6-DOF串并联机器人的动力学及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,对于6-DOF并联机器人的研究已成为热门领域。然而,绝大多数的6-DOF并联机器人的构型都来源于Stewart机构,鲜见其它构型的并联机器人或串并联机器人。本文所研究的是6-DOF串并联机器人,主要用于重型锻件生产自动化领域。此机构不仅具有输出精度高、机构刚性好、承载能力强等并联机构的特点,也具备工作空间大等优点。
     本论文主要针对6-DOF串并联机器人的运动学分析、动力学分析、基于动力学的控制系统设计、电液伺服驱动系统设计、电液位置伺服控制等5个内容进行研究。
     6-DOF串并联机器人的运动学分析兼具并联机器人和串联机器人的优点和难点,本文在求位置反解时采用了新的算法——逐次搜索法;利用一、二阶影响系数矩阵分析速度和加速度。在关节空间里对关节的运动轨迹进行规划,求得各个关节的运动轨迹。
     基于Kane动力学理论,求出15个杆件的偏速度和偏角速度,推导了动力学方程,并给出了动力学基本方程系数解析形式,利用Matlab软件进行计算机动态数值仿真。分析仿真曲线,评价动力学性能,并据此更新关节运动轨迹。
     基于动力学方程的控制方法很多,在控制精度、快速性和稳定性方面各有特点,控制成本和实现的难易程度也有所不同。本文采用了三种方法:计算力矩法、鲁棒控制及变结构滑模控制,对6-DOF串并联机器人进行了精确控制。通过Simulink仿真实例,比较三种方法的优劣和应用条件。
     推导电液伺服驱动系统的动力学模型,即分别求取电磁伺服阀、单级电液伺服阀、阀控液压缸动力机构、负载活塞受力模型的数学模型等,最终获得三阶开环传递函数的数学模型。
     采用PID校正和变结构鲁棒自适应控制对电液伺服驱动系统进行伺服控制,此系统具有良好的快速性和鲁棒性。
     前面各专题采取的技术路线为基于纯理论数学推导,以Matlab/Simulink数值仿真为辅助,最终得出描述性能曲线。
At present, the research on the 6-DOF parallel robot has become a hot area. However, the vast majority of 6-DOF parallel robot configurations are derived from the Stewart institution, rare in other configurations of parallel robots, or series-parallel robots. In this paper, the study of 6-DOF series-parallel robot is mainly used in heavy-duty forgings automated production area. This body not only has the characteristics of high precise output, institutional rigidity, strong load capacity, but also has capability of a large working space.
     In this paper, the key research on 6-DOF series-parallel robot included five topics: kinematics analysis, dynamics analysis, control system design based on the dynamics, electro-hydraulic control system design and electro- hydraulic positon serve control.
     Kinematics analysis of the 6-DOF Series-Parallel robot has advantages and difficulties of both parallel robots and serial robots, a new approach is used to solve inverse positon in this paper, that is successive search method. Velocity and acceleration are analysised with frist and second-order effect coefficient matrix. At last, each joint trajectory is planed in joint space.
     Kinetic equation was derived based on KANE dynamics theory, and the basic equations of the kinetic coefficients were analyzed. Meanwhile, the robot dynamic state was simulated with Matlab software. Simulation curve was analyzed, dynamic performance was evaluated, and the joint trajectory was updated.
     The various control ways have characteristic in controlling the precision, speed and stability of their own characteristics, control costs and achieve the degree of difficulty vary based on kinetic equation. Three methods that are computed torque method, robust control and variable structure sliding mode control were used in the precise control of the series-parallel 6-DOF robot. These methods were compared with the Simulink simulation example in application conditions.
     Dynamic model of electro-hydraulic servo drive sysrem is derivated, which including electromafnetic servo valve, Single-stage electro-hydraulic servo valve, vavle-controlled hydraulic cylinders power sector and load model.
     Third-order single-input, single-output mathematical model was derived. Electro-hydraulic servo position control system is conreolled through PID and variable structure robust adaptive control system, and this system has good speed and robustness.
     The performance curve was described supported by Matlab / Similunk numerical simulation and the pure mathematical reasoning.
引文
[1]熊有伦.机器人学.北京:机械工业出版社. 1993.
    [2] Craig, J.J. Introduction to Robotics: Mechanics and Control, Second Edition. Addison Wesley publishing Co. 1989.
    [3]马香峰.机器人机构学.北京:机械工业出版社. 1991.
    [4] Stewart, D.A. Platform with 5-DOF. Proc. On Institution of Mechanical Engineering. 1965, 18(1):371~386.
    [5] Hunt, K.H. Structural Kinematics of In-Parallel-Actuated Robot Arm. Trans. ASME J. Mechanisms, Transmissions and Automation in Design. 1983, 105:705~712.
    [6] H. McCallion, D.T. Pham. The Analysis of a Six Degrees of Freedom Work Station for Mechanized Assembly. In Proc. 5th World Congress on Theory of Machines and Mechanisms. 1979, 611~616.
    [7] B. Dasgupta, T.S. Mruthyunjaya. The Stewart Platform Manipulator: a Review. Mechanism and Machine Theory. 2000, 35:15~40.
    [8] Innocenti, C., Castelli, V.P. Direct Position Analysis of the Stewart Platform Mechanism. Mechanism and Machine Theory. 1990, 25(6):611~624.
    [9]梁崇高,荣辉.一种Stewart平台机械手位移正解.机械工程学报. 1991, 27(2):26~30.
    [10] Innocenti, C., Castelli, V.P. Closed-Form Direct Position Analysis of a 5-5 Parallel Mechanism. ASME Journal of Mechanical Design. 1993, 115:515~521.
    [11] Wen, F.A., Liang, C.G.. Displacement Analysis of the 6-6 Stewart Platform Mechanisms. Mechanism and Machine Theory. 1994, 29(4):547~557.
    [12]赵铁石,黄真.一种新型四自由度并联平台机构及其位置分析.机械科学与技术. 2000, 19(6):927~929.
    [13] Innocenti C., CAstelli, V.P. Forward Kinematics of the General 6-6 Fully Parallel Mechanism: an Exhaustive Numerical Approach via a Mono-Dimensional–Search Algorithm. ASME Journal of Mechanical Design. 1993, 115:932~937.
    [14]刘安心,杨廷利.求一般6-SPS并联机器人机构的全部位置正解.机械科学与技术. 1996, 15(4):543~546. [15 ]Huang Z. Modeling Formulation of 6-DOF Parallel Manipulators Part 2-Dynamics Modeling and Example. The 4th IF ToMM Conference on Mechanisms and CAD. Bucharest, Romania. 1985.
    [16]赵新华,彭商贤.一种分析并联机器人位置正解的高效算法.天津大学学报. 2000, 33(2):134~137.
    [17] Duffy, J. Analysis of Mechanisms and Robot Manipulators. Edword Arnold. 1980, London.
    [18] Duffy, J. and Crane, C. A Displacement Analysis of the General 7-Link 7R Mechanism. Mech. Mach. Th., 15(3):153~169.
    [19]文福安,李静宜,梁崇高.一般6-6型平台并联机器人机构位置正解.机械科学与技术. 1993,1:41-47.
    [20] Lazard, D.“On the Representation of Rigid-Body Motion and its Application to Generalized Platform Manipulators”in Computational Kinematics, edited by J. Angeles, G. Hommel and P. Kovacs. Kluwer Academic Publishers, Dordrecht, The Netherlands. 1993:175-181.
    [21]李立.机构学及优化设计基于新算法的理论与方法的研究[博士学位论文].西南交通大学. 1996.
    [22]林春光.机器人机构位置分析的符号法及动力学模型[博士学位论文].四川联合大学. 1998.
    [23] Lin Han, Liang Chonggao, Zhang Yu. Wu Method for forward displacement analysis of the planar parallel manipulator. MTM. 1997, 97:945~948.
    [24] Tsai, L. W. and Morgan, A.P. Solving the Kinematics of the Most General Six- and Five-Degree-of-Freedom Manipulators by Continuation Methods. ASME J. Mech. Transm. Autom. Des. 107(2):189~200.
    [25]王则柯,高堂安.同伦连续法引论.重庆:重庆出版社. 1990.
    [26] Gosselin, C. Singularity Analysis of Closed-Loop Kinematic Chains. IEEE Trans. On Rob. & Aut. 1990, 6(3):281~290.
    [27] J.S. Zhao, K. Zhou. A novel methodology to study the singularity of spatial parallel mechanisms. The International Journal of Advanced Manufacturing Technology. 2004, 23(9):750~754.
    [28] Kumar, V. Instantaneous kinematics of parallel-chain robotic mechanisms. Transaction of the ASME: Journal of. Mechanical Design. 1992, 114(2):349~358.
    [29] Merlet, J.P. Singular configuration of parallel manipulators and grassman geometry. The Int. Journal Robotics Research. 1989, 8(5):45~56.
    [30]黄真.高等空间机构学.北京:机械工业出版社. 1991:224~269.
    [31] S.L. Chen and I.T. Tou. Kinematic and Singularity Analysis of a Six DOF 6-3-3 Parallel Link Machine Tool. The International Journal of Advanced Manufacturing Technology. 2000, 16(11):835~842.
    [32] Bhattacharys, S., Hatwal, H., Ghosh, A. Comparison of an exact and an approximate methodology of singularity avoidance in platform type parallel manipulators. Mech. Mach. Theor. 1998, 33(7):965~974.
    [33] Sefrioui, J., Gosselin, CM. Singularity analysis and representation of planar parallel manipulators. Robot Auto. Sys. 1993, 10(4):209~224.
    [34] Sefrioui, J., Gosselin, CM. On the quadratic nature of the singularity curves of planar three-degree-of-freedom parallel manipulators. Mech. Mach, Theory. 1995, 30(4):533~551.
    [35] Q. Huang, H. H?deby and G. Sohlenius. Connection Method for Dynamic Modeling and Simulation of Parallel Kinematic Mechanism (PKM) Machines. The International Journal of Advanced Manufacturing Technology. 2002, 19(3):163~173.
    [36] Fichter, E.F. A Stewart Platform-Based Manipulator:General Theory and Practical Construction, International Journal of Robotics Research. 1986, 5(2):157~263.
    [37] Gosselin, C. Determination of Workspace of a 6-DOF Parallel Manipulator. ASME Joutnal of Mechanical Design. 1990, 112:331~336.
    [38] Masory, Q., Wang, J. Workspace Evaluation of a Stewart Platform. ASME. 1992, 45:337~346.
    [39] D.Y. Jo. Workspace of Analysis Closed Loop Mechanism with Unilateral Constrains. ADV. In Des. Automation. 1989, 3:53~60.
    [40] J.P. Merlet. Geometrical Determination of Workspace of A Constrained Parallel Manipulators, In: ARK. France. 1992:326~329.
    [41] Z. Ji. Workspace Analysis of Stewart Platforms via Vertex Space. J. Robotic Systems. 1994, 11(7):631~638.
    [42] J.P. Merlet. Determination of The Orientation Workspace of Parallel Manipulators. J of Intellingent and Robotics System. 1995, 13:143~160.
    [43]汪劲松,黄田.并联机床——机床行业面临的机遇与挑战.中国机械工程. 1999, 10(10):1103~1107.
    [44] J.P. Merlet, Parallel Manipulators, Part 1: Theory, Design, Kinematics, Dynamics and Control, Technical Report # 646 INRIA, France. 1987.
    [45] W.Q.D. Do, D.C.H. Yang. Inverse Dynamic Analysis and Simulation of a Platform Type of Robot. Journal of Robotic Systems. 1988, 5(3): 209~227.
    [46] Z. Geng, L.S. Haynes, J.D. Lee, R.L. Carroll. On the Dynamic Model and Kinematic Analysis of a Class of Stewart Platforms. Robotics and Autonomous Systems. 1992, 9: 237~254.
    [47] L. Liu, F. Lewis, G. Lebret, D. Tarlor. The Singularities and Dynamics of a Stewart Platform manipulator. Journal of Intelligent and Robotic Systems. 1993, 8:287~308.
    [48] K. Liu, M. Fitzgerald, D.W. Dawson, F.L. Lewis, Control of System with Inexact Dynamic Models. ASME. 1991, 33:83~89.
    [49] Z. Ji, Dynamics Decomposition for Stewart Platforms, ASME Journal of Mechanical Design. 1994, 116(1):67~69.
    [50] Z. Huang, H.B. Wang. Dynamic Force Analysis of 6-DOF Parallel Multi-loop Robot Manipulators. ASME Paper. 1986, 86~168.
    [51]王洪波,黄真.六自由度并联机器人拉格朗日动力学方程.机器人. 1990, 12(1):23~26.
    [52] Jiegao, Wang and Clément, M. Dosselin. A New Approach for the Dynamic Analysis of parallel Manipulators. Multi-body System Dynamics. 1998, 2(3):317~334.
    [53]张国伟,宋伟刚.并联机器人动力学问题的Kane方法.系统仿真学报. 2004, 16(7):1386~1391.
    [54]陶永华.新型PID控制及其应用.机械工业出版社. 2002.
    [55] Z. Iwai, S.L. Shah, I. Mizumoto, L. Liu and H. Jiang, Adaptive Stable PID Controller with Parallel Feed-forward Compensator. ICARCV. 2006:1~6.
    [56] Qiao, W. and Mizumoto, M. PID type fuzzy controller and parameters adaptive method, Fuzzy Sets and Systems. 1996, 48:23~35.
    [57] K.J. Astrom, C.C. Hang, P. Perssom and W.K. Ho. Towards intelligent PID control, Automatica. 1992, 28(1):1~9.
    [58] Horowize, R. and Tomizuka, M. An adaptive control for mechanical manipulators compensation of nonlinearity and decoupling control. ASME Paper # 80-WA/DSC-6.
    [59] Takegaki, M. and Arimoto, S. An adaptive trajectory control of manipulators, Int. J. Control. 1981, 34:219~230.
    [60] Sadegh, N. and Horowize, R. Stability and robustness analysis of a class of adaptive controller for robotic manipulators, Int. J. Robotics Research. 1990, 9(3):74~92.
    [61] Dawsom, DM., Qu, Z., Lewis, FL., Dorsry, JF. Robust control for the tracking of robot motion. International Journal of Control. 1990, 52: 581~595.
    [62] H. Souley, Ali, L. Boutat-Baddas, Y., Becis-Aubry and M. Darouach. H∞control of a SCARA robot using polytopic LPV approach. Control and Automation. Mediterranean Conference, 2006.
    [63] Furuta, K. Sliding mode control of variable structure control systems. System Control Letters. 1990, 14(2):145~152.
    [64] Utkin, V.I. Variables structure systems: present and future. Automatic Remote Control. 1983, 44(9):1105~1120.
    [65]石志新.基于序单开链单元的并联机器人运动分析模式方法研究.博士学位论文
    [66] Wen F A, Liang C G. Displacement analysis of the 6-6 Stewart platform mechanisms. Mechanism and Machine Theory, 1994, 29(4):547-557.
    [67] Sreeninasan S V, Waldron K J. Closed-form direct displacement analysis of a 6-6 Stewart platform [J]. Mechanism and Machine Theory, 1994, 29(6):855-864.
    [68]梁崇高,荣辉.一种Stewart平台型机械手位移正解.机械工程学报, 1991, 27(2):26-30.
    [69] Huang Tian. Theory and methodology for kinematic design of Gough-Stewart platforms. Science in china(Serials E), 1991, 42(4):425-436.
    [70] Borenstein J. Multi-layered control of a four-degree-of-freedom mobile robot with compliant linkage. Proc. IEEE Int. Conf. on Robotics & Automation, Atlanta, 1993:7-12.
    [71]无光中. 3-P-U-U型屏东并联机构的运动学分析.中国机械工程, 2004, 15(9):816-819.
    [72] Chieng W H, Hoeltzel D A. Computer-Aided kinematic nanlysis of planar mechanisms based on symbolic pattern matching of independent kinematic loops. ASME J. mechanical design, 1996, 112:337-346.
    [73] Byun Y K, Chao H S. Analysis of a novel 6-DOF 3-PPSP parallel manipulator. The International Journal of Robotics Research, 1997, Vol. 16(6):859-872.
    [74]方跃法等.三自由度3-RPS并联机器人机构的运动分析.机械科学与研究, 1997, 16(1):82-87.
    [75]刘辛军.一种新型空间3自由度并联机构的正反解及工作空间分析.机械工程学报, 2001, 37(10):36-39.
    [76] Huang Tian. Closed-form solution to the position workspace of Stewart parallel manipulator. Science in china(Series E), 1998, 41(4):393-430.
    [77] ceccarelli M. A formulation for the workspace boundary of general n-revolute manipulators[J]. Mechanism and Machine Theory, 1996, Vol. 31(5):637-646.
    [78]黄真等.一种新型三维移动并联机构及其位置分析.机器人. 1999, 21(7):507-513.
    [79]杨廷利.机器人机构拓扑结构学.北京:机械工业出版社. 2004.
    [80] Shen H P, Yang T L. A new method and automatic generation for kinematic analysis of complex planar linkages based on the ordered single-opened-chains. Proc. of ASME Mechanisms Conf. Minneapolis, 1994, 493-500.
    [81] Shen H P, Ting K L and Yang T L. Configuration analysis of complex multi-loop linkages andmanipulator. Mechanism and machine Theory, 200, 35(3):353-362.
    [82]沈惠平,杨廷利.用一维搜索法求解复杂机构的全部位置解.机械设计与研究, 2001, 17(1):37-39.
    [83] Shi Zhi Xin, Luo Yu Fen and Yang Ting Li. Modular method foe kinematic analysis of parallel manipulators based on ordered SOCs. Proceedings of 2006 ASME International Design Engineering Technical Conferences and Computers and Information In Engineering Conference, DETC 2006, Philadelphia, PA, United States 2006.9.
    [84] Shi Zhi Xin, Luo Yu Feng and Yang Ting Li. Direct displacement pf parallel manipulators of 4-DOF spatial parallel mechanisms based on the ordered SOCs method. The 3rd China-Japan Conference on Mechatronics 2006 Fuzhou, 2006.9.
    [85]刘治志,罗玉峰,石志新,杨廷利.平面并联机构运动和动力分析的序单开链法.南昌大学学报(工科版), 2007, 29(3):234-238.
    [86] Mohamed MG, Duffy J. A direct Determination of the Instantaneous Kinematics of Fully-Parallel Robot Manipulators. ASME paper 84-DET-114.
    [87] Mohamed MG, Duffy J. A Direct Determination of Instantaneous Kinematics of Fully Parallel Robot Manipulators. ASME J Mech Trans Aut Des, 1985. 107:226-229.
    [88] Huang Z. Modeling Formulation of 6-DOF multi-loop Parallel Manipulators, Part-1: Kinematic Influence Coefficients. Proc. of the 4th IFToMM International Symposium on Linkage and Computer Aided Design Methods, 1985, Bucharest, Romania, Vol.Ⅱ-1,155-162.
    [89] Huang Z. Modeling Formulation of 6-DOF multi-loop Parallel Manipulators, Part-2: Dynamic Modeling and example. Proc. of the 4th IFToMM International Symposium on Linkage and Computer Aided Design Methods, 1985, Bucharest, Romania, Vol.Ⅱ-1,163-170.
    [90] Thomas M, Tesar D. Dynamic Modeling of Serial Manipulator Arms. J of Dyn Sys Meas and Comt, 1982. 104(9): 218-227.
    [91] Freeman RA, Tesar D. The Generalized Coordinate Selection for the Dynamics of Complex Planar Mechanical System. J of Mech Des, 1982, 104: 207-217.
    [92]黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社. 2006.
    [93]熊有伦,丁汉,刘恩沧.机器人学.北京:机械工业出版社. 1993.
    [94] Geng, Z., Haynes, L.S., Lee, J.D. and Carroll, R.L. On the dynamics model and kinematics analysis of a class of Stewart platform. Robotics and Autonomous Systems. 1992, 9(4):237~254.
    [95] Lebret, G., Liu, K., Lewis, F.L. Dynamic analysis and control of a Stewart platform Manipulator. J. of Robotic Systems. 1993, 10(5): 629~655.
    [96] Do, W.Q.D. and Yang, D.C.H. Inverse dynamic analysis and simulation of a platform type of robot. J. of Robotic Systems. 1988, 5(3):209~229.
    [97] Lee, S.S., Lee, J.M. Design of a general purpose 6-DOF haptic interface. Mechatronics. 2003, 13(7):697~722.
    [98] Jain A., Rodiguez G. Diagonalized Lagrangian robot dynamics. IEEE Transaction on Robotics and Automation. 1995, 4(11):571~584.
    [99] Z. Geng, L.S. Haynes, J.D. Lee, R.L. Carroll. On the Dynamic Model and Kinematic Analysis of a Class of Stewart Platforms. Robotics and Automation Systems. 1992, 9:237~254.
    [100] K. Liu, F. Lewis, G. Lebret, D. Taylor. The Singularities and Dynamics of a Stewart Platform manipulator. Journal of Intelligent and Robotic Systems. 1993, 8:287~308.
    [101] G. Lebert, L. Liu and F.L. Lewis. Dynamic Analysis and Control of a Stewart Platform Manipulator. J of Robotic Systems. 1993. 10(5):629~655.
    [102] C. M. Gosselin. Parallel Computational Algorithms for the Kinematics and Dynamics of Planar and Spatial Manipulators. ASME Journal of Dynamic Systems Measurement and Control. 1996, 118:22~28.
    [103] Dasgupta, B. and Mruthyunjaya, T.S. Closed-form dynamic equations of General Stewart platform through the Newton-Euler approach. Mechanism and Machine Theory. 1998, 33(7):993~1012
    [104] Dasgupta, B. and Mruthyunjays, T.S. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mech. Mach. Theory. 1998, 33(8):1135~1152.
    [105] Thomas, M., Tesar, D. Dynamic Modeling of Serial Manipulator Arms. J. Dyn. Sys. And Cont., 1982, 104(9):218~227.
    [106] Freeman R.A, Tesar, D. The Generalized Coordinate Selection for the Dynamics of Complex Planar Mechanical System. J. of Mech. Des., 1982, 104:207~217.
    [107]李兵,王知行,李建生.基于凯恩方程的新型并联机床动力学研究.机械科学与技术. 1999, 18(1):41~43.
    [108]刘敏杰,田涌涛,李从心.并联机器人动力学的子结构Kane方法.上海交通大学学报. 2001, 35(7):1032~1036.
    [109] Liu M.J., Li, C.X., Li, C.N. Dynamics analysis of the Gough-Stewart platform manipulators based on the virtual work principle. Journal of Robotics Systems,. 1993, 10(5):605~627.
    [110]金万敏,万坤华.机器人动力学建模.东南大学学报. 1993, 23:19~26
    [111]唐锡宽.机械动力学.北京:高等教育出版社. 1996 .
    [112]吴振顺.液压控制系统.北京:高等教育出版社. 2008.
    [113]王占林.近代电器液压伺服控制.北京:北京航空航天出版社. 2005.
    [114]许益明.电液比例控制系统分析与设计.机械工业出版社. 2005.
    [115]王显正,陈正航,王旭东.控制工程基础.科学出版社. 2000.
    [116]刘金琨.机器人控制系统的设计与MATLAB仿真.北京:清华大学出版社. 2008.
    [117]代颖.不确定性机器人鲁棒自适应控制方法研究[博士学位论文].西安交通大学. 1998.
    [118]霍伟.机器人动力学与控制.北京:高等教育出版社. 2005.
    [119] Paul R.P. Modeling, trajectory calculation and serving of a computer controlled arm. Stanford Artificial Intelligence Laboratory memo AIM177, 1972.
    [120] L. Cai, A.A. Goldenberg. Robust Control of Position and Force for a Robot Manipulator in Non-contact and Contact Tasks. Proceedings of American Control Conference. 1989, 1905~1911.
    [121] G. Liu, A.A. Goldenberg. Experiment on Robust Control of Robot Manipulators. Proceedings of IEEE International Conference on Robotics and Automation. 1992, 1935~1940.
    [122] Hsia T.C. A New Technique for Robust Control of Servo System. IEEE Trans. On Industrial Electronics. 1989, 36(1):1~7.
    [123] Jen Y, Lee C. Robust Speed Control of a Pump-Controlled Motor System. IEEE Proceeding D. 1992, 139(6):503~510.
    [124] Decarlo R.A. eral. Variable Structure Control of Nonlinear Multivariable Systems. A tutorial. Proceedings of the IEEE. 1988, 76(3):73~82.
    [125] Fu L.C. and Liao T.L. Globally stable robust Tracking of Nonlinear Systems Using Variable Structure Control and with an Application to a Robotic Manipulator. IEEE Transactions on Automation control. 1990, 35(12):1345~1350.
    [126] J.J. Slotine, S.S. Sastry. Tracking control of nonlinear systems using sliding surface with application to robot manipulators. Int. Journal Control. 1983, 38(2):465~492.
    [127]苏春翌.机器人变结构控制[博士学位论文].华南理工大学. 1990
    [128]高为炳.非线性系统的变机构控制.自动化学报. 1989,15(5):408~415.
    [129] Wang W.J., Lee J.L. Decentralized variable structure control design in perturbed nonlinear systems. J. of Dynamic System, Measurement, and Control. 1993, 115(3):551~554.
    [130] Hung J.Y., Cao W., Hung J.C., Variable structure Control, IEEE Trans. On industrial electronics. 1993, 40(1):2~22.
    [131]段锁林等.电液位置伺服系统的前馈补偿滑膜PI控制.西安交通大学学报. 1997, 31(7):12~16.
    [132] Mohamed A Ghazy. Variable Structure Control for Electro-hydraulic Position Servo system. The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001.
    [133]段锁林等.电液位置伺服系统的自适应滑模鲁棒跟踪控制.中国机械工程. 2004, 15(3):202~205.
    [134]方一鸣,聂颖,王众.电液伺服位置系统的变结构自适应鲁棒控制.计算机仿真. 2006, 23(11):149~152
    [135]刘豹.现代控制理论.北京:机械工业出版社. 2006.
    [136]杨盐生.不确定系统的鲁棒控制及其应用.北京:科学出版社.2004.
    [137]高为炳.变结构控制的理论及设计方法.北京:科学出版社. 1996.
    [138] Spurgeon S.K., Davies, R. A Nonlinear Control Strategy for Robust Sliding Mode Performance in the Presence of Unmatched Uncertainty. Int. J. of Control, 1993, 57(5):1107~1124.
    [139] Chiang C.C., Decentralized variable-structure adaptive controller synthesis of large-scale system subjected to bounded disturbance. Int. J. Systems Science. 1993, 24(6):1101~1111.
    [140]向凤红,杨晓洪,王晓东.实际变结构控制系统的抖振削弱方法.昆明理工大学学报.1998, 23(5):71~76.
    [141] Slotin J.J., Sastry S.S. Tracking Control of Nonlinear Systems Using Sliding Surface with Application to Robot Manipulators. Int. J. of Control. 1983, 18(2):465~492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700