微粒群优化算法与动态神经网络建模预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术的快速发展,控制系统复杂度越来越高,规模越来越大,已经无法采用精确的数学模型描述各种工业被控对象,常规控制方法已经难以满足人类对自动控制系统的要求。如何快速精确地对模型未知非线性延迟系统建模,进而实施准确高效的预测控制,己成为当今控制领域的一个重要难题。作为一种群体智能领域内新型的寻优方法,微粒群在模型参数优化问题中性能卓越。因此,本文在重点研究微粒群优化算法的基础上,将其与模糊C均值聚类方法用于动态神经网络离线或在线的大规模参数寻优,从而构建模型未知非线性延迟系统建模和预测控制方法,以期获得更加适应于实际工业过程需求的控制方案。主要研究内容包括以下三个方面:
     (1)提出基于高斯微粒群算法的模型参数在线优化方法。微粒群算法结构简单不受目标函数连续可导等限制,计算速度快可扩展性强。本文基于高斯函数和混沌映射提出一种高斯微粒群算法,该方法能够自适应调整微粒搜索范围,不仅可以保持算法前期的全局搜索能力,又可以保证算法后期的持续局部搜索能力,解决“早熟”问题。进一步,利用鲁棒控制理论对高斯微粒群算法稳定性条件进行分析。通过各类型标准函数测试对比,所提高斯微粒群方法在函数优化精度方面得到显著的提高。在此基础上,将高斯微粒群算法用于回声状态神经网络在线参数优化问题中,随着输入数据在线调整网络参数,克服离线训练神经网络无法随环境变化及时调整的弊端,通过非线性延迟系统和混沌时间序列等数据验证所提方法的有效性。
     (2)提出基于模糊C均值聚类的微粒群大规模参数优化方法。针对已有经典方法在大规模参数优化中存在“维数灾难”等问题,本文将微粒群算法与模糊C均值聚类相结合,提出动态多种群协同微粒群优化方法。首先,针对模糊C均值聚类算法对初始点敏感的问题,利用线性分配的思想进行初始点选择,增强算法的稳定性,提出两阶段模糊聚类算法。然后提出利用部分标记样本进行单点逼近和加权的半监督模糊C均值算法,通过机器学习、图像分割标准数据库和实际湿地遥感数据验证所提方法的有效性。在此基础上,采用改进模糊C均值算法自适应构造多种群算法结构,并结合信赖域方法调整搜索空间,将大规模参数优化问题分解为多个子问题进行协同寻优和信息共享。最终利用大规模标准测试函数分析优化结果,验证所提方法具有较好的优化能力。
     (3)提出基于微粒群优化的动态前馈神经网络预测控制方法。为了提高神经网络的预测精度,本文提出一种动态前馈神经网络结构,通过引入动态延迟算子增强神经网络的动态表达能力,而且可以辨识出延迟系统中包含的延迟时间。此外,将高斯微粒群方法用于所提动态前馈神经网络参数优化,加快网络收敛速度,进而深入分析两者结合之后模型的稳定性。另外针对较复杂被控对象时,采用多种群协同大规模微粒群算法优化动态前馈神经网络模型参数,并将其作为辨识器和预估器分别应用于所提出的Smith双控制器预测控制框架和多变量有约束模型预测控制结构之中。仿真实例验证所提控制方法可以对模型未知非线性延迟系统进行有效地辨识和预测控制。
With the rapid development of modern science and technology, the complexity of the control system is getting higher and higher, and the scale is also increasing. Thus it has been unable for industrial controlled plants to be described by a precise mathematical model. It is difficult for conventional control approaches to meet human's requirements on the automatic control systems. It is a key problem how to model unknown nonlinear delay system quickly and accurately, and implement the efficient and accurate predictive control. As an emerging optimal approach in the swarm intelligence field, particle swarm optimization algorithm has shown the excellent performance in model parameter optimization. Therefore, the focus of this paper is the particle swarm optimization algorithm. And then it is combined with fuzzy C-means clustering intelligent methods which are employed to achieve large-scale dynamic neural network offline or online parameter optimization. After that, we construct unknown nonlinear delay system identification approaches and predictive control frameworks. The research topics include the following three aspects:
     (1) The online model parameter optimization based on Gaussian particle swarm optimization is proposed. Particle swarm optimization algorithm has the advantages of fast calculation and strong scalability, whose structure is simple and independent of continuously differentiable constraints of objective functions. On the basis of Gaussian functions and chaotic mappings, a novel Gaussian particle swarm method is presented, which could adjust particle swarm searching adaptively. It could maintain the global search capability and the late continued local search capability. Hence, the "prematurity" problem is solved. Further, the robust control theory is adopted to analyze the stability conditions of the Gaussian particle swarm optimization. Through various types of standard function test, the proposed Gaussian particle swarm optimization (GPSO) method significantly improves the accuracy. On this basis, the GPSO approach is used for echo state neural network online parameter optimization problem. The network parameters are adjusted online based on the input data, so the drawbacks of offline training can be overcome. Nonlinear delay system and chaotic time series data are employed to verify the effectiveness of the proposed method.
     (2) The large-scale optimization based on fuzzy C-means cluster and particle swarm optimization is proposed. To solve the problem of "curse of dimensionality" faced by traditional optimal methods, the particle swarm optimization algorithm and fuzzy C-means clustering method are combined to complete multi-group cooperative particle swarm optimization algorithm. First of all, considering that the fuzzy C-means clustering algorithm is sensitive to the initial points, a two-stage fuzzy clustering algorithm with a linear assignment strategy is presented for the initial point selection, which enhances the stability of the whole algorithm. Then with the part of some prior samples, a novel single point approximation and the weighted semi-supervised fuzzy C-means algorithm is proposed. The validity of the proposed approach is verified by using the machine learning, image segmentation standard database and the actual wetland remote sensing data to verify the validity of the method. On this basis, combined with trust region methods, the modified fuzzy C-means algorithm is adopted to construct multi-group structure, and to decompose the large-scale parameter optimization problem into sub-problems. Each group collaborative optimizes and shares the information. The large-scale standard test functions are used to verify the optimization capability of the proposed method.
     (3) A dynamic feedforward neural network predictive control based on particle swarm optimization is proposed. In order to improve the predictive accuracy, a new dynamic feedforward neural network structure is presented. The added dynamic delay operators not only enhance the ability of the dynamic expression, but also identify the pure delay time in the system. In addition, GPSO is adopted for the above parameter optimization of the mentioned dynamic feedforward neural network. It could speed up the network convergence. The stability of the combined model is also analyzed deeply. Furthermore, when the neural network consists of higher number of neurons, the cooperative particle swarm optimization is employed to the large-scale neural network parameter optimization. The proposed neural network model as an identifier and predictor is used in Smith predictive control with dual controllers and multivariable constrained model predictive control structure, respectively. The simulation examples demonstrate that the proposed control method can perform effectively on the unknown nonlinear delay system identification and predictive control.
引文
[1]易继锴,侯媛彬.智能控制技术[M].北京:北京工业大学出版社,2002.
    [2]王瑞敏,费树岷,柴琳.网络控制系统的预测补偿[J].控制理论与应用,2011,28(10):1473-1479.
    [3]钱积新,赵均,徐祖华.预测控制[M].北京:化学工业出版社,2007.
    [4]席裕庚.预测控制[M].北京:国防工业出版社,1993.
    [5]王凌,刘波.微粒群优化与调度算法[M].北京:清华大学出版社,2008.
    [6]张立卫,单峰.最优化方法[M].北京:科学出版社,2010.
    [7]Kennedy J, Eberhart R C, Shi Y H. Swarm Intelligence [M]. Singapore:Elsevier,2009.
    [8]Smith O J M. Closer control of loops with dead time [J]. Chemical Engineering Progress, 1957,53:217-219.
    [9]Kalman R E. Contributions to the theory of optimal control[J]. Bulletin de la Societe Mathematique de Mexicana,1960,5:102-119.
    [10]Richalet J, Rault A, Testud J L, et al. Model predictive heuristic control:Applications to industrial processes[J]. Automatica,1978,14 (5):413-428.
    [11]Cutler C R, Ramaker B L. Dynamic matrix control-A computer control algorithm [C]. Proceedings of the 1980 Joint Automatic Control Conference, San Francisco, USA,1980: 5-13.
    [12]Garcia C E, Morari M. Internal model control. A unifying review and some new results [J]. Industrial & Engineering Chemistry Process Design and Development,1982,21 (2): 308-323.
    [13]Cutler C, Morshedi A, Haydel J. An industrial perspective on advanced control[C]. Proceedings of AICHE annual meeting, Washington, DC, USA,1983.
    [14]Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control—Part Ⅰ. The basic algorithm [J]. Automatica,1987,23 (2):137-148.
    [15]Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control—Part Ⅱ. Extensions and interpretations[J]. Automatica,1987,23 (2):149-160.
    [16]Grosdidier P, Froisy J B, Hamann M D. The IDCOM-M controller[C]. Proceedings of IFAC Workrhop on Model Based Process, Atlanta, USA,1988:31-36.
    [17]Yousfi C, Tournier R. Steady state optimization inside model predictive control[C]. Proceedings of American Control Conference, Boston, USA,1991:1866-1870.
    [18]Scokaert P O M, Mayne D Q. Min-max feedback model predictive control for constrained linear systems[J]. IEEE Transactions on Automatic Control,1998,43 (8):1136-1142.
    [19]Bemporad A, Borrelli F, Morari M. Model predictive control based on linear programming the explicit solution [J]. IEEE Transactions on Automatic Control,2002,47 (12): 1974-1985.
    [20]Tang P L, de Silva C W. Compensation for transmission delays in an ethernet-based control network using variable-horizon predictive control[J]. IEEE Transactions on Control Systems Technology,2006,14 (4):707-718.
    [21]Zhang T J, Feng G, Lu J H. Fuzzy constrained min-max model predictive control based on piecewise Lyapunov functions [J]. IEEE Transactions on Fuzzy Systems,2007,15 (4): 686-698.
    [22]Lu C H, Tsai C C. Adaptive predictive control with recurrent neural network for industrial processes:An application to temperature control of a variable-frequency oil-cooling machine[J]. IEEE Transactions on Industrial Electronics 2008,55 (3): 1366-1375.
    [23]Munoz de la Pena D, Christofides P D. Lyapunov-based model predictive control of nonlinear systems subject to data losses [J]. IEEE Transactions on Automatic Control, 2008,53 (9):2076-2089.
    [24]Torrico B C, Roca L, Normey-Rico J E, et al. Robust nonlinear predictive control applied to a solar collector field in a solar desalination plant [J]. IEEE Transactions on Control Systems Technology,2010,18 (6):1430-1439.
    [25]Qin S J, Badgwell T A. A survey of industrial model predictive control technology[J]. Control Engineering Practice,2003,11 (7):733-764.
    [26]张化光,刘德荣,赵琰等.基于自适应动态规划的一类带有时滞的离散时间非线性系统的最优控制策略[J].自动化学报,2010,36(1):121-129.
    [27]Bai E, Li K. Convergence of the iterative algorithm for a general Hammerstein system identification[J]. Automatica,2010,46 (11):1891-1896.
    [28]Li G Q, Wen C Y. Convergence of normalized iterative identification of Hammerstein systems [J]. Systems & Control Letters,2011,60 (11):929-935.
    [29]Umoh I J, Ogunfunmi T. An affine projection-based algorithm for identification of nonlinear Hammerstein systems[J]. Signal Processing,2010,90 (6):2020-2030.
    [30]何德峰,俞立.约束Hammerstein系统非线性预测控制及其在聚丙烯牌号切换中的仿真研究[J].自动化学报,2009,32(12):1559-1563.
    [3l]Lawrynczuk M. Computationally efficient nonlinear predictive control based on neural Wiener models[J]. Neurocomputing,2010,74 (1-3):401-417.
    [32]Wang L J, Xu Y, Li L P. Parameter identification of chaotic systems by hybrid Nelder-Mead simplex search and differential evolution algorithm[J]. Expert Systems with Applications,2011,38 (4):3238-3245.
    [33]Novara C, Vincent T, Hsu K, et al. Parametric identification of structured nonlinear systems[J]. Automatica,2011,47 (4):711-721.
    [34]Modares H, Alfi A, Fateh M M. Parameter identification of chaotic dynamic systems through an improved particle swarm optimization [J]. Expert Systems with Applications, 2010,37 (5):3714-3720.
    [35]Rochdi Y, Giri F, Gning J B, et al. Identification of block-oriented systems in the presence of nonparametric input nonlinearities of switch and backlash types [J]. Automatica,2010,46 (5):864-877.
    [36]Paduart J, Lauwers L, Swevers J, et al. Identification of nonlinear systems using polynomial nonlinear state space models [J]. Automatica,2010,46 (4):647-656.
    [37]Azman K, Kocijan J. Dynamical systems identification using Gaussian process models with incorporated local models [J]. Engineering Applications of Artificial Intelligence, 2011,24 (2):398-408.
    [38]Gabano J D, Poinot T. Fractional modelling and identification of thermal systems[J]. Signal Processing,2011,91 (3):531-541.
    [39]Kuo C C. Artificial identification system for transformer insulation aging[J]. Expert Systems with Applications,2010,37 (6):4190-4197.
    [40]Beyhan S, Alci M. Fuzzy functions based ARX model and new fuzzy basis function models for nonlinear system identification[J]. Applied Soft Computing,2010,10 (2):439-444.
    [41]华晨,李柠,李少远.分布参数系统的时空ARX建模及预测控制[J].控制理论与应用,2011,28(12):1711-1716.
    [42]Majhi B, Panda G. Robust identification of nonlinear complex systems using low complexity ANN and particle swarm optimization technique [J]. Expert Systems with Applications,2011,38 (1):321-333.
    [43]Bai E, Tempo R. Representation and identification of non-parametric nonlinear systems of short term memory and low degree of interaction [J]. Automatica,2010,46 (10): 1595-1603.
    [44]Liu Y, Wang H Q, Yu J, et al. Selective recursive kernel learning for online identification of nonlinear systems with NARX form[J]. Journal of Process Control, 2010,20 (2):181-194.
    [45]Elfelly N, Dieulot J Y, Benrejeb M, et al. A new approach for multimodel identification of complex systems based on both neural and fuzzy clustering algorithms[J]. Engineering Applications of Artificial Intelligence,2010,23 (7):1064-1071.
    [46]Ko C N. Integration of support vector regression and annealing dynamical learning algorithm for MIMO system identification [J]. Expert Systems with Applications,2011, 38 (12):15224-15233.
    [47]Wang R, Liu G P, Wang W, et al. Guaranteed cost control for networked control systems based on an improved predictive control method [J]. IEEE Transactions on Control Systems Technology,2010,18 (5):1226-1232.
    [48]王占山,冯健,张化光等.带有无穷分布时滞的不确定系统的鲁棒H∞滤波器设计[J].控制理论与应用,2010,27(2):138-142.
    [49]Zou A M, Kumar K D, Hou Z G. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks[J]. IEEE Transactions on Neural Networks, 2010,21 (9):1457-1471.
    [50]Lian R J. Intelligent controller for robotic motion control [J]. IEEE Transactions on Industrial Electronics,2011,58 (11):5220-5230.
    [51]Khorasani K, Yazdizadeh A. Adaptive time delay neural network structures for nonlinear system identification [J]. Neurocomputing,2002,47:207-240.
    [52]Subathra B, Radhakrishnan T K. Modeling and predictive control using hybrid intelligent techniques for a nonlinear multivariable process [J]. Instrumentation Science & Technology,2011,39 (2):211-230.
    [53]马嘉,侯增广,谭民等Stewart主动隔振平台的神经网络自适应控制[J].控制与决策,2009,24(8):1150-1155.
    [54]Dalamagkidis K, Valavanis K P, Piegl L A. Nonlinear model predictive control with neural network optimization for autonomous autorotation of small unmanned helicopters [J]. IEEE Transactions on Control Systems Technology,2011,19 (4):818-831.
    [55]韩敏,王亚楠.基于Kalman滤波的储备池多元时间序列在线预报器[J].自动化学报,2010,36(1):167-173.
    [56]Lawrynczuk M. Online set-point optimisation cooperating with predictive control of a yeast fermentation process:A neural network approach [J]. Engineering Applications of Artificial Intelligence,2011,24 (6):968-982.
    [57]Lu C H. Wavelet fuzzy neural networks for identification and predictive control of dynamic systems [J]. IEEE Transactions on Industrial Electronics,2011,58 (7): 3046-3058.
    [58]Yilmaz S, Oysal Y. Fuzzy wavelet neural network models for prediction and identification of dynamical systems [J]. IEEE Transactions on Neural Networks,2010,21 (10): 1599-1609.
    [59]Ren X M, Lv X H. Identification of extended Hammerstein systems using dynamic self-optimizing neural networks[J]. IEEE Transactions on Neural Networks,2011,22 (8):1169-1179.
    [60]Chen M, Ge S S, How B. Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities [J]. IEEE Transactions on Neural Networks,2010,21 (5):796-812.
    [61]Li Y N, Yang C G, Ge S S, et al. Adaptive output feedback NN control of a class of discrete-time MIMO nonlinear systems with unknown control directions[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2011,41 (2): 507-517.
    [62]Das S, Suganthan P N. Differential evolution:A survey of the state-of-the-art [J]. IEEE Transactions on Evolutionary Computation,2011,15 (1):4-31.
    [63]Santana R, Larranaga P, Lozano J A. Learning factorizations in estimation of distribution algorithms using affinity propagation [J]. Evolutionary Computation,2010, 18 (4):515-546.
    [64]Wai R J, Lee J D, Chuang K L. Real-time PID control strategy for maglev transportation system via particle swarm optimization[J]. IEEE Transactions on Industrial Electronics, 2011,58 (2):629-646.
    [65]Li S T, Tan M K, Tsang I W, et al. A hybrid PSO-BFGS strategy for global optimization of multimodal functions [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2011,41 (4):1003-1014.
    [66]Wu W C, Tsai M S. Application of enhanced integer coded particle swarm optimization for distribution system feeder reconfiguration[J]. IEEE Transactions on Power Systems, 2011,26 (3):1591-1599.
    [67]Omidvar M N, Li X D, Yang Z Y, et al. Cooperative co-evolution for large scale optimization through more frequent random grouping[C]. Proceedings of IEEE Congress on Evolutionary Computation Barcelona, Spain,2010:1-8.
    [68]Kennedy J, Eberhart R. Particle swarm optimization [C]. Proceedings of IEEE International Conference on Neural Networks, Perth, Western Australia,1995: 1942-1948.
    [69]Gao H, Xu W B. A new particle swarm algorithm and its globally convergent modifications [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2011, 41 (5):1334-1351.
    [70]Shi Y H, Eberhart R C. Fuzzy adaptive particle swarm optimization [C]. Proceedings of IEEE Congress on Evolutionary Computation, Alaska, USA,2001:101-106.
    [71]Hasanien H M. Particle swarm design optimization of transverse flux linear motor for weight reduction and improvement of thrust force[J]. IEEE Transactions on Industrial Electronics,2011,58 (9):4048-4056.
    [72]Ramachandran B, Srivastava S K, Edrington C S, et al. An intelligent auction scheme for smart grid market using a hybrid immune algorithm [J]. IEEE Transactions on Industrial Electronics,2011,58 (10):4603-4612.
    [73]Kennedy J. Bare bones particle swarms [C].Proceedings of Swarm Intelligence Symposium, Indiana, USA,2003:80-87.
    [74]Kennedy J. Probability and dynamics in the particle swarm [C]. Proceedings of IEEE Congress on Evolutionary Computation Portland, OR,2004:340-347.
    [75]Kennedy J. Why does it need velocity? [C]. Proceedings of Swarm Intelligence Symposium, California, USA,2005:38-44.
    [76]Kennedy J. In search of the essential particle swarm [C]. Proceedings of IEEE Congress on Evolutionary Computation, British Columbia, Canada,2006:1694-1701.
    [77]Eberhart R C, Shi Y H. Comparing inertia weights and constriction factors in particle swarm optimization [C]. Proceedings of IEEE Congress on Evolutionary Computation, San Diego, CA, USA,2000.:84-88.
    [78]Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation,2004,8 (3):240-255.
    [79]He S, Wu Q H, Wen J Y, et al. A particle swarm optimizer with passive congregation [J]. Biosystems,2004,78 (1-3):135-147.
    [80]Wu H, Geng J P, Jin R H, et al. An improved comprehensive learning particle swarm optimization and its application to the semiautomatic design of antennas [J]. IEEE Transactions on Antennas and Propagation,2009,57 (10):3018-3028.
    [81]Kiranyaz S, Ince T, Yildirim A, et al. Fractional particle swarm optimization in multidimensional search space [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2010,40 (2):298-319.
    [82]Liu L L, Yang S X, Wang D W. Particle swarm optimization with composite particles in dynamic environments [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2010,40 (6):1634-1648.
    [83]Yang S X, Li C H. A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments[J]. IEEE Transactions on Evolutionary Computation,2010,14 (6):959-974.
    [84]Liu C H, Hsu Y Y. Design of a self-tuning PI controller for a STATCOM using particle swarm optimization [J]. IEEE Transactions on Industrial Electronics,2010,57 (2): 702-715.
    [85]Zhang C S, Sun J G. An alternate two phases particle swarm optimization algorithm for flow shop scheduling problem [J]. Expert Systems with Applications,2009,36 (3): 5162-5167.
    [86]Daneshyari M, Yen G G. Cultural-based multiobjective particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2011,41 (2): 553-567.
    [87]Juang C F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2004,34 (2):997-1006.
    [88]Catala O, Pousinho H M I, Mendes V M F. Hybrid Wavelet-PSO-ANFIS approach for short-term electricity prices forecasting [J]. IEEE Transactions on Power Systems,2011,26 (1): 137-144.
    [89]Bhattacharya A, Chattopadhyay P K. Biogeography-based optimization for different economic load dispatch problems [J]. IEEE Transactions on Power Systems,2010,25 (2): 1064-1077.
    [90]Cheung M K H, Chow M H L, Tse C K. Design and performance considerations of PFC switching regulators based on noncascading structures [J]. IEEE Transactions on Industrial Electronics,2010,57 (11):3730-3745.
    [91]Wai R J, Chuang K L, Lee J D. On-line supervisory control design for maglev transportation system via total sliding-mode approach and particle swarm optimization [J]. IEEE Transactions on Automatic Control,2010,55 (7):1544-1559.
    [92]王俊年,申群太,沈洪远等.基于多种群协同进化微粒群算法的径向基神经网络设计[J].控制理论与应用,2006,23(2):251-255.
    [93]Song Y, Chen Z Q, Yuan Z Z. New chaotic PSO-based neural network predictive control for nonlinear process [J]. IEEE Transactions on Neural Networks,2007,18 (2):595-601.
    [94]Voumvoulakis E M, Hatziargyriou N D. A particle swarm optimization method for power system dynamic security control [J]. IEEE Transactions on Power Systems,2010,25 (2): 1032-1041.
    [95]Juang C F, Chang Y C, Hsiao C M. Evolving gaits of a hexapod robot by recurrent neural networks with symbiotic species-based particle swarm optimization [J]. IEEE Transactions on Industrial Electronics,2011,58 (7):3110-3119.
    [96]Everitt B S. Cluster Analysis [M]. New York:Hasred,1993.
    [97]Theodoridis S a K, K. Pattern Recognition [M]. Salt Lake City:Academic Press,2008.
    [98]高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2004.
    [99]Yager R R, Filev D P. Approximate clustering via the mountain method [J]. IEEE Transactions on Systems Man and Cybernetics,1994,24 (8):1279-1284.
    [100]林开颜,徐立鸿,吴军辉.快速模糊C均值彩色图像分割方法[J].中国图象图形学报,2004,9(2):159-164.
    [101]Kim D W, Lee K H, Lee D. A novel initialization scheme for the fuzzy c-means algorithm for color clustering [J]. Pattern Recognition Letters,2004,25 (2):227-237.
    [102]张文君,顾行发,陈良富.基于均值一标准差的K均值初始聚类中心选择算法[J].遥感学报,2006,10(5):715-719.
    [103]Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means model[J]. IEEE Transactions on Fuzzy Systems,1995,3 (3):370-379.
    [104]Pal N R, Bezdek J C. Correction to "On cluster validity for the fuzzy c-means model" [Correspondence] [J]. IEEE Transactions on Fuzzy Systems,1997,5 (1):152-153.
    [105]高新波,裴继红,谢维信.模糊C均值聚类算法中加权指数m的研究[J].电子学报,2000,28(4):80-83.
    [106]Ayvaz M T, Karahan H, Aral M M. Aquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic algorithm [J]. Journal of Hydrology, 2007,343 (3-4):240-253.
    [107]Brouwer R K, Groenwold A. Modified fuzzy c-means for ordinal valued attributes with particle swarm for optimization[J]. Fuzzy Sets and Systems,2010,161 (13):1774-1789.
    [108]Xia Y, Feng D G, Wang T J, et al. Image segmentation by clustering of spatial patterns [J]. Pattern Recognition Letters,2007,28 (12):1548-1555.
    [109]Kannan S R, Ramathilagam S, Sathya A, et al. Effective fuzzy c-means based kernel function in segmenting medical images [J]. Computers in Biology and Medicine,2010, 40 (6):572-579.
    [110]Camps V G, Marsheva T V B, Zhou D Y. Semi-supervised graph-based hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45 (10): 3044-3054.
    [111]Marcelloni F. Feature selection based on a modified fuzzy C-means algorithm with supervision [J]. Information Sciences,2003,151:201-226.
    [112]姜远,黎铭,周志华.一种基于半监督学习的多模态Web查询精化方法[J].计算机学报,2009,32(10):2099-2105.
    [113]Wang X Z, Wang Y D, Wang L J. Improving fuzzy c-means clustering based on feature-weight learning [J]. Pattern Recognition Letters,2004,25 (10):1123-1132.
    [114]Tsekouras G E. On the use of the weighted fuzzy c-means in fuzzy modeling[J]. Advances in Engineering Software,2005,36 (5):287-300.
    [115]Nock R, Nielsen F. On weighting clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28 (8):1223-1235.
    [116]Shi J B, Malik J. Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (8):888-905.
    [117]Fowlkes C, Belongie S, Chung F, et al. Spectral grouping using the Nystrom method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26 (2):214-225.
    [118]Martin D R, Fowlkes C C, Malik J. Learning to detect natural image boundaries using local brightness, color, and texture cues [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26 (5):530-549.
    [119]田铮,李小斌,句彦伟.谱聚类的扰动分析[J].中国科学E辑,2007,37(4):527-543.
    [120]Bezdek J C. Numerical taxonomy with fuzzy sets [J]. Journal of Mathematical Biology, 1974,1:57-71.
    [121]Bezdek J C. Cluster validity with fuzzy sets [J]. Journal of Cybernetics,1974,3 (3): 58-73.
    [122]Fukuyama Y, Sugeno M. A new method of choosing the number of clusters for the fuzzy c-means method [C]. Proceedings of Fuzzy Systems Symposium,1989:259-262.
    [123]Xie X L L, Beni G. A validity measure for fuzzy clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13 (8):841-847.
    [124]Kwon S H. Cluster validity index for fuzzy clustering [J]. Electronics Letters,1998, 34 (22):2176-2177.
    [125]Reiber J H C, Rezaee M R, Lelieveldt B P F. A new cluster validity index for the fuzzy c-mean[J]. Pattern Recognition Letters,1998,19 (3-4):237-246.
    [126]Boudraa A 0. Dynamic estimating of the number of clusters in data sets[J]. IEE Electronics Letters,1999,35 (19):1606-1608.
    [127]Kim D W, Lee K H, Lee D. Fuzzy cluster validation index based on inter-cluster proximity [J]. Pattern Recognition Letters,2003,24 (15):2561-2574.
    [128]Zhan Z H, Zhang J F, Li Y, et al. Adaptive particle swarm optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2009,39 (6): 1362-1381.
    [129]Peng F, Tang K, Chen G L, et al. Population-based algorithm portfolios for numerical optimization [J]. IEEE Transactions on Evolutionary Computation,2010,14 (5): 782-800.
    [130]Chen X, Li Y M. A modified PSO structure resulting in high exploration ability with convergence guaranteed[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2007,37 (5):1271-1289.
    [131]潘峰,陈杰,甘明刚等.粒子群优化算法模型分析[J].自动化学报,2006,32(3):1010-1016.
    [132]Ozcan E, Mohan C K. Particle swarm optimization:Surfing the waves [C]. Proceedings of IEEE Congress on Evolutionary Computation, Washington, DC, USA,1999:1939-1944.
    1l33]Clerc M, Kennedy J. The particle swarm-Explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolutionary Computation, 2002,6 (1):58-73.
    [134]Trelea I C. The particle swarm optimization algorithm:convergence analysis and parameter selection[J]. Information Processing Letters,2003,85 (6):317-325.
    [135]Bergh F, Engelbrecht A P. A study of particle swarm optimization particle trajectories [J]. Information Sciences,2006,176 (8):937-971.
    [136]Kadirkamanathan V, Selvarajah K, Fleming P J. Stability analysis of the particle dynamics in particle swarm optimizer [J]. IEEE Transactions on Evolutionary Computation,2006,10 (3):245-255.
    [137]潘峰,陈杰,辛斌等.粒子群优化方法若干特性分析[J].自动化学报,2009,35(7):1010-1016.
    [138]Jiang M, Luo Y P, Yang S Y. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm [J]. Information Processing Letters,2007,102 (1):8-16.
    [139]金欣磊,马龙华,吴铁军等.基于随机过程的PSO收敛性分析[J].自动化学报,2007,33(12):1263-1268.
    [140]Boyd S, Ghaouil L E, Feron E, et al. Linear Matrix Inequalities in System and Control Theory [M]. Philadelphia:SIAM,1994.
    [141]Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation,2006,10 (3):281-295.
    [142]Xie X F, Zhang W J, Yang Z L. Dissipative particle swarm optimization[C]. Proceedings of IEEE Congress on Evolutionary Computation, Honolulu, HI:USA,2002:1456-1461.
    [143]Liao Y X, She J H, Wu M. Integrated hybrid-PSO and fuzzy-NN decoupling control for temperature of reheating furnace [J]. IEEE Transactions on Industrial Electronics, 2009,56 (7):2704-2714.
    [144]Lin C J, Chen C H, Lin C T. A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications [J]. IEEE Transactions on Systems Man and Cybernetics Part C:Applications and Reviews,2009, 39 (1):55-68.
    [145]Ling S H, Iu H H C, Chan K Y, et al. Hybrid particle swarm optimization with wavelet mutation and its industrial applications [J]. IEEE Transactions on Systems Man and Cybernetics Part B:Cybernetics,2008,38 (3):743-763.
    [146]Jaeger H, Haas H. Harnessing nonlinearity:Predicting chaotic systems and saving energy in wireless communication[J]. Science,2004,304 (5667):78-80.
    [147]Huang G B, Zhu Q Y, Siew C K. Extreme learning machine:Theory and applications [J]. Neurocomputing,2006,70 (1-3):489-501.
    [148]Yang Z Y, Tang K, Yao X. Large scale evolutionary optimization using cooperative coevolution[J]. Information Sciences,2008,178 (15):2985-2999.
    [149]顾冠群,陶军,吴家皋.高性能计算机网络研究进展[M].南京:东南大学出版社,2006.
    [150]Kiranyaz S, Ince T, Yildirim A, et al. Evolutionary artificial neural networks by multi-dimensional particle swarm optimization[J]. Neural Networks,2009,22 (10): 1448-1462.
    [151]Mulvey J M, Crowder H P. Cluster analysis:An application of lagrangian relaxation [J]. Management Science,1979,25 (4):329-340.
    [152]Klastorin T D. The p-median problem for cluster analysis:A comparative test using the mixture model approach[J]. Management Science,1985,31 (1):84-95.
    [153]Kusiak A. The generalized group technology concept [J]. International Journal of Production Research,1987,25 (4):561-569.
    [154]McAuley J. Machine grouping for efficient production [J]. Production Engineer,1972, 51 (2):53-57.
    [155]Tanimoto T T. An Elementary Mathematical Theory of Classification and Prediction [M]. New York:International Business Machines Corporation,1958.
    [156]Hathaway R J, Hu Y K. Density-weighted fuzzy c-means clustering [J]. IEEE Transactions on Fuzzy Systems,2009,17 (1):243-252.
    [157]Tao W B, Jin H, Zhang Y M. Color image segmentation based on mean shift and normalized cuts[J]. IEEE Transactions onSystems, Man, and Cybernetics, Part B:Cybernetics, 2007,37 (5):1382-1389.
    [158]Fan S K S, Chang J M. Dynamic multi-swarm particle swarm optimizer using parallel PC cluster systems for global optimization of large-scale multimodal functions[J]. Engineering Optimization,2010,42 (5):431-451.
    [159]Korenaga T, Hatanaka T, Uosaki K. Improvement of particle swarm optimization for high-dimensional space[C]. Proceedings of the International Joint Conference SICE-ICASE Paris, France,2006:2174-2178.
    [160]van den Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation 2004,8 (3):225-239.
    [161]Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer with a novel constraint-handling mechanism[C]. Proceedings of IEEE Congress on Evolutionary Computation, Vancouver, Canada,2006:9-16.
    [162]Zhao S Z, Suganthan P N, Das S. Dynamic multi-swarm particle swarm optimizer with sub-regional harmony search [C]. Proceedings of IEEE Congress on Evolutionary Computation, Barcelona, Spain,2010:1-8.
    [163]Kennedy J, Mendes R. Neighborhood topologies in fully informed and best-of-neighborhood particle swarms [J]. IEEE Transactions on Systems Man and Cybernetics Part C:Applications and Reviews,2006,36 (4):515-519.
    [164]Liu A M, Zhang X L, Lin X, et al. Application of neighbourhood topology particle swarm optimization to cylinder linear induction motor design [C]. Proceedings of IEEE International Conference on Automation and Logistics, Shenyang, China,2009:538-542.
    [165]Chen Y P, Peng W C, Jian M C. Particle swarm optimization with recombination and dynamic linkage discovery [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2007,37 (6):1460-1470.
    [166]Li T S, Wang D, Feng G, et al. A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2010,40 (3):915-927.
    [167]Xia Y S, Feng G, Wang J. A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints [J]. IEEE Transactions on Neural Networks,2008,19 (8):1340-1353.
    [168]Liu Q S, Wang J. A one-layer recurrent neural network for constrained nonsmooth optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 2011,41 (5):1323-1333.
    [169]Han M, Fan J C, Wang J. A dynamic feedforward neural network based on Gaussian particle swarm optimization and its application for predictive control [J]. IEEE Transactions on Neural Networks,2011,22 (9):1457-1468.
    [170]Torghabeh R P, Khaloozadeh H. Neural networks Hammerstein model identification based on particle swarm optimization[C]. Proceedings of IEEE International Conference on Networking, Sensing and Control, Sanya, China,2008:363-367.
    [171]Shoorehdeli M A, Teshnehlab M, Sedigh A K, et al. Identification using ANFIS with intelligent hybrid stable learning algorithm approaches and stability analysis of training methods[J]. Applied Soft Computing,2009,9 (2):833-850.
    [172]Pongchairerks P, Kachitvichyanukul V. Particle swarm optimization algorithm with multiple social learning structures[J]. International Journal of Operational Research,2009,6 (2):176-194.
    [173]任正云,邵惠鹤,张立群.一类非自衡加纯滞后系统的双预测PI控制[J].控制与决策,2004,19(4):459-461,473.
    [174]Tian Y C, Gao F. Double-controller scheme for control of processes with dominant delay [J]. IEE Proceedings of Control Theory and Applications,1998,145 (5):479-484.
    [175]Chen Y D, Tung P C, Fuh C C. Modified Smith predictor scheme for periodic disturbance reduction in linear delay systems[J]. Journal of Process Control,2007,17 (10): 799-804.
    [176]李迅,宋东球,喻寿益.基于模型参考自适应Smith预估器的反馈式AGC厚度控制系统[J].控制理论与应用,2009,26(9):999-1003.
    [177]Kaya I. IMC based automatic tuning method for PID controllers in a Smith predictor configuration [J]. Computers & Chemical Engineering,2004,28 (3):281-290.
    [178]黄灿,桂卫华,阳春华.多变量时滞过程解耦Smith控制[J].控制理论与应用,2010,27(10):1393-1398.
    [179]Wang L P. Model Predictive Control System Design and Implementation Using MATLAB [M]. London:Springer-Verlag 2009.
    [180]Grune L, Pannek J. Nonlinear Model Predictive Control-Theory and Algorithms[M]. London:Springer-Verlag,2011.
    [181]Canale M, Fagiano L, Milanese M. Efficient model predictive control for nonlinear systems via function approximation techniques [J]. IEEE Transactions on Automatic Control,2010,55 (8):1911-1916.
    [182]Zhang Y J, Chai T Y, Wang H, et al. An adaptive generalized predictive control method for nonlinear systems based on ANFIS and multiple models [J]. IEEE Transactions on Fuzzy Systems,2010,18 (6):1070-1082.
    [183]Pin G, Raimondo D M, Magni L, et al. Robust model predictive control of nonlinear systems with bounded and state-dependent uncertainties[J]. IEEE Transactions on Automatic Control,2009,54 (7):1681-1687.
    [184]Pan Y P, Wang J. Nonlinear model predictive control using a recurrent neural network [C]. Proceedings of IEEE International Joint Conference on Neural Networks, Hong Kong, 2008:2296-2301.
    [185]Akpan V A, Hassapis G D. Nonlinear model identification and adaptive model predictive control using neural networks [J]. ISA Transactions,2011,50 (2):177-194.
    [186]Fan X Z, Zhang N Y, Teng S J. Trajectory planning and tracking of ball and plate system using hierarchical fuzzy control scheme [J]. Fuzzy Sets and Systems,2004,144 (2): 297-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700