无膝双足被动机器人的运动特性和稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双足被动机器人具有简单的结构、少量的控制、自然的步态和类似于人类步行的能量效率等优点,是机器人研究领域的一个崭新而重要的分支,近年来已成为研究的热点。当前被动机器人研究存在基础理论尚不完善、运动机理尚不明朗和行走稳定性差等问题。为了更准确地理解双足被动机器人运动的本质特征,加强模型研究对实际样机研制的指导作用,本文采用了Matlab数值仿真和Adams仿真验证的方法深入分析和研究了无边轮辐和无膝双足被动模型的运动特性及稳定性问题,并通过样机实验验证了仿真分析的结论。
     首先,给出无边轮辐和无膝双足被动机器人的物理模型,分析了模型结构特征和运动特点。将其每步运动过程分为摆动和碰撞两个阶段,根据拉格朗日方程和角动量守恒方程准确建立这两个模型的动力学方程。
     其次,利用Adams对被动无边轮辐进行动力学仿真,分析各参数,包括轮辐质心初速度、轮辐质量、辐条的足半径、辐条数、辐条长度、转动惯量和斜面坡度对无边轮辐稳定运动的影响;利用Matlab数值仿真和Adams仿真验证的方法,详细深入分析无膝双足被动机器人运动特性;根据庞加莱映射的原理,利用局部线性化的理论和Newton-Raphson迭代方程求解了双足被动机器人的稳定不动点,并描述了机器人运动过程中可能出现的周期分岔现象;同时结合无边轮辐和无膝双足模型的特点,在Adams中构建了带躯体无膝被动模型并分析了其运动特点。
     然后,根据庞加莱映射原理,利用局部线性化方法,通过求出模型雅克比矩阵特征值的模对无膝双足被动模型局部稳定性进行了详细分析;根据胞映射的理论通过求解模型稳定吸引域的方法对双足被动模型全局稳定性进行分析,详细分析了各参数(腿质量、腿的质心位置、足半径、腿相对质心的转动惯量、腿长、斜面坡度和髋关节质量)对机器人行走稳定性的影响;同时分析各参数对被动机器人稳定运动形态(步长、步速和步态周期)的影响;并用Adams验证了通过提高髋关节质量和增加足半径能提高双足被动模型的稳定行走的鲁棒性。
     最后,根据双足被动模型稳定性分析的结论,获得了被动模型一个优化后的参数组合,并以此研制了双足被动机器人样机;构建样机实验环境,根据数学中的概率理论,采用统计被动机器人样机成功行走路面次数的方法,验证了各参数(腿的质心位置、足半径和斜面坡度)对双足被动机器人运动稳定性的影响。
Passive biped robot has some advantages such as a simple structure, a small amount of control, natural gait and high energy efficiency similar to human walking, etc. It has become a new and important branch in the field of robot research and has become a hot spot in recent years. Currently, the research of passive robot has some problems such as the not perfect basic theory, unclear mechanism of movement and the poor stability of walking. In this paper, A depth-analysis has been performed by the means of Matlab numerical simulation and Adams simulation-verification in order to catch on the essential characteristics of passive biped robot more accurately and to enhance the conherence between the model and the actual prototype better, where the essential characteristics of passive biped robot are classified as: the motion characteristics and the walking stability of Ramless-wheel and the passive biped robot without knees. The conclusions of simulation analysis above were verified through the domenstration of actual prototype.
     Firstly, two important physical models were put forward: Ramless-wheel and passive biped robot without knees. The structure characteristics and motion characteristics of models were analysed. The each step of the walking models was divided into two stages: swing movement process and collision process. According to Lagrange's equation and the equation of conservation of angular momentum, the dynamic equations of the two models were accurately established.
     Secondly, The influences on ramless-wheel’s stable walking which closely related to the parameters such as initial velocity of ramless-wheel’s centroid, ramless-wheel’s quality, ramless-wheel’s foot radius, the number of spoke, spoke length, moment of inertia and slope gradient were analyzed by performing the Adams simulation. The fundamental property of the robot motion was analyzed through the method of Matlab simulation and Adams verification. According to the theories including the Poincare mapping, the local linear theory, and the Newton-Raphson iteration equation, the stable fixed point was calculated to describe the robot’s stable walking. The phenomenon of periodic bifurcations which would be possible arised during the stable walking was described. After that, according to the characteristics of ramless-wheel and biped model without knees, a passive model with upper body was constructed and analysed based on Adams.
     Then, according to the principle of Poincare mapping, the local linear method was used to obtain eigenvalues of Jacobian matrix of the passive biped model. A detailed analysis of local stability of the passive biped model was done. Based on the cell mapping theory, a detailed analysis of global stability of the passive model was done by the means of calculating the model’s stable basin of attraction. A detailed analysis of impact of the various parameters (legs’quality, the mass center position of legs, foot radius, moment of inertia, leg’s length , slope gradient and hip quality) on the walking stability of the robot was given. At the same time, the impact of the parameters on the stable walking state (step length, walking speed and gait cycle) of the passive biped robot was analysed. Furthermore, based on the simulation of Adams, conclution was drawn as follow: the larger of hip quality and foot radius, the higher robustness of the passive robot.
     Finally, the optimized group of parameters which contributes the passive robot to be more stable and much better walking gait in walking was established, according to the results of the sability analysis of the robot’s walking. Based on the the optimized group of parameters, an actual prototype was developed. In the experimentation, the stable motion of robot which influenced by the parameters (center position of leg’s mass, foot radius and slope gradient) was verified based on statistical method, that is, the memorization of the times for the successful walking.
引文
1 S.H.Collins, A.Ruina, M.Wisse and R.Tedrake. Efficient Bipedal Robots Based On Passive-Dynamic Walkers [J]. Science Magazine, 2005, 307: 1082~1085.
    2刘静,赵晓光,谭明.腿式机器人的研究综述.机器人.2006,(01):81~88
    3 M.Wisse, A.L.Schwab, R.Q.VD.Linde. A 3D passive dynamic biped with yaw and roll compensation [J].Robotica, 2001, 19(3): 275~284.
    4 T.Ishida. Development of a Small Biped Entertainment Robot QRID. Proceedings of the 2004 International Symposium on Micro-Nanomechatronics and Human Science [C]. New York, NY, USA :IEEE, 2004:23~28.
    5 Sakagami Y, Watanabe R, Aoyama C, etal. The intelligent ASIMO: system overview and integration. Proceedings of the IEEE International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA, 2002:2478~2483.
    6 Hirai K, HiroseM, Haikawa Y, et al. Development of Honda humanoid robot. Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA, 1998:1321~1326.
    7 Espian B, Sardain P. The anthropomorphic biped robot BIP2000[C]. Proceedings of the 2000 IEEE Conference on Robotics and Automation, San Francisco, CA:2000:3997~4002.
    8 Huang Q, Yokoi K, Kajita S, et al. Planning walking pattems for a biped robot[J]. IEEE Transactions on Robotics and Automation.2001,17(3):280~289.
    9 S. H. Collins, M. Wisse and A. Ruina. A two legged kneedpassive dynamic walking robot [J]. Int. J. Robotics Research 20 (2001), PP: 607~615.
    10 R.H.Maskrey, W.J.Thayer. A brief history of electrobohydraulic servomechanisms[J]. in: ASME Journal of Dynamic Systems Measurement and Control, June 1978.
    11 D.G.E. Hobbelen and M. Wisse, A disturbance rejection measure for limit cycle walkers: The gait sensitivity norm, IEEE Trans. Robot. 23 (2007), pp. 1213~1224.
    12 S. O. Anderson, M. Wisse, C. G. Atkeson, J.K. Hodgins, G. J. Zeglin, B. Moyer. Powered Bipeds Based on Passive Dynamic Principles. Proceedings of 2005, 5th IEEE-RAS International Conference on Humanoid Robots, pp :110~116.
    13 Katie Byl and Russ Tedrake. Stability of passive dynamic walking on uneven terrain. In Art Kuo, editor, Proceedings of Dynamic Walking 2006, May 2006.
    14 T. Shibata, K. Hitomi, Y. Nakamura, and S. Ishii. Reinforcement Learning ofStable Trajectory for Quasi-Passive Dynamic Walking of an Unstable Biped Robot. In Mackel, M. Eds., Humanoid Robots: Human-like Machines, 2007(06), pp. 211~226, I-Tech Education and Publishing.
    15 D.G.E. Hobbelen and M. Wisse. Limit Cycle Walking. In Mackel, M. Eds., Humanoid Robots: Human-like Machines, 2007(06), pp. 277~294, I-Tech Education and Publishing.
    16王勇,杨杰.基于被动式两足机器人的研究现状.机器人技术,2005,(06):31~33.
    17宫明明,朱卫斌.被动动力行走机器人关键问题研究.机械工程师. 2006, (08):106~108.
    18毛勇,王家廞,贾培发,韩灼.双足被动步行研究综述.机器人,2007,(03):274~280.
    19 Collins S H, Ruina A. A bipedal walking robot with efficient and human-like gait [A]. Proceedings of the IEEE Conference on Robotics and Automation [C]. Piscataway, NJ, USA: IEEE, 2005.1983~1988.
    20 Tedrak R, Zhang TW, Seung H S. Stochastic policy gradient reinforcement learning on a simple 3D biped [A]. Proceedings of the IEEE /RSJ International Conference on Intelligent Robots and Systems [C]. New York, NY, USA: IEEE, 2004. 2849~2854.
    21 Schuitema E, Hobbelen D G E, Jonker P P, et al. Using a controller based on reinforcement learning for a passive dynamic walking robot[A]. Proceedings of the IEEE /RAS International Conference on Humanoid Robots [C]. New York, NY, USA: IEEE, 2005. 232~237.
    22 Asano F, Yamakita M, Kamamichi N, et al. A novel gait generation for biped walking robots based on mechanical energy constraint [J]. IEEE Transactions on Robotics, 2004, 20 (3) : 565~573.
    23 S. Mochon, T. A. McMahon. Ballistic walking [J] .Biomechan, 1980, 13: 49~57.
    24 T. McGeer. Passive dynamic walking. Intern [J].Robot. Res, 1990, 9(2):62~82.
    25 T. McGeer. Passive dynamic biped catalogue [C] //In R. Chatila and G. Hirzinger, editors, Proc, Experimental Robotics II: The 2nd International Symposium. Berlin: Springer- Verlag, 1992:465~490.
    26 R. Tedrake, T. W. Zhang, etal. Actuating a Simple 3D Passive Dynamic Walker[A]. Proceedings of the IEEE Conference on Robotics and Automation (ICRA) [C], volume 5[C]. New Orleans, LA, 2004:4656~4661.
    27 McGeer T. Passive walking with knees [A]. Proceedings of the IEEE Conference on Robotics and Automation [C]. Piscataway, NJ, USA: IEEE, 1990. 1640~1645.
    28 McGeer T. Passive bipedal running [J]. Proceedings of the Royal Society of London Series B, Biological Sciences, 1990, 240(1297) :107~134.
    29 Steven H. Collins, Martijn Wisse, Andy Ruina. A three-dimensional passive dynamic walking robot with two legs and knees. International Journal of Robotics Research. 2001, 20(7): 607~615.
    30 Supporting Online Materrial: [EB/OL]. http: // www. sciencemag. Org /cgi /content/full/307/5712/1082/DC1, Materials and Methods.
    31 Supporting Online Materrial: [EB/OL]. http :// news. bbc. co. uk /2 /hi /science /nature /4275815. stm.
    32 Yasuhiro Sugimoto, Koichi Osuka. Stability analysis of Passive-Dynamic-Walking focusing on the inner structure of Poincarémap. Seattle, WA, United States, 2005:236~241.
    33 Supporting Online Material:[EB/OL]. http :/ / www. Sciencedaily. Com / releases /2008/04/080411220112.htm, Cornell Robot Sets A Record For Distance Walking.
    34 R. Tedrake, T.W. Zhang, and H. S. Seung. Learning to walk in 20 minutes. In Proceedings of the Fourteenth Yale Workshop on Adaptive and Learning Systems, 2005.
    35 Wisse M. Essentials of DynamicWalking: Analysis and Design of Two Legged Robots [D]. Netherlands: TU Delft, 2004.
    36 WisseM, van Frankenhuyzen J. Design and construction of MIKE; a 2D autonomous biped based on passive dynamic walking [A]. Proceedings of the International Symposium on Adaptive Motions of Animals and Machines [C]. Tokyo, Japan: Sp ringer-Verlag, 2003. 143~154.
    37 Wisse M, Schwab A L, van der Helm F C T. Passive dynamic walking model with upper body J]. Robotica, 2004, 22 (6): 681~688.
    38 Wisse M. Three additions to passive dynamic walking; actuation, an upper body, and 3D stability [A]. Proceedings of the IEEE International Conference on Humanoid Robots [C]. New York, NJ, USA: IEEE, 2004. 113 - 132.
    39 Supporting Online Material: [EB/OL]. http: // www .3me. tudelft .nl/ live/ pagina. jsp?id= c4fa06f1-b767-4a67-a19e-ea3356400f06&lang=en
    40 Koichi Osuka, Tatsuya Fujitani, Toshiro Ono. Passive walking robot Quartet. IEEE Conference on Control Applications– Proceedings, 1999, 1: 478~483.
    41 K. Osuka and Y. Saruta. Development and control of new legged robot QUARTET III-from active walking to passive walking. Proceedings of the 2000 IEEE/RSJ International Conference on Intellegent Robots and Systems (2000) pp. 991~995.
    42 K. Osuka, Y. Saruta. Development and control of new legged robot QUARTETIII - From active walking to passive walking. Takamatsu, 2000, 2:991~995.
    43 Yasuhiro Sugimoto, Koichi Osuka. Walking control of quasi passive dynamic walking robot "Quartet III" based on continuous delayed feedback control. Shenyang, China, 2004:606~611.
    44 K. Osuka, K. Kirihara. Motion analysis and experiments of passive walking robot QUARTET II. San Francisco, CA, USA, 2000, 3:3052~3056
    45 Yoshito Ikemata, Akihito Sano, Hideo Fujimoto. A Physical Principle of Gait Generation and its Stabilization derived from Mechanism of Fixed Point. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, 2006:836~841.
    46 Ning Liu, Junfeng Li, Tianshu Wang. The Effects of Parameter Variation on the Basins of Attraction of Passive Walking Models. Proceedings of the 2007 IEEE nternational Conference on Mechatronics and Automation, Harbin, China, 2007:1908~1913.
    47刘振泽,周久长,田彦涛. Compass-like无动力双足行走机器人的运动状态.吉林大学学报. 2007, 37(5):1175~1180.
    48 Michael Jon Coleman. A stability study of a three-dimensional passive-dynamic model of human gait [D].New York: Faculty of Graduate School of Cornell University, 1998.
    49 Michael J. Coleman, Anindya Chatterjee, and Andy Ruina. Motions of a rimless spoked wheel: a simple 3d system with impacts. Dynamics and Stability of Systems, 12(3):139~160, 1997.
    50 Adam C. Smith, Matthew D. Berkemeier. The motion of a finite-width rimless wheel in 3D. Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuevn, Bergium, 1998: 2345~2350.
    51 Garcia M, Chatterjee A, Ruina A, Coleman M. The Simplest Walking Model: Stability, Compiexity, and Scaling [J]. ASME Journal of Biomechanic Engineering, 1998,120(2):281~288.
    52郑建荣. ADAMS虚拟样机技术入门与提高.北京机械工业出版. 2002: 12~80.
    53付成龙,陈恳.双足机器人稳定性与控制策略研究进展.高技术通讯,2006(03):319~324.
    54刘恒,陈绍汀.非线性系统全局动态特性分析的PCM法及其在转子轴承系统中的应用.应用力学学报. 1995, 12(3):7~16
    55 Wisse M. Essentials of dynamic walking-Analysis and design of two-legged robots.[D]. Delft University, 2004.
    56 Garcia M. Stability, Scaling, and Chaos impassive-Dynamic Gait Models [D].Cornell University, 1999.
    57高国生,杨绍普,郭京波.轮对蛇形运动Hopf分岔的非线性控制.铁道学报,2002,24(03):23~26.
    58 Ding W C, Xie J H. Interaction of hopf and period doubling bifurcations of a vibroimpact system[J]. Journal of Sound and Vibration, 2004, 275:27~45
    59召立.虚拟制造环境与仿真.中国机械工程. 2000, 8:25~27
    60 Wisse M, Schwab A L, van der Helm F C T. Passive dynamic walking model with upper body [J]. Robotica, 2004, 22 (6):681~688.
    61 M. Wisse, D. G. E. Hobbelen, A. L. Schwab. Adding an upper body to passive dynamic walking robots by means of a bisecting hip mechanism. Ieee Transactions on Robotics, 2007, 23(1):112~123
    62包志军,马培荪,王春雨,王建滨,姜山.用Zero Moment Point描述类人型机器人步行稳定的不完善性探讨.上海交通大学学报, 2001,35(01): 68~71.
    63刘熹,肖南峰.基于ZMP和实时检测的机器人步行研究.装备制造技术, 2007(11):24~25.
    64 C. S. Hsu, Cell-to-cell mapping; a method of global analysis for nonlinear systems, New York: Springer-Verlag, 1987.
    65 OUYANG Ru-quan, ZHUJi-mao. Nonlinear oscillations and chaos of ship rolling motion [J]. Journal of Hydrodynamics (SerA), 1999,14:334~340.
    66 Wen C X, Wen B C. Point mapping and cell mapping synthesis method for dynamic system [A]. In : Zhu D M, et al, eds. SDNVC’95 Proceedings[C]. Hong Kong :Color Max Commercial Printing Company Limited, 1995. 556~561.
    67文成秀,姚玉玺,闻邦椿,聂义勇.动力系统的点映射—胞映射综合法.振动工程学报. 1997, (10):413~419
    68 ZHOU Zhou, HOU Zhi-chao. Calculation on the strange attractors of the duffing oscillatorwith simple cell mapping [J]. Mechanics and Practice, 2000, 22 (1):19~20.
    69 A. Schwab, and M. Wisse. Basin of attraction of the simplest walking model. Proceedings of International Conference on Noise and Vibration, ASME, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700