991. Theoretical problems for the realization of distributed robotic systems. IEEE Int. Conf. Robotics and Automation, 1914-1920.
    
    Bennewitz, M., Burgard, W., Thrun, S., 2001. Optimizing schedules for prioritized path planning of multi-robot systems. Proc. Int. Conf. on Robotics and Automation, 1: 271-276.
    
    Bereton, C. & Khosla, P., 2002. An Analysis of Cooperative Repair Capabilities in a Team of Robots. IEEE Int. Conf. on Robotics and Automation, 1: 476-482.
    
    Berlanga, A., Isasi, P., Sanchis, A., Molina, J.M., 2000. Coevolutive Adaptation of Fitness Landscape for Solving the Testing Problem. IEEE Int. Conf. on Systems, Man and Cybernetics, 3846-3851.
    
    Bessiere, P., Mazer, E., Ahuactzin, J.M., 1998. The Ariadne's Clew algorithm. Journal of Artificial Intelligence Research, 9: 295 - 316.
    
    Bien, Z. & Lee, J., 1992. A minimum-time trajectory planning method for two robots. IEEE Trans. on Robotics & Automation, 8: 414-418.
    
    Boor, V., Overmars, M.H., van der Strappen, A.F., 1999. The Gaussian Sampling Strategy for Probabilistic Roadmap Planners. IEEE Int. Conf. on Robotics and Automation, 1018-1023.
    
    Bratman, M.E., 1987. Intentions, Plans, and Practical Reason. Havard University Press: Cambridge, MA.
    
    Brink ten, C. & Popovic, D., 1996. A Collision- Space Approach to Trajectory Planning of Coordinated Robots. Proc. of 13th World Congress on Int. Federation of Automatic Control, 1: 205-210.
    
    Brock, O., 2000. Generating Robot Motion: The Integration of Planning and Execution. Ph.D Thesis , Stanford. CA: Stanford University.
    
    Brooks, R.A., 1986. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, RA-2: 14-23.
    
    Cai, Z. & Peng, Z., 2002. Cooperative coevolutionary adaptive genetic algorithm in path planning of cooperative multi-mobile robot systems. Journal of Intelligent and Robotic Systems: Theory and Applications, 33(1): 61-71.
    Caloud, P., Wonyun, Ch., Latombe, J.C., Le Pape, C., Yim, M., 1990. Indoor Automation With Many Mobile Robots. IEEE Int. Workshop on Intelligent Robots and Systems, 1: 67-72.
    
    Cameron, S.A., 1985. A study of the clash detection problem in robotics. IEEE Int. Conf. on Robotics and Automation, 2: 488-493.
    
    Canny, J., 1988. The complexity of robot motion planning. Cambridge: MIT Press.
    
    Canny, J. & Donald, B., 1988. Simplified Voronoi diagram. Discrete and Computational Geometry, 3: 219-236.
    
    Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng; F., 1995. Cooperative Mobile Robotics: Antecedents and Directions. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 1:226-234.
    
    Chang, C., Chung, M.J., Lee, B.H., 1994. Collision avoidance of two general robot manipulators by minimum delay time. IEEE Trans. on System, Man & Cybernetics, 24(3): 517-522.
    
    Chang, J.H., 1998. Potential-based modeling of three-dimensional workspace for obstacle avoidance. IEEE Trans. on Robotics and Automation, 14(5): 778-785.
    
    Chen, P.C. & Hwang, Y.K., 1998. SANDROS: a dynamic graph search algorithm for motion planning. IEEE Trans. on Robotics & Automation, 14(3): 390-403.
    
    Chen, Q. & Luh, J.Y.S., 1994. Coordination and control of a group of small mobile robots. IEEE Int. Conf. on Robotics and Automation, 2315-2320.
    
    Chirikjian, G.S., 1994. Kinematics of a metamorphic robotic system. IEEE Int. Conf. on Robotics and Automation, 1: 449-455.
    
    Clark, C.M., Bretl, T., Rock, S., 2002. Applying Kinodynamic Randomized Motion Planning with a Dynamic Priority System to Multi-Robot Space Systems. IEEE Proc. of Aerospace Conference, 3621-3631.
    
    Connolly, C.I., Burns, J.B., Weiss, R., 1990. Path planning using Laplace's equation. IEEE Int. Conf. on Robotics and Automation, 3: 2102-2106.
    
    de la Cueva, V. & Ramous, F., 1998. Cooperative genetic algorithms: a new approach to solve the path planning problem for cooperative robotic manipulators sharing the same work space. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 267-272.
    
    Dissanayake, G., Goh, C.J., Phan-Thien, N., 1991. Time-optimal trajectories for robot manipulators. Robotica, 9: 131-138.
    
    Donald, B., Xavier, P., Canny, J., Reif, J., 1993. Kinodynamic motion planning. Journal of ACM (Association for Computing Machinery), 40(5): 1048-1066.
    Durfee, E.H. & Leaser, V.R., 1991. Partial Global Planning: A Coordination Framework for Distributed Hypothesis Formation. IEEE Trans. on Systems, Man, and Cybernetics, 21(5): 1167-1183.
    
    Eustace, D., Barnes, D.P., Gray, J.O., 1994. A behavior synthesis architecture for co-operant mobile robot control. Int. Conf. on Control, 1: 549 -554.
    
    Erdmann, M. & Lozano-perez, T., 1987. On multiple moving objects. Algorithmica, 2(4): 447-521.
    
    Faverjon, B., 1984. Obstacle avoidance using an octree in the configuration space of a manipulator. IEEE Int. Conf. Robotics & Automation, 1: 504-512.
    
    Ferrari, C., Pagello, E., Ota, J., Arai, T., 1998. Multirobot motion coordination in space and time. Robotics and Autonomous Systems, 25: 219-229.
    
    Fischer, C., Buss, M., Schmidt, G., 1996. Hierarchical Supervisory Control of Service Robot Using Human-Robot Interface. IEEE Int. Conf. on Intelligent Robots and Systems, 1408-1416.
    
    Fraile, J.C., Wang, C.H., Paredis, C.J.J., Khosla, P.K., 1999. Agent-based control and planning of a multiple manipulator assembly system. IEEE Int. Conf. on Robotics and Automatation, 2: 1219-1225.
    
    Fraile, J.C., Perez, J., Gonzalez, J.L., Baeyens, E., Perex, R., 2006. Comparative analysis of collision-free path-planning methods for multi-manipulator systems. Robotica, 24: 711-726.
    
    Fu, L.C. & Liu, D.Y., 1990. An Efficient Algorithm for Finding a Collision-Free Path Among Polyhedral Obstacles. Journal of Robotics Systems, 7(1): 129-137.
    
    Fujii, T., Arai, Y., Asama, H., Endo, I., 1998. Multilayered Reinforcement Learning for complicated Collision Avoidance Problems. IEEE Int. Conf. on Robotics and Automation, 2185-2191.
    
    FUKUDA, T., NAKAFAWA, S., KAWAUCHI, Y., BUSS, M., 1989. Structure Decision Method for Self Organising Robots Based on Cell Structures-CEBOT. IEEE Int. Conf. on Robotics and Automation, 2: 695 -700.
    
    Ganter, M.A. & Isarankura, B.P., 1993. Dynamic collision detection using space partitioning. Journal of Mechanical Design, Transactions of the ASME, 115(1): 150-155.
    
    Ge, S.S. & Cui, Y.J., 2000. New potential functions for mobile robot path planning. IEEE Trans. On Robotics and Automation, 16(5): 615-620.
    
    Gerkey, B.P. & Mataric, M.J., 2002. Sold!: Auction Methods for Multirobot Coordination. IEEE Trans. on Robotics and Automation, 18(5): 758-768.
    Gerkey, B.P., 2003. On Multi-Robot Task Auoeation. Ph.D. Thesis, University of Southern California.
    
    Glavina, B., 1990. Solving Findpath by Combination of Goal-directed and Randomized Search. Proc. IEEE Int Conf. on Robotics and Automation, 3: 1718-1723.
    
    Goldberg, D.E., 1989. Genetic Algorithm in Search optimization and Machine Learning. Wesley Publishing Company.
    
    Gottschalk, S., Lin, M.C., Manocha, D., 1996. OBB-Tree: A Hierarchical Structure for Rapid Interference Detection. Proc. of ACM Siggraph' 96, 171-180.
    
    Guibas, L., Holleman, C, Kavraki, L., 1999. A Probabilistic Roadmap Planner for Flexible Objects with a Workspace Medial-Axis Based Sampling Approach., IEEE Int. Conf. on Intelligent Robots and Systems, 1: 254-259.
    
    Gupta, K.K. & Guo, Z.P., 1995. Motion planning for many degree of freedom: sequential search with backtracking. IEEE Trans. on Robotics & Automation, 11(6): 897-906.
    
    Gupta, K. & del Plbil, A., 1998. Practical Motion Planning in Robotics: Current Approaches and Future Directions. John Wiley, West Sussex, England.
    
    Harinarayan, K.R. & Lumelsky, V.J., 1994. Sensor-based motion planning for multiple mobile robots in an uncertain environment. IEEE Int. Conf. on Intellegent Robots and Systems, 3:1485-1492.
    
    Hasinoff, S., 2000. Motion Planning with Randomized Roadmaps. Term Project Report.
    
    Hiraishi, H., Ohwada, H., Mizoguchi, F., 1998. Web-based Communication and Control for Multiagent Robots. IEEE Int. Conf. on Intelligent Robots and Systems, 120-125.
    
    Hoff, K., III, Culver, T., Keyser, J., Lin, M., Manocha, D., 2000. Interactive Motion Planning Using Hardware-Accelerated Computation of Generalized Voronoi Diagrams. IEEE Int. Conf. on Robotics and Automation, 3: 2931-2937.
    
    Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. The University of Michigan Press.
    
    Hsu, D., 2000. Randomized Single-Query Motion Planning in Expansive Spaces. Ph.D Thesis, Stanford University.
    
    Hwang, Y.K. & Ahuja, N., 1992. A potential field approach to path planning. IEEE Trans. on Robotics & Automation, 8(1): 23-32.
    
    Kallman, M. & Mataric, M., 2004. Motion planning using dynamic roadmaps. IEEE Int. Conf. on Robotics and Automation, 5: 4399-4404.
    
    Kaminka, G. & Tambe, M., 2000. Robust agent teams via soeially-attentive monitoring. Journal of Artificial Intelligence Research, 12: 105-147.
    
    Kato, S., Nishiyama, S., Takeno, J., 1992. Coordinating Mobile Robots by Applying Traffic Rules. IEEE Int. Conf. on Intelligent Robots and Systems, 1535-1541.
    
    Kavraki, L.E., 1994. Random Networks in Configuration Space for Fast Path Planning. PhD Thesis, Computer Science Dept., Stanford University.
    
    Kavraki, L.E.,1995. Computaion of configuration-space obstacle using the fast Fourier transform. IEEE Trans. on Robotics and Automation, 11(3): 408-413.
    
    Khalil, W. & Dombre, E., 2002. Modeling, Identification and Control of Robots. London Kogan Page.
    
    Khatib, O., 1986. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. Journal of Robotics Reasearch, 5(1): 90-98.
    
    Kim, D.H., Lee, H.W., Suzuki, T., 2005. Local Path Planning Based on New Repulsive Potential Functions with Angle Distrbutions. IEEE Int. Conf. On Information Technology and Applications, 745-750.
    
    Kondo, K., 1991. Motion planning with six degrees of freedom by multistrategic bidirectional heuristic free-space enumeration. IEEE Trans. on Robotics & Automation, 7(3): 267-277.
    
    Koziel, S. & Michalewicz, Z., 1999. Evolutionary Algorithms, Homomorphous Mappings and Constrained Parameter Optimization. Evolutionary Computation, 7(1): 19-44.
    
    Kruse, E., Gutsche, R., Wahl, F.M., 1996. Efficient, Iterative, Sensor Based 3-D Map Building Using Rating Functions in Configuration Space. IEEE Int. Conf. on Robotics and Automation, 2: 1067-1072.
    
    Lamiraux, F. & Kavraki, L.E., 2001. Planning paths for elastic objects under manipulation constraints. Int. Journal of Robotics Reasearch, 20(3): 188-208.
    
    Latombe, J.C., 1991. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA.
    
    Latombe, J.C., 1999. Motion planning: A journey of robots, molecules, digital actors, and other artifacts. Int. Journal of Robotics Research, 18(11): 1119-1128.
    
    LaValle, S.M. & Hutchinson, S.A., 1998. Optimal motion planning for multiple robots having independent goals. IEEE Trans. on Robotics & Automation, 14(6): 912-925.
    
    LaValle, S. M. & Kuffner, J.J., 1999. Randomized kinodynamic planning. IEEE Int. Conf. on Robotics and Automation, 473-479.
    
    LaValle, S.M. & Kuffner, J.J., 2001. Rapidly exploring random trees: Progress and prospects. in New Directions in Algorithmic and Computational Robotics, B. R. Donald, K. Lynch, and D. Rus, Eds. London, U.K.: A. K. Peters, 293 - 308.
    
    Lee, B.H. & Lee, C.S.G., 1987. Collision-free motion planning of two robots. IEEE Trans on Systems, Man and Cybernetics, SMC-17(1): 21-32.
    
    Lee, J., 1995. A dynamic programming approach to near minimum-time trajectory planning for two robots. IEEE Trans. on Robotics & Automation, 11(1): 160-164.
    
    Leven, D. & Sharir, M., 1987. Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams. Discrete and Computational Geometry, 2: 9-31.
    
    Li, C., Zheng, Z.Q., Chang, W.S., 1999. A decentralized approach to the conflict-free motion planning for multiple mobile robots. IEEE Int. Conf. on Robotics and Automation, 2: 1544-1549.
    
    Lozano-Perez, T., 1981. Automatic planning of manipulator transfer movement. IEEE Trans. on Systems, Man and Cybernetics, SMC-11(10): 681-698.
    
    Maciejewski, A.A. & Fox, J.J., 1993. Path planning and the topology of configuration space. IEEE Trans. on Robotics and Automation, 9(4): 444-456.
    
    Martinez-Salvador, B., del Pobil, A.P., Perez-Francisco, M., 2000. A hierarchy of detail for fast collision detection. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 1:745-750.
    
    Mediavilla, M., Gonzalez, J.L., Fraile, J.C., Peran, J.R., 2002. On-line motion planning for robotic arms: New approach based on the reduction of the search space. IEEE Int. Conf. on Robotics and Automation, 4: 3825-3830.
    
    Mediavilla, M., Fraile, J.C., Galindo, I.J., Gonzalez, M.T., 2003. Selection of strategies for collision-free motion in multi-manipulator systems. Journal of Intelligent and Robotic Systems, 38(1): 85-104.
    
    Michalewicz, Z. & Attia, N., 1994. Evolutionary optimization of constrained problems. Proc. of 3~(rd) Conf. on Evolutionary Programming, 98-108.
    
    Michalewicz, Z. & Schoenauer, M., 1996. Evolutionary algorithms for constrained paremeter optimization problems. Evolutionary Computation, 4(1): 1-32.
    
    Myung, H., Kim, J.H., Fogel, D., 1995. Preliminary investigation on constrained problems. Proc. of 4th Conf. on Evolutionary Programming, 449-463.
    
    Newman, W.S. & Branicky, M.S., 1991. Real-time configuration space transforms for obstacle avoidance. Int. Journal of Robotics Reasearch, 10(6): 650-667.
    Ng, K.C. & Trivedi, M.M., 1998. A Neuro-Fuzzy Controller for Mobile Robot Navigation and Multirobot Convoying. IEEE Trans on Systems Man and Cybernetics, 28(6): 829-840.
    
    O'Donnell, P.A. & Lozano-Perez, T., 1989. Deadlock-Free and Collision-Free Coordination of Two Robot Manipulators. IEEE Int. Conf. on Robotics and Automation, 484-489.
    
    Parker, L.E., 1998. ALLIANCE: An Architecture for Fault Tolerant Multirobot Cooperation. IEEE Trans. on Robotics and Automation, 14(2): 220-240.
    
    Potter, M.A., 1997. The Design and Analysis of a Computational Model of Cooperative Coevolution. Ph.D Thesis, George Mason University.
    
    Quinlan, S. & Khatib, O., 1993. Elastic Bands: Connecting path planning and control. IEEE Int. Conf. on Robotics and Automation, 802-807.
    
    Quinlan, S., 1994. Efficient distance computation between non-convex objects. IEEE Int. Conf. on Robotics and Automation, 3324-3330.
    
    Rana, A.S. & Zadzala, A.M.S., 1995. An Evolutionary Algorithm for Collision Free Motion Planning of Multi-arm Robots. IEEE Conf. on Genetic Algorithms in Engineering Systems: Innovations and Applications, 123-130.
    
    Ridao, M.A., Camacho, E.F., Riquelme, J., Toro, M., 2001. An Evolutionary and Local Search Algorithm for Motion Planning of Two Manipulators. Journal of Robotic Systems, 18(8): 463-476.
    
    Rudolph, G, 1994. Convergence Analysis of Canonical Genetic Algorithms. IEEE Trans. on Neural Networks, 5(1): 96-101.
    
    Sanchez, G. & Latombe, J.C., 2002a. On delaying collision checking in PRM planning: Application to multi-robot coordination. Int. Journal. of Robotics Research, 21(1): 5-26.
    
    Sanchez, G & Latombe, J.C., 2002b. Using a PRM Planner to Compare Centralized and Decoupled Planning for Multi-Robot Systems. IEEE Int. Conf. on Robotics and Automation, 2112-2119.
    
    Schoenauer, M. & Xanthakis, S., 1993. Constrained GA optimization. Proc. of 5~(th) Int. Conf. on Genetic Algorithms, 573-580.
    
    Schoenauer M. & Michalewicz, Z., 1996. Evolutionary computation at the edge of feasibility. Proc. of 4th Conf. on Parallel Problems Solving from Nature, 245-254.
    
    Shibata, T. & Fukuda, T., 1993. Intelligent motion planning by genetic algorithm with fuzzy critic. Proc. of 8~(th) IEEE Symp. on Intelligent Control, Chicago, 565-570.
    Sim, K.B., Chun, H.B., Lee, D.W., 2001. Dynamic behavior control of autonomous mobile robots using schema co-evolutionary algorithm. IEEE Int. Symp. on Industrial Electronics, 1: 560-565.
    
    Simeon, Th. & Laumond, J.P., 2001. Notes on visibility roadmaps and path planning. In Algorithmic and Computational Robotics, B.R. Donald, K.M. Lynch, D. Rus, editors, 317-328.
    
    Smierzchalski, R. & Michalewicz, Z., 2000. Modeling of Ship Trajectory in Collision Situations by an Evolutionary Algorithm. IEEE Trans. on Evolutionary Computation, 4(3): 227-241.
    
    Song, K.T. & Tang, C.C., 2001. Learning for Cooperation in Multirobot Team Competitions. IEEE Int. Sym. on Computational Intelligence on Robotics and Automation, 302-307.
    
    Steuer, R.E., 1989. Multiple Criteria Optimization: Theory, Computation, and Machine Learning. Addison Wesley, Reading, Massachusetts.
    
    Stone, P. & Veloso, M., 1998. Communicatian in Domains with Unreliable, Single-Channel. law-Bandwidth Communication. Collective Robotics, 8-97.
    
    Sun, Z., Hsu, D. Jiang, T., Kurniawati, H., Reif, J.H., 2005. Narrow passage sampling for probabilistic roadmap planning. IEEE Trans. on Robotics, 21(6): 1105 - 1115.
    
    Todt, E., Raush, G., Suarez, R., 2000. Analysis and Classification of Multiple Robot Coordination Methods. IEEE Int. Conf. on Robotics & Automation, 3158-3163.
    
    Tournaassoud, P., 1986. A strategy for obstacle avoidance and its application to multi-robot systems. IEEE Int. Conf. on Robotics & Automation, 1224-1229.
    
    Vail, D. & Veloso, M., 2003. Dynamic multi-robot coordination. Multi-Robot Systems: From Swarms to Intelligent Automata, 11:87-100.
    
    van den Berg, J.P. & Overmars, M.H., 2005. Prioritized motion planning for multiple robots. IEEE Int. Conf. on Intelligent Robots and Systems, 430-435.
    
    Wang, H.Y., Yang, J.A., Jiang, P., 2000. Research on obstacle avoidance method for evolutionary robot based on artificial neural network. Proc. 3rd World Congress on Intelligent Control and Automation, 2: 1252-1256.
    
    Wang, P.K.C., 1991. Navigation strategies for multiple autonomous robots moving in formation. Journal of Robotic Systems, 8(2): 177-195.
    
    Warren, C., 1990. Multiple robot path coordination using artificial potential fields. IEEE Int. Conf. on Robotics and Automation, 500-505.
    
    Xiao, J., Michalewicz, Z., Zhang, L., Trojanowski, K., 1997. Adaptive Evolutionary Planner/Navigator for Mobile Robots. IEEE Trans. on Evolutionary Computation, 1(1):18-28.
     Yamaguchi,H.,1998.A Cooperative Hunting Behavior by Mobile Robot Troops.IEEE Int.Conf.on Robotics and Automation,3204-3209.
     Yuta,S.& Premvuti,S.,1992.Coordinating Autonomous and Centralized Decision Making to Achieve Cooperative Behaviors Between Multiple Mobile Robots.IEEE Int.Conf.on Intelligent Robots and Systems,1566-1574.
     Zheng,C.W.,Ding,M.Y.,Zhou,C.P.,2002.Cooperative path planning for multiple air vehicles using a co-evolutionary algorithm.Proc.of Int.Conf.on Machine Learning and Cybernetics,Beijing,1:219-224.
     陈仁际,吴镇炜,王韬,董昌,2001.基于Agent的分布式多机器人系统建模及分析.中国机械工程,12(6):667-671.
     陈忠泽,林良明,颜国正,2001.基于MAS的多机器人系统:协作多机器人学发展的一个重要方向.机器人,23(4):368-373.
     崔逊学,2006.多目标进化算法及其应用.国防工业出版社.
     达庆利、何建敏,1989.大系统理论和方法.东南大学出版社.
     付京逊,1989.机器大学:控制、传感技术、视觉、智能.中国科学技术出版社.
     付宜利,靳保,王树国,曹政才,2006.未知环境下基于行为的机器人模糊路径规划方法.机械工程学报,42(5):120-125.
     高志军,颜国正,丁国清,颜德田,陈忠泽,2001.多机器人协调与合作系统的研究现状和发展.光学精密工程,9(2):99-103.
     黄献龙,梁斌,陈建新,吴宏鑫,2000.机器人避碰规划综述.控制工程,6:28-35.
     刘柞时,张海英,林桂娟,2004.群体机器人研究曲现状和发展.技术应用,5:38-41.
     M.詹姆希迪著,陈中基等译,1986.大系统建模及控制.科学出版社.
     M.G辛,A.铁托里著,周斌等译,1983.大系统的最优化及控制.机械工业出版社.
     孙增圻,1995年.机器人智能控制.山西教育出版社,433-450.
     谭民,范永,徐国华,2001.机器人群体协作与控制的研究.机器人,23(2):178-182.
     熊有伦,1996.机器人技术基础.华中理工大学出版社.
     王越超,谈大龙,1998.协作机器人学的研究现状与发展.机器人,20(1):69-75.
    王硕,谭民,2001.基于协商和意愿强度的多自主移动机器人避碰协作.高技术通讯,10:70-73.
     薛宏涛,沈林成,常文森,2002.多群体合作型协进化方法的数学建模及分析.国防科技大学学报,24(3):98-102.
     朱向阳,徐梦飞,钟秉林,1998.基于L1距离的人工势函数构造及机器人无碰撞路径规划方法.机械工程学报,34(3):13-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700